| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lsmcv2 | Structured version Visualization version GIF version | ||
| Description: Subspace sum has the covering property (using spans of singletons to represent atoms). Proposition 1(ii) of [Kalmbach] p. 153. (spansncv2 32222 analog.) (Contributed by NM, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| lsmcv2.v | ⊢ 𝑉 = (Base‘𝑊) |
| lsmcv2.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lsmcv2.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| lsmcv2.p | ⊢ ⊕ = (LSSum‘𝑊) |
| lsmcv2.c | ⊢ 𝐶 = ( ⋖L ‘𝑊) |
| lsmcv2.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| lsmcv2.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| lsmcv2.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| lsmcv2.l | ⊢ (𝜑 → ¬ (𝑁‘{𝑋}) ⊆ 𝑈) |
| Ref | Expression |
|---|---|
| lsmcv2 | ⊢ (𝜑 → 𝑈𝐶(𝑈 ⊕ (𝑁‘{𝑋}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmcv2.l | . . 3 ⊢ (𝜑 → ¬ (𝑁‘{𝑋}) ⊆ 𝑈) | |
| 2 | lsmcv2.p | . . . 4 ⊢ ⊕ = (LSSum‘𝑊) | |
| 3 | lsmcv2.w | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 4 | lveclmod 21013 | . . . . . . 7 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 6 | lsmcv2.s | . . . . . . 7 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 7 | 6 | lsssssubg 20864 | . . . . . 6 ⊢ (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊)) |
| 8 | 5, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ (SubGrp‘𝑊)) |
| 9 | lsmcv2.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
| 10 | 8, 9 | sseldd 3947 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝑊)) |
| 11 | lsmcv2.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 12 | lsmcv2.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
| 13 | lsmcv2.n | . . . . . . 7 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 14 | 12, 6, 13 | lspsncl 20883 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ 𝑆) |
| 15 | 5, 11, 14 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ 𝑆) |
| 16 | 8, 15 | sseldd 3947 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊)) |
| 17 | 2, 10, 16 | lssnle 19604 | . . 3 ⊢ (𝜑 → (¬ (𝑁‘{𝑋}) ⊆ 𝑈 ↔ 𝑈 ⊊ (𝑈 ⊕ (𝑁‘{𝑋})))) |
| 18 | 1, 17 | mpbid 232 | . 2 ⊢ (𝜑 → 𝑈 ⊊ (𝑈 ⊕ (𝑁‘{𝑋}))) |
| 19 | 3simpa 1148 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ (𝑈 ⊊ 𝑥 ∧ 𝑥 ⊆ (𝑈 ⊕ (𝑁‘{𝑋})))) → (𝜑 ∧ 𝑥 ∈ 𝑆)) | |
| 20 | simp3l 1202 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ (𝑈 ⊊ 𝑥 ∧ 𝑥 ⊆ (𝑈 ⊕ (𝑁‘{𝑋})))) → 𝑈 ⊊ 𝑥) | |
| 21 | simp3r 1203 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ (𝑈 ⊊ 𝑥 ∧ 𝑥 ⊆ (𝑈 ⊕ (𝑁‘{𝑋})))) → 𝑥 ⊆ (𝑈 ⊕ (𝑁‘{𝑋}))) | |
| 22 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑊 ∈ LVec) |
| 23 | 9 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑈 ∈ 𝑆) |
| 24 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑆) | |
| 25 | 11 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑋 ∈ 𝑉) |
| 26 | 12, 6, 13, 2, 22, 23, 24, 25 | lsmcv 21051 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑈 ⊊ 𝑥 ∧ 𝑥 ⊆ (𝑈 ⊕ (𝑁‘{𝑋}))) → 𝑥 = (𝑈 ⊕ (𝑁‘{𝑋}))) |
| 27 | 19, 20, 21, 26 | syl3anc 1373 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ (𝑈 ⊊ 𝑥 ∧ 𝑥 ⊆ (𝑈 ⊕ (𝑁‘{𝑋})))) → 𝑥 = (𝑈 ⊕ (𝑁‘{𝑋}))) |
| 28 | 27 | 3exp 1119 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑆 → ((𝑈 ⊊ 𝑥 ∧ 𝑥 ⊆ (𝑈 ⊕ (𝑁‘{𝑋}))) → 𝑥 = (𝑈 ⊕ (𝑁‘{𝑋}))))) |
| 29 | 28 | ralrimiv 3124 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ((𝑈 ⊊ 𝑥 ∧ 𝑥 ⊆ (𝑈 ⊕ (𝑁‘{𝑋}))) → 𝑥 = (𝑈 ⊕ (𝑁‘{𝑋})))) |
| 30 | lsmcv2.c | . . 3 ⊢ 𝐶 = ( ⋖L ‘𝑊) | |
| 31 | 6, 2 | lsmcl 20990 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ (𝑁‘{𝑋}) ∈ 𝑆) → (𝑈 ⊕ (𝑁‘{𝑋})) ∈ 𝑆) |
| 32 | 5, 9, 15, 31 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑋})) ∈ 𝑆) |
| 33 | 6, 30, 3, 9, 32 | lcvbr2 39015 | . 2 ⊢ (𝜑 → (𝑈𝐶(𝑈 ⊕ (𝑁‘{𝑋})) ↔ (𝑈 ⊊ (𝑈 ⊕ (𝑁‘{𝑋})) ∧ ∀𝑥 ∈ 𝑆 ((𝑈 ⊊ 𝑥 ∧ 𝑥 ⊆ (𝑈 ⊕ (𝑁‘{𝑋}))) → 𝑥 = (𝑈 ⊕ (𝑁‘{𝑋})))))) |
| 34 | 18, 29, 33 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝑈𝐶(𝑈 ⊕ (𝑁‘{𝑋}))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3914 ⊊ wpss 3915 {csn 4589 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 SubGrpcsubg 19052 LSSumclsm 19564 LModclmod 20766 LSubSpclss 20837 LSpanclspn 20877 LVecclvec 21009 ⋖L clcv 39011 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18711 df-grp 18868 df-minusg 18869 df-sbg 18870 df-subg 19055 df-cntz 19249 df-lsm 19566 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-invr 20297 df-drng 20640 df-lmod 20768 df-lss 20838 df-lsp 20878 df-lvec 21010 df-lcv 39012 |
| This theorem is referenced by: lcv1 39034 |
| Copyright terms: Public domain | W3C validator |