Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lsmcv2 | Structured version Visualization version GIF version |
Description: Subspace sum has the covering property (using spans of singletons to represent atoms). Proposition 1(ii) of [Kalmbach] p. 153. (spansncv2 30943 analog.) (Contributed by NM, 10-Jan-2015.) |
Ref | Expression |
---|---|
lsmcv2.v | ⊢ 𝑉 = (Base‘𝑊) |
lsmcv2.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lsmcv2.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lsmcv2.p | ⊢ ⊕ = (LSSum‘𝑊) |
lsmcv2.c | ⊢ 𝐶 = ( ⋖L ‘𝑊) |
lsmcv2.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lsmcv2.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lsmcv2.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lsmcv2.l | ⊢ (𝜑 → ¬ (𝑁‘{𝑋}) ⊆ 𝑈) |
Ref | Expression |
---|---|
lsmcv2 | ⊢ (𝜑 → 𝑈𝐶(𝑈 ⊕ (𝑁‘{𝑋}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsmcv2.l | . . 3 ⊢ (𝜑 → ¬ (𝑁‘{𝑋}) ⊆ 𝑈) | |
2 | lsmcv2.p | . . . 4 ⊢ ⊕ = (LSSum‘𝑊) | |
3 | lsmcv2.w | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
4 | lveclmod 20474 | . . . . . . 7 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LMod) |
6 | lsmcv2.s | . . . . . . 7 ⊢ 𝑆 = (LSubSp‘𝑊) | |
7 | 6 | lsssssubg 20326 | . . . . . 6 ⊢ (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊)) |
8 | 5, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ (SubGrp‘𝑊)) |
9 | lsmcv2.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
10 | 8, 9 | sseldd 3937 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝑊)) |
11 | lsmcv2.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
12 | lsmcv2.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
13 | lsmcv2.n | . . . . . . 7 ⊢ 𝑁 = (LSpan‘𝑊) | |
14 | 12, 6, 13 | lspsncl 20345 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ 𝑆) |
15 | 5, 11, 14 | syl2anc 585 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ 𝑆) |
16 | 8, 15 | sseldd 3937 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊)) |
17 | 2, 10, 16 | lssnle 19376 | . . 3 ⊢ (𝜑 → (¬ (𝑁‘{𝑋}) ⊆ 𝑈 ↔ 𝑈 ⊊ (𝑈 ⊕ (𝑁‘{𝑋})))) |
18 | 1, 17 | mpbid 231 | . 2 ⊢ (𝜑 → 𝑈 ⊊ (𝑈 ⊕ (𝑁‘{𝑋}))) |
19 | 3simpa 1148 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ (𝑈 ⊊ 𝑥 ∧ 𝑥 ⊆ (𝑈 ⊕ (𝑁‘{𝑋})))) → (𝜑 ∧ 𝑥 ∈ 𝑆)) | |
20 | simp3l 1201 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ (𝑈 ⊊ 𝑥 ∧ 𝑥 ⊆ (𝑈 ⊕ (𝑁‘{𝑋})))) → 𝑈 ⊊ 𝑥) | |
21 | simp3r 1202 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ (𝑈 ⊊ 𝑥 ∧ 𝑥 ⊆ (𝑈 ⊕ (𝑁‘{𝑋})))) → 𝑥 ⊆ (𝑈 ⊕ (𝑁‘{𝑋}))) | |
22 | 3 | adantr 482 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑊 ∈ LVec) |
23 | 9 | adantr 482 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑈 ∈ 𝑆) |
24 | simpr 486 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑆) | |
25 | 11 | adantr 482 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑋 ∈ 𝑉) |
26 | 12, 6, 13, 2, 22, 23, 24, 25 | lsmcv 20509 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑈 ⊊ 𝑥 ∧ 𝑥 ⊆ (𝑈 ⊕ (𝑁‘{𝑋}))) → 𝑥 = (𝑈 ⊕ (𝑁‘{𝑋}))) |
27 | 19, 20, 21, 26 | syl3anc 1371 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ (𝑈 ⊊ 𝑥 ∧ 𝑥 ⊆ (𝑈 ⊕ (𝑁‘{𝑋})))) → 𝑥 = (𝑈 ⊕ (𝑁‘{𝑋}))) |
28 | 27 | 3exp 1119 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑆 → ((𝑈 ⊊ 𝑥 ∧ 𝑥 ⊆ (𝑈 ⊕ (𝑁‘{𝑋}))) → 𝑥 = (𝑈 ⊕ (𝑁‘{𝑋}))))) |
29 | 28 | ralrimiv 3139 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ((𝑈 ⊊ 𝑥 ∧ 𝑥 ⊆ (𝑈 ⊕ (𝑁‘{𝑋}))) → 𝑥 = (𝑈 ⊕ (𝑁‘{𝑋})))) |
30 | lsmcv2.c | . . 3 ⊢ 𝐶 = ( ⋖L ‘𝑊) | |
31 | 6, 2 | lsmcl 20451 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ (𝑁‘{𝑋}) ∈ 𝑆) → (𝑈 ⊕ (𝑁‘{𝑋})) ∈ 𝑆) |
32 | 5, 9, 15, 31 | syl3anc 1371 | . . 3 ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑋})) ∈ 𝑆) |
33 | 6, 30, 3, 9, 32 | lcvbr2 37338 | . 2 ⊢ (𝜑 → (𝑈𝐶(𝑈 ⊕ (𝑁‘{𝑋})) ↔ (𝑈 ⊊ (𝑈 ⊕ (𝑁‘{𝑋})) ∧ ∀𝑥 ∈ 𝑆 ((𝑈 ⊊ 𝑥 ∧ 𝑥 ⊆ (𝑈 ⊕ (𝑁‘{𝑋}))) → 𝑥 = (𝑈 ⊕ (𝑁‘{𝑋})))))) |
34 | 18, 29, 33 | mpbir2and 711 | 1 ⊢ (𝜑 → 𝑈𝐶(𝑈 ⊕ (𝑁‘{𝑋}))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∀wral 3062 ⊆ wss 3902 ⊊ wpss 3903 {csn 4578 class class class wbr 5097 ‘cfv 6484 (class class class)co 7342 Basecbs 17010 SubGrpcsubg 18846 LSSumclsm 19336 LModclmod 20229 LSubSpclss 20299 LSpanclspn 20339 LVecclvec 20470 ⋖L clcv 37334 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5234 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-cnex 11033 ax-resscn 11034 ax-1cn 11035 ax-icn 11036 ax-addcl 11037 ax-addrcl 11038 ax-mulcl 11039 ax-mulrcl 11040 ax-mulcom 11041 ax-addass 11042 ax-mulass 11043 ax-distr 11044 ax-i2m1 11045 ax-1ne0 11046 ax-1rid 11047 ax-rnegex 11048 ax-rrecex 11049 ax-cnre 11050 ax-pre-lttri 11051 ax-pre-lttrn 11052 ax-pre-ltadd 11053 ax-pre-mulgt0 11054 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3921 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-int 4900 df-iun 4948 df-br 5098 df-opab 5160 df-mpt 5181 df-tr 5215 df-id 5523 df-eprel 5529 df-po 5537 df-so 5538 df-fr 5580 df-we 5582 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-pred 6243 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-riota 7298 df-ov 7345 df-oprab 7346 df-mpo 7347 df-om 7786 df-1st 7904 df-2nd 7905 df-tpos 8117 df-frecs 8172 df-wrecs 8203 df-recs 8277 df-rdg 8316 df-er 8574 df-en 8810 df-dom 8811 df-sdom 8812 df-pnf 11117 df-mnf 11118 df-xr 11119 df-ltxr 11120 df-le 11121 df-sub 11313 df-neg 11314 df-nn 12080 df-2 12142 df-3 12143 df-sets 16963 df-slot 16981 df-ndx 16993 df-base 17011 df-ress 17040 df-plusg 17073 df-mulr 17074 df-0g 17250 df-mgm 18424 df-sgrp 18473 df-mnd 18484 df-submnd 18529 df-grp 18677 df-minusg 18678 df-sbg 18679 df-subg 18849 df-cntz 19020 df-lsm 19338 df-cmn 19484 df-abl 19485 df-mgp 19816 df-ur 19833 df-ring 19880 df-oppr 19957 df-dvdsr 19978 df-unit 19979 df-invr 20009 df-drng 20095 df-lmod 20231 df-lss 20300 df-lsp 20340 df-lvec 20471 df-lcv 37335 |
This theorem is referenced by: lcv1 37357 |
Copyright terms: Public domain | W3C validator |