Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > kqid | Structured version Visualization version GIF version |
Description: The topological indistinguishability map is a continuous function into the Kolmogorov quotient. (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
kqval.2 | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) |
Ref | Expression |
---|---|
kqid | ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐹 ∈ (𝐽 Cn (KQ‘𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kqval.2 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) | |
2 | 1 | kqffn 22622 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋) |
3 | qtopid 22602 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) → 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹))) | |
4 | 2, 3 | mpdan 687 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹))) |
5 | 1 | kqval 22623 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) = (𝐽 qTop 𝐹)) |
6 | 5 | oveq2d 7229 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 Cn (KQ‘𝐽)) = (𝐽 Cn (𝐽 qTop 𝐹))) |
7 | 4, 6 | eleqtrrd 2841 | 1 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐹 ∈ (𝐽 Cn (KQ‘𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2110 {crab 3065 ↦ cmpt 5135 Fn wfn 6375 ‘cfv 6380 (class class class)co 7213 qTop cqtop 17008 TopOnctopon 21807 Cn ccn 22121 KQckq 22590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-ov 7216 df-oprab 7217 df-mpo 7218 df-map 8510 df-qtop 17012 df-top 21791 df-topon 21808 df-cn 22124 df-kq 22591 |
This theorem is referenced by: isr0 22634 r0cld 22635 kqreglem1 22638 kqreglem2 22639 kqnrmlem1 22640 kqnrmlem2 22641 |
Copyright terms: Public domain | W3C validator |