![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > kqopn | Structured version Visualization version GIF version |
Description: The topological indistinguishability map is an open map. (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
kqval.2 | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) |
Ref | Expression |
---|---|
kqopn | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → (𝐹 “ 𝑈) ∈ (KQ‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imassrn 6068 | . . . 4 ⊢ (𝐹 “ 𝑈) ⊆ ran 𝐹 | |
2 | 1 | a1i 11 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → (𝐹 “ 𝑈) ⊆ ran 𝐹) |
3 | kqval.2 | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) | |
4 | 3 | kqsat 23622 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → (◡𝐹 “ (𝐹 “ 𝑈)) = 𝑈) |
5 | simpr 484 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → 𝑈 ∈ 𝐽) | |
6 | 4, 5 | eqeltrd 2828 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → (◡𝐹 “ (𝐹 “ 𝑈)) ∈ 𝐽) |
7 | 3 | kqffn 23616 | . . . . . 6 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋) |
8 | dffn4 6811 | . . . . . 6 ⊢ (𝐹 Fn 𝑋 ↔ 𝐹:𝑋–onto→ran 𝐹) | |
9 | 7, 8 | sylib 217 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐹:𝑋–onto→ran 𝐹) |
10 | 9 | adantr 480 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → 𝐹:𝑋–onto→ran 𝐹) |
11 | elqtop3 23594 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→ran 𝐹) → ((𝐹 “ 𝑈) ∈ (𝐽 qTop 𝐹) ↔ ((𝐹 “ 𝑈) ⊆ ran 𝐹 ∧ (◡𝐹 “ (𝐹 “ 𝑈)) ∈ 𝐽))) | |
12 | 10, 11 | syldan 590 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → ((𝐹 “ 𝑈) ∈ (𝐽 qTop 𝐹) ↔ ((𝐹 “ 𝑈) ⊆ ran 𝐹 ∧ (◡𝐹 “ (𝐹 “ 𝑈)) ∈ 𝐽))) |
13 | 2, 6, 12 | mpbir2and 712 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → (𝐹 “ 𝑈) ∈ (𝐽 qTop 𝐹)) |
14 | 3 | kqval 23617 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) = (𝐽 qTop 𝐹)) |
15 | 14 | adantr 480 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → (KQ‘𝐽) = (𝐽 qTop 𝐹)) |
16 | 13, 15 | eleqtrrd 2831 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → (𝐹 “ 𝑈) ∈ (KQ‘𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 {crab 3427 ⊆ wss 3944 ↦ cmpt 5225 ◡ccnv 5671 ran crn 5673 “ cima 5675 Fn wfn 6537 –onto→wfo 6540 ‘cfv 6542 (class class class)co 7414 qTop cqtop 17476 TopOnctopon 22799 KQckq 23584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-qtop 17480 df-topon 22800 df-kq 23585 |
This theorem is referenced by: kqt0lem 23627 isr0 23628 regr1lem 23630 kqreglem1 23632 kqreglem2 23633 kqnrmlem1 23634 kqnrmlem2 23635 |
Copyright terms: Public domain | W3C validator |