![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > kqopn | Structured version Visualization version GIF version |
Description: The topological indistinguishability map is an open map. (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
kqval.2 | β’ πΉ = (π₯ β π β¦ {π¦ β π½ β£ π₯ β π¦}) |
Ref | Expression |
---|---|
kqopn | β’ ((π½ β (TopOnβπ) β§ π β π½) β (πΉ β π) β (KQβπ½)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imassrn 6070 | . . . 4 β’ (πΉ β π) β ran πΉ | |
2 | 1 | a1i 11 | . . 3 β’ ((π½ β (TopOnβπ) β§ π β π½) β (πΉ β π) β ran πΉ) |
3 | kqval.2 | . . . . 5 β’ πΉ = (π₯ β π β¦ {π¦ β π½ β£ π₯ β π¦}) | |
4 | 3 | kqsat 23455 | . . . 4 β’ ((π½ β (TopOnβπ) β§ π β π½) β (β‘πΉ β (πΉ β π)) = π) |
5 | simpr 485 | . . . 4 β’ ((π½ β (TopOnβπ) β§ π β π½) β π β π½) | |
6 | 4, 5 | eqeltrd 2833 | . . 3 β’ ((π½ β (TopOnβπ) β§ π β π½) β (β‘πΉ β (πΉ β π)) β π½) |
7 | 3 | kqffn 23449 | . . . . . 6 β’ (π½ β (TopOnβπ) β πΉ Fn π) |
8 | dffn4 6811 | . . . . . 6 β’ (πΉ Fn π β πΉ:πβontoβran πΉ) | |
9 | 7, 8 | sylib 217 | . . . . 5 β’ (π½ β (TopOnβπ) β πΉ:πβontoβran πΉ) |
10 | 9 | adantr 481 | . . . 4 β’ ((π½ β (TopOnβπ) β§ π β π½) β πΉ:πβontoβran πΉ) |
11 | elqtop3 23427 | . . . 4 β’ ((π½ β (TopOnβπ) β§ πΉ:πβontoβran πΉ) β ((πΉ β π) β (π½ qTop πΉ) β ((πΉ β π) β ran πΉ β§ (β‘πΉ β (πΉ β π)) β π½))) | |
12 | 10, 11 | syldan 591 | . . 3 β’ ((π½ β (TopOnβπ) β§ π β π½) β ((πΉ β π) β (π½ qTop πΉ) β ((πΉ β π) β ran πΉ β§ (β‘πΉ β (πΉ β π)) β π½))) |
13 | 2, 6, 12 | mpbir2and 711 | . 2 β’ ((π½ β (TopOnβπ) β§ π β π½) β (πΉ β π) β (π½ qTop πΉ)) |
14 | 3 | kqval 23450 | . . 3 β’ (π½ β (TopOnβπ) β (KQβπ½) = (π½ qTop πΉ)) |
15 | 14 | adantr 481 | . 2 β’ ((π½ β (TopOnβπ) β§ π β π½) β (KQβπ½) = (π½ qTop πΉ)) |
16 | 13, 15 | eleqtrrd 2836 | 1 β’ ((π½ β (TopOnβπ) β§ π β π½) β (πΉ β π) β (KQβπ½)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 {crab 3432 β wss 3948 β¦ cmpt 5231 β‘ccnv 5675 ran crn 5677 β cima 5679 Fn wfn 6538 βontoβwfo 6541 βcfv 6543 (class class class)co 7411 qTop cqtop 17453 TopOnctopon 22632 KQckq 23417 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7414 df-oprab 7415 df-mpo 7416 df-qtop 17457 df-topon 22633 df-kq 23418 |
This theorem is referenced by: kqt0lem 23460 isr0 23461 regr1lem 23463 kqreglem1 23465 kqreglem2 23466 kqnrmlem1 23467 kqnrmlem2 23468 |
Copyright terms: Public domain | W3C validator |