MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqopn Structured version   Visualization version   GIF version

Theorem kqopn 23628
Description: The topological indistinguishability map is an open map. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
kqopn ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → (𝐹𝑈) ∈ (KQ‘𝐽))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem kqopn
StepHypRef Expression
1 imassrn 6045 . . . 4 (𝐹𝑈) ⊆ ran 𝐹
21a1i 11 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → (𝐹𝑈) ⊆ ran 𝐹)
3 kqval.2 . . . . 5 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
43kqsat 23625 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → (𝐹 “ (𝐹𝑈)) = 𝑈)
5 simpr 484 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → 𝑈𝐽)
64, 5eqeltrd 2829 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → (𝐹 “ (𝐹𝑈)) ∈ 𝐽)
73kqffn 23619 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋)
8 dffn4 6781 . . . . . 6 (𝐹 Fn 𝑋𝐹:𝑋onto→ran 𝐹)
97, 8sylib 218 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝐹:𝑋onto→ran 𝐹)
109adantr 480 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → 𝐹:𝑋onto→ran 𝐹)
11 elqtop3 23597 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto→ran 𝐹) → ((𝐹𝑈) ∈ (𝐽 qTop 𝐹) ↔ ((𝐹𝑈) ⊆ ran 𝐹 ∧ (𝐹 “ (𝐹𝑈)) ∈ 𝐽)))
1210, 11syldan 591 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → ((𝐹𝑈) ∈ (𝐽 qTop 𝐹) ↔ ((𝐹𝑈) ⊆ ran 𝐹 ∧ (𝐹 “ (𝐹𝑈)) ∈ 𝐽)))
132, 6, 12mpbir2and 713 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → (𝐹𝑈) ∈ (𝐽 qTop 𝐹))
143kqval 23620 . . 3 (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) = (𝐽 qTop 𝐹))
1514adantr 480 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → (KQ‘𝐽) = (𝐽 qTop 𝐹))
1613, 15eleqtrrd 2832 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → (𝐹𝑈) ∈ (KQ‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3408  wss 3917  cmpt 5191  ccnv 5640  ran crn 5642  cima 5644   Fn wfn 6509  ontowfo 6512  cfv 6514  (class class class)co 7390   qTop cqtop 17473  TopOnctopon 22804  KQckq 23587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-qtop 17477  df-topon 22805  df-kq 23588
This theorem is referenced by:  kqt0lem  23630  isr0  23631  regr1lem  23633  kqreglem1  23635  kqreglem2  23636  kqnrmlem1  23637  kqnrmlem2  23638
  Copyright terms: Public domain W3C validator