Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsmcv2 Structured version   Visualization version   GIF version

Theorem lsmcv2 39029
Description: Subspace sum has the covering property (using spans of singletons to represent atoms). Proposition 1(ii) of [Kalmbach] p. 153. (spansncv2 32229 analog.) (Contributed by NM, 10-Jan-2015.)
Hypotheses
Ref Expression
lsmcv2.v 𝑉 = (Base‘𝑊)
lsmcv2.s 𝑆 = (LSubSp‘𝑊)
lsmcv2.n 𝑁 = (LSpan‘𝑊)
lsmcv2.p = (LSSum‘𝑊)
lsmcv2.c 𝐶 = ( ⋖L𝑊)
lsmcv2.w (𝜑𝑊 ∈ LVec)
lsmcv2.u (𝜑𝑈𝑆)
lsmcv2.x (𝜑𝑋𝑉)
lsmcv2.l (𝜑 → ¬ (𝑁‘{𝑋}) ⊆ 𝑈)
Assertion
Ref Expression
lsmcv2 (𝜑𝑈𝐶(𝑈 (𝑁‘{𝑋})))

Proof of Theorem lsmcv2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 lsmcv2.l . . 3 (𝜑 → ¬ (𝑁‘{𝑋}) ⊆ 𝑈)
2 lsmcv2.p . . . 4 = (LSSum‘𝑊)
3 lsmcv2.w . . . . . . 7 (𝜑𝑊 ∈ LVec)
4 lveclmod 21020 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
53, 4syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
6 lsmcv2.s . . . . . . 7 𝑆 = (LSubSp‘𝑊)
76lsssssubg 20871 . . . . . 6 (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊))
85, 7syl 17 . . . . 5 (𝜑𝑆 ⊆ (SubGrp‘𝑊))
9 lsmcv2.u . . . . 5 (𝜑𝑈𝑆)
108, 9sseldd 3950 . . . 4 (𝜑𝑈 ∈ (SubGrp‘𝑊))
11 lsmcv2.x . . . . . 6 (𝜑𝑋𝑉)
12 lsmcv2.v . . . . . . 7 𝑉 = (Base‘𝑊)
13 lsmcv2.n . . . . . . 7 𝑁 = (LSpan‘𝑊)
1412, 6, 13lspsncl 20890 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ 𝑆)
155, 11, 14syl2anc 584 . . . . 5 (𝜑 → (𝑁‘{𝑋}) ∈ 𝑆)
168, 15sseldd 3950 . . . 4 (𝜑 → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
172, 10, 16lssnle 19611 . . 3 (𝜑 → (¬ (𝑁‘{𝑋}) ⊆ 𝑈𝑈 ⊊ (𝑈 (𝑁‘{𝑋}))))
181, 17mpbid 232 . 2 (𝜑𝑈 ⊊ (𝑈 (𝑁‘{𝑋})))
19 3simpa 1148 . . . . 5 ((𝜑𝑥𝑆 ∧ (𝑈𝑥𝑥 ⊆ (𝑈 (𝑁‘{𝑋})))) → (𝜑𝑥𝑆))
20 simp3l 1202 . . . . 5 ((𝜑𝑥𝑆 ∧ (𝑈𝑥𝑥 ⊆ (𝑈 (𝑁‘{𝑋})))) → 𝑈𝑥)
21 simp3r 1203 . . . . 5 ((𝜑𝑥𝑆 ∧ (𝑈𝑥𝑥 ⊆ (𝑈 (𝑁‘{𝑋})))) → 𝑥 ⊆ (𝑈 (𝑁‘{𝑋})))
223adantr 480 . . . . . 6 ((𝜑𝑥𝑆) → 𝑊 ∈ LVec)
239adantr 480 . . . . . 6 ((𝜑𝑥𝑆) → 𝑈𝑆)
24 simpr 484 . . . . . 6 ((𝜑𝑥𝑆) → 𝑥𝑆)
2511adantr 480 . . . . . 6 ((𝜑𝑥𝑆) → 𝑋𝑉)
2612, 6, 13, 2, 22, 23, 24, 25lsmcv 21058 . . . . 5 (((𝜑𝑥𝑆) ∧ 𝑈𝑥𝑥 ⊆ (𝑈 (𝑁‘{𝑋}))) → 𝑥 = (𝑈 (𝑁‘{𝑋})))
2719, 20, 21, 26syl3anc 1373 . . . 4 ((𝜑𝑥𝑆 ∧ (𝑈𝑥𝑥 ⊆ (𝑈 (𝑁‘{𝑋})))) → 𝑥 = (𝑈 (𝑁‘{𝑋})))
28273exp 1119 . . 3 (𝜑 → (𝑥𝑆 → ((𝑈𝑥𝑥 ⊆ (𝑈 (𝑁‘{𝑋}))) → 𝑥 = (𝑈 (𝑁‘{𝑋})))))
2928ralrimiv 3125 . 2 (𝜑 → ∀𝑥𝑆 ((𝑈𝑥𝑥 ⊆ (𝑈 (𝑁‘{𝑋}))) → 𝑥 = (𝑈 (𝑁‘{𝑋}))))
30 lsmcv2.c . . 3 𝐶 = ( ⋖L𝑊)
316, 2lsmcl 20997 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆 ∧ (𝑁‘{𝑋}) ∈ 𝑆) → (𝑈 (𝑁‘{𝑋})) ∈ 𝑆)
325, 9, 15, 31syl3anc 1373 . . 3 (𝜑 → (𝑈 (𝑁‘{𝑋})) ∈ 𝑆)
336, 30, 3, 9, 32lcvbr2 39022 . 2 (𝜑 → (𝑈𝐶(𝑈 (𝑁‘{𝑋})) ↔ (𝑈 ⊊ (𝑈 (𝑁‘{𝑋})) ∧ ∀𝑥𝑆 ((𝑈𝑥𝑥 ⊆ (𝑈 (𝑁‘{𝑋}))) → 𝑥 = (𝑈 (𝑁‘{𝑋}))))))
3418, 29, 33mpbir2and 713 1 (𝜑𝑈𝐶(𝑈 (𝑁‘{𝑋})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wss 3917  wpss 3918  {csn 4592   class class class wbr 5110  cfv 6514  (class class class)co 7390  Basecbs 17186  SubGrpcsubg 19059  LSSumclsm 19571  LModclmod 20773  LSubSpclss 20844  LSpanclspn 20884  LVecclvec 21016  L clcv 39018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-subg 19062  df-cntz 19256  df-lsm 19573  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-drng 20647  df-lmod 20775  df-lss 20845  df-lsp 20885  df-lvec 21017  df-lcv 39019
This theorem is referenced by:  lcv1  39041
  Copyright terms: Public domain W3C validator