| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > kqopn | Structured version Visualization version GIF version | ||
| Description: The topological indistinguishability map is an open map. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| Ref | Expression |
|---|---|
| kqval.2 | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) |
| Ref | Expression |
|---|---|
| kqopn | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → (𝐹 “ 𝑈) ∈ (KQ‘𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imassrn 6020 | . . . 4 ⊢ (𝐹 “ 𝑈) ⊆ ran 𝐹 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → (𝐹 “ 𝑈) ⊆ ran 𝐹) |
| 3 | kqval.2 | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) | |
| 4 | 3 | kqsat 23647 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → (◡𝐹 “ (𝐹 “ 𝑈)) = 𝑈) |
| 5 | simpr 484 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → 𝑈 ∈ 𝐽) | |
| 6 | 4, 5 | eqeltrd 2831 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → (◡𝐹 “ (𝐹 “ 𝑈)) ∈ 𝐽) |
| 7 | 3 | kqffn 23641 | . . . . . 6 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋) |
| 8 | dffn4 6741 | . . . . . 6 ⊢ (𝐹 Fn 𝑋 ↔ 𝐹:𝑋–onto→ran 𝐹) | |
| 9 | 7, 8 | sylib 218 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐹:𝑋–onto→ran 𝐹) |
| 10 | 9 | adantr 480 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → 𝐹:𝑋–onto→ran 𝐹) |
| 11 | elqtop3 23619 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→ran 𝐹) → ((𝐹 “ 𝑈) ∈ (𝐽 qTop 𝐹) ↔ ((𝐹 “ 𝑈) ⊆ ran 𝐹 ∧ (◡𝐹 “ (𝐹 “ 𝑈)) ∈ 𝐽))) | |
| 12 | 10, 11 | syldan 591 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → ((𝐹 “ 𝑈) ∈ (𝐽 qTop 𝐹) ↔ ((𝐹 “ 𝑈) ⊆ ran 𝐹 ∧ (◡𝐹 “ (𝐹 “ 𝑈)) ∈ 𝐽))) |
| 13 | 2, 6, 12 | mpbir2and 713 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → (𝐹 “ 𝑈) ∈ (𝐽 qTop 𝐹)) |
| 14 | 3 | kqval 23642 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) = (𝐽 qTop 𝐹)) |
| 15 | 14 | adantr 480 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → (KQ‘𝐽) = (𝐽 qTop 𝐹)) |
| 16 | 13, 15 | eleqtrrd 2834 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → (𝐹 “ 𝑈) ∈ (KQ‘𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 ⊆ wss 3902 ↦ cmpt 5172 ◡ccnv 5615 ran crn 5617 “ cima 5619 Fn wfn 6476 –onto→wfo 6479 ‘cfv 6481 (class class class)co 7346 qTop cqtop 17407 TopOnctopon 22826 KQckq 23609 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-qtop 17411 df-topon 22827 df-kq 23610 |
| This theorem is referenced by: kqt0lem 23652 isr0 23653 regr1lem 23655 kqreglem1 23657 kqreglem2 23658 kqnrmlem1 23659 kqnrmlem2 23660 |
| Copyright terms: Public domain | W3C validator |