MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqopn Structured version   Visualization version   GIF version

Theorem kqopn 23650
Description: The topological indistinguishability map is an open map. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
kqopn ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → (𝐹𝑈) ∈ (KQ‘𝐽))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem kqopn
StepHypRef Expression
1 imassrn 6020 . . . 4 (𝐹𝑈) ⊆ ran 𝐹
21a1i 11 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → (𝐹𝑈) ⊆ ran 𝐹)
3 kqval.2 . . . . 5 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
43kqsat 23647 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → (𝐹 “ (𝐹𝑈)) = 𝑈)
5 simpr 484 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → 𝑈𝐽)
64, 5eqeltrd 2831 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → (𝐹 “ (𝐹𝑈)) ∈ 𝐽)
73kqffn 23641 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋)
8 dffn4 6741 . . . . . 6 (𝐹 Fn 𝑋𝐹:𝑋onto→ran 𝐹)
97, 8sylib 218 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝐹:𝑋onto→ran 𝐹)
109adantr 480 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → 𝐹:𝑋onto→ran 𝐹)
11 elqtop3 23619 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto→ran 𝐹) → ((𝐹𝑈) ∈ (𝐽 qTop 𝐹) ↔ ((𝐹𝑈) ⊆ ran 𝐹 ∧ (𝐹 “ (𝐹𝑈)) ∈ 𝐽)))
1210, 11syldan 591 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → ((𝐹𝑈) ∈ (𝐽 qTop 𝐹) ↔ ((𝐹𝑈) ⊆ ran 𝐹 ∧ (𝐹 “ (𝐹𝑈)) ∈ 𝐽)))
132, 6, 12mpbir2and 713 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → (𝐹𝑈) ∈ (𝐽 qTop 𝐹))
143kqval 23642 . . 3 (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) = (𝐽 qTop 𝐹))
1514adantr 480 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → (KQ‘𝐽) = (𝐽 qTop 𝐹))
1613, 15eleqtrrd 2834 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → (𝐹𝑈) ∈ (KQ‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  {crab 3395  wss 3902  cmpt 5172  ccnv 5615  ran crn 5617  cima 5619   Fn wfn 6476  ontowfo 6479  cfv 6481  (class class class)co 7346   qTop cqtop 17407  TopOnctopon 22826  KQckq 23609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-qtop 17411  df-topon 22827  df-kq 23610
This theorem is referenced by:  kqt0lem  23652  isr0  23653  regr1lem  23655  kqreglem1  23657  kqreglem2  23658  kqnrmlem1  23659  kqnrmlem2  23660
  Copyright terms: Public domain W3C validator