| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lsmcv2 | Structured version Visualization version GIF version | ||
| Description: Subspace sum has the covering property (using spans of singletons to represent atoms). Proposition 1(ii) of [Kalmbach] p. 153. (spansncv2 32268 analog.) (Contributed by NM, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| lsmcv2.v | ⊢ 𝑉 = (Base‘𝑊) |
| lsmcv2.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lsmcv2.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| lsmcv2.p | ⊢ ⊕ = (LSSum‘𝑊) |
| lsmcv2.c | ⊢ 𝐶 = ( ⋖L ‘𝑊) |
| lsmcv2.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| lsmcv2.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| lsmcv2.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| lsmcv2.l | ⊢ (𝜑 → ¬ (𝑁‘{𝑋}) ⊆ 𝑈) |
| Ref | Expression |
|---|---|
| lsmcv2 | ⊢ (𝜑 → 𝑈𝐶(𝑈 ⊕ (𝑁‘{𝑋}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmcv2.l | . . 3 ⊢ (𝜑 → ¬ (𝑁‘{𝑋}) ⊆ 𝑈) | |
| 2 | lsmcv2.p | . . . 4 ⊢ ⊕ = (LSSum‘𝑊) | |
| 3 | lsmcv2.w | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 4 | lveclmod 21038 | . . . . . . 7 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 6 | lsmcv2.s | . . . . . . 7 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 7 | 6 | lsssssubg 20889 | . . . . . 6 ⊢ (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊)) |
| 8 | 5, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ (SubGrp‘𝑊)) |
| 9 | lsmcv2.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
| 10 | 8, 9 | sseldd 3935 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝑊)) |
| 11 | lsmcv2.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 12 | lsmcv2.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
| 13 | lsmcv2.n | . . . . . . 7 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 14 | 12, 6, 13 | lspsncl 20908 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ 𝑆) |
| 15 | 5, 11, 14 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ 𝑆) |
| 16 | 8, 15 | sseldd 3935 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊)) |
| 17 | 2, 10, 16 | lssnle 19584 | . . 3 ⊢ (𝜑 → (¬ (𝑁‘{𝑋}) ⊆ 𝑈 ↔ 𝑈 ⊊ (𝑈 ⊕ (𝑁‘{𝑋})))) |
| 18 | 1, 17 | mpbid 232 | . 2 ⊢ (𝜑 → 𝑈 ⊊ (𝑈 ⊕ (𝑁‘{𝑋}))) |
| 19 | 3simpa 1148 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ (𝑈 ⊊ 𝑥 ∧ 𝑥 ⊆ (𝑈 ⊕ (𝑁‘{𝑋})))) → (𝜑 ∧ 𝑥 ∈ 𝑆)) | |
| 20 | simp3l 1202 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ (𝑈 ⊊ 𝑥 ∧ 𝑥 ⊆ (𝑈 ⊕ (𝑁‘{𝑋})))) → 𝑈 ⊊ 𝑥) | |
| 21 | simp3r 1203 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ (𝑈 ⊊ 𝑥 ∧ 𝑥 ⊆ (𝑈 ⊕ (𝑁‘{𝑋})))) → 𝑥 ⊆ (𝑈 ⊕ (𝑁‘{𝑋}))) | |
| 22 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑊 ∈ LVec) |
| 23 | 9 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑈 ∈ 𝑆) |
| 24 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑆) | |
| 25 | 11 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑋 ∈ 𝑉) |
| 26 | 12, 6, 13, 2, 22, 23, 24, 25 | lsmcv 21076 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑈 ⊊ 𝑥 ∧ 𝑥 ⊆ (𝑈 ⊕ (𝑁‘{𝑋}))) → 𝑥 = (𝑈 ⊕ (𝑁‘{𝑋}))) |
| 27 | 19, 20, 21, 26 | syl3anc 1373 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ (𝑈 ⊊ 𝑥 ∧ 𝑥 ⊆ (𝑈 ⊕ (𝑁‘{𝑋})))) → 𝑥 = (𝑈 ⊕ (𝑁‘{𝑋}))) |
| 28 | 27 | 3exp 1119 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑆 → ((𝑈 ⊊ 𝑥 ∧ 𝑥 ⊆ (𝑈 ⊕ (𝑁‘{𝑋}))) → 𝑥 = (𝑈 ⊕ (𝑁‘{𝑋}))))) |
| 29 | 28 | ralrimiv 3123 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ((𝑈 ⊊ 𝑥 ∧ 𝑥 ⊆ (𝑈 ⊕ (𝑁‘{𝑋}))) → 𝑥 = (𝑈 ⊕ (𝑁‘{𝑋})))) |
| 30 | lsmcv2.c | . . 3 ⊢ 𝐶 = ( ⋖L ‘𝑊) | |
| 31 | 6, 2 | lsmcl 21015 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ (𝑁‘{𝑋}) ∈ 𝑆) → (𝑈 ⊕ (𝑁‘{𝑋})) ∈ 𝑆) |
| 32 | 5, 9, 15, 31 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑋})) ∈ 𝑆) |
| 33 | 6, 30, 3, 9, 32 | lcvbr2 39060 | . 2 ⊢ (𝜑 → (𝑈𝐶(𝑈 ⊕ (𝑁‘{𝑋})) ↔ (𝑈 ⊊ (𝑈 ⊕ (𝑁‘{𝑋})) ∧ ∀𝑥 ∈ 𝑆 ((𝑈 ⊊ 𝑥 ∧ 𝑥 ⊆ (𝑈 ⊕ (𝑁‘{𝑋}))) → 𝑥 = (𝑈 ⊕ (𝑁‘{𝑋})))))) |
| 34 | 18, 29, 33 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝑈𝐶(𝑈 ⊕ (𝑁‘{𝑋}))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ⊆ wss 3902 ⊊ wpss 3903 {csn 4576 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 SubGrpcsubg 19030 LSSumclsm 19544 LModclmod 20791 LSubSpclss 20862 LSpanclspn 20902 LVecclvec 21034 ⋖L clcv 39056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-mulr 17172 df-0g 17342 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-submnd 18689 df-grp 18846 df-minusg 18847 df-sbg 18848 df-subg 19033 df-cntz 19227 df-lsm 19546 df-cmn 19692 df-abl 19693 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-drng 20644 df-lmod 20793 df-lss 20863 df-lsp 20903 df-lvec 21035 df-lcv 39057 |
| This theorem is referenced by: lcv1 39079 |
| Copyright terms: Public domain | W3C validator |