Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > kqtopon | Structured version Visualization version GIF version |
Description: The Kolmogorov quotient is a topology on the quotient set. (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
kqval.2 | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) |
Ref | Expression |
---|---|
kqtopon | ⊢ (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kqval.2 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) | |
2 | 1 | kqval 22858 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) = (𝐽 qTop 𝐹)) |
3 | 1 | kqffn 22857 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋) |
4 | dffn4 6690 | . . . 4 ⊢ (𝐹 Fn 𝑋 ↔ 𝐹:𝑋–onto→ran 𝐹) | |
5 | 3, 4 | sylib 217 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐹:𝑋–onto→ran 𝐹) |
6 | qtoptopon 22836 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→ran 𝐹) → (𝐽 qTop 𝐹) ∈ (TopOn‘ran 𝐹)) | |
7 | 5, 6 | mpdan 683 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 qTop 𝐹) ∈ (TopOn‘ran 𝐹)) |
8 | 2, 7 | eqeltrd 2840 | 1 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 {crab 3069 ↦ cmpt 5161 ran crn 5589 Fn wfn 6425 –onto→wfo 6428 ‘cfv 6430 (class class class)co 7268 qTop cqtop 17195 TopOnctopon 22040 KQckq 22825 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-qtop 17199 df-top 22024 df-topon 22041 df-kq 22826 |
This theorem is referenced by: kqt0lem 22868 isr0 22869 r0cld 22870 regr1lem2 22872 kqreglem1 22873 kqreglem2 22874 kqnrmlem1 22875 kqnrmlem2 22876 kqtop 22877 |
Copyright terms: Public domain | W3C validator |