MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqid Structured version   Visualization version   GIF version

Theorem kqid 23757
Description: The topological indistinguishability map is a continuous function into the Kolmogorov quotient. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
kqid (𝐽 ∈ (TopOn‘𝑋) → 𝐹 ∈ (𝐽 Cn (KQ‘𝐽)))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem kqid
StepHypRef Expression
1 kqval.2 . . . 4 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
21kqffn 23754 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋)
3 qtopid 23734 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) → 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹)))
42, 3mpdan 686 . 2 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹)))
51kqval 23755 . . 3 (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) = (𝐽 qTop 𝐹))
65oveq2d 7464 . 2 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 Cn (KQ‘𝐽)) = (𝐽 Cn (𝐽 qTop 𝐹)))
74, 6eleqtrrd 2847 1 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 ∈ (𝐽 Cn (KQ‘𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  {crab 3443  cmpt 5249   Fn wfn 6568  cfv 6573  (class class class)co 7448   qTop cqtop 17563  TopOnctopon 22937   Cn ccn 23253  KQckq 23722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-qtop 17567  df-top 22921  df-topon 22938  df-cn 23256  df-kq 23723
This theorem is referenced by:  isr0  23766  r0cld  23767  kqreglem1  23770  kqreglem2  23771  kqnrmlem1  23772  kqnrmlem2  23773
  Copyright terms: Public domain W3C validator