| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lsmcv2 | Structured version Visualization version GIF version | ||
| Description: Subspace sum has the covering property (using spans of singletons to represent atoms). Proposition 1(ii) of [Kalmbach] p. 153. (spansncv2 32279 analog.) (Contributed by NM, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| lsmcv2.v | ⊢ 𝑉 = (Base‘𝑊) |
| lsmcv2.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lsmcv2.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| lsmcv2.p | ⊢ ⊕ = (LSSum‘𝑊) |
| lsmcv2.c | ⊢ 𝐶 = ( ⋖L ‘𝑊) |
| lsmcv2.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| lsmcv2.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| lsmcv2.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| lsmcv2.l | ⊢ (𝜑 → ¬ (𝑁‘{𝑋}) ⊆ 𝑈) |
| Ref | Expression |
|---|---|
| lsmcv2 | ⊢ (𝜑 → 𝑈𝐶(𝑈 ⊕ (𝑁‘{𝑋}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmcv2.l | . . 3 ⊢ (𝜑 → ¬ (𝑁‘{𝑋}) ⊆ 𝑈) | |
| 2 | lsmcv2.p | . . . 4 ⊢ ⊕ = (LSSum‘𝑊) | |
| 3 | lsmcv2.w | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 4 | lveclmod 21069 | . . . . . . 7 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 6 | lsmcv2.s | . . . . . . 7 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 7 | 6 | lsssssubg 20920 | . . . . . 6 ⊢ (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊)) |
| 8 | 5, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ (SubGrp‘𝑊)) |
| 9 | lsmcv2.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
| 10 | 8, 9 | sseldd 3964 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝑊)) |
| 11 | lsmcv2.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 12 | lsmcv2.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
| 13 | lsmcv2.n | . . . . . . 7 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 14 | 12, 6, 13 | lspsncl 20939 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ 𝑆) |
| 15 | 5, 11, 14 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ 𝑆) |
| 16 | 8, 15 | sseldd 3964 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊)) |
| 17 | 2, 10, 16 | lssnle 19660 | . . 3 ⊢ (𝜑 → (¬ (𝑁‘{𝑋}) ⊆ 𝑈 ↔ 𝑈 ⊊ (𝑈 ⊕ (𝑁‘{𝑋})))) |
| 18 | 1, 17 | mpbid 232 | . 2 ⊢ (𝜑 → 𝑈 ⊊ (𝑈 ⊕ (𝑁‘{𝑋}))) |
| 19 | 3simpa 1148 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ (𝑈 ⊊ 𝑥 ∧ 𝑥 ⊆ (𝑈 ⊕ (𝑁‘{𝑋})))) → (𝜑 ∧ 𝑥 ∈ 𝑆)) | |
| 20 | simp3l 1202 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ (𝑈 ⊊ 𝑥 ∧ 𝑥 ⊆ (𝑈 ⊕ (𝑁‘{𝑋})))) → 𝑈 ⊊ 𝑥) | |
| 21 | simp3r 1203 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ (𝑈 ⊊ 𝑥 ∧ 𝑥 ⊆ (𝑈 ⊕ (𝑁‘{𝑋})))) → 𝑥 ⊆ (𝑈 ⊕ (𝑁‘{𝑋}))) | |
| 22 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑊 ∈ LVec) |
| 23 | 9 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑈 ∈ 𝑆) |
| 24 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑆) | |
| 25 | 11 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑋 ∈ 𝑉) |
| 26 | 12, 6, 13, 2, 22, 23, 24, 25 | lsmcv 21107 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑈 ⊊ 𝑥 ∧ 𝑥 ⊆ (𝑈 ⊕ (𝑁‘{𝑋}))) → 𝑥 = (𝑈 ⊕ (𝑁‘{𝑋}))) |
| 27 | 19, 20, 21, 26 | syl3anc 1373 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ (𝑈 ⊊ 𝑥 ∧ 𝑥 ⊆ (𝑈 ⊕ (𝑁‘{𝑋})))) → 𝑥 = (𝑈 ⊕ (𝑁‘{𝑋}))) |
| 28 | 27 | 3exp 1119 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑆 → ((𝑈 ⊊ 𝑥 ∧ 𝑥 ⊆ (𝑈 ⊕ (𝑁‘{𝑋}))) → 𝑥 = (𝑈 ⊕ (𝑁‘{𝑋}))))) |
| 29 | 28 | ralrimiv 3132 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ((𝑈 ⊊ 𝑥 ∧ 𝑥 ⊆ (𝑈 ⊕ (𝑁‘{𝑋}))) → 𝑥 = (𝑈 ⊕ (𝑁‘{𝑋})))) |
| 30 | lsmcv2.c | . . 3 ⊢ 𝐶 = ( ⋖L ‘𝑊) | |
| 31 | 6, 2 | lsmcl 21046 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ (𝑁‘{𝑋}) ∈ 𝑆) → (𝑈 ⊕ (𝑁‘{𝑋})) ∈ 𝑆) |
| 32 | 5, 9, 15, 31 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑋})) ∈ 𝑆) |
| 33 | 6, 30, 3, 9, 32 | lcvbr2 39045 | . 2 ⊢ (𝜑 → (𝑈𝐶(𝑈 ⊕ (𝑁‘{𝑋})) ↔ (𝑈 ⊊ (𝑈 ⊕ (𝑁‘{𝑋})) ∧ ∀𝑥 ∈ 𝑆 ((𝑈 ⊊ 𝑥 ∧ 𝑥 ⊆ (𝑈 ⊕ (𝑁‘{𝑋}))) → 𝑥 = (𝑈 ⊕ (𝑁‘{𝑋})))))) |
| 34 | 18, 29, 33 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝑈𝐶(𝑈 ⊕ (𝑁‘{𝑋}))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ⊆ wss 3931 ⊊ wpss 3932 {csn 4606 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 SubGrpcsubg 19108 LSSumclsm 19620 LModclmod 20822 LSubSpclss 20893 LSpanclspn 20933 LVecclvec 21065 ⋖L clcv 39041 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-tpos 8230 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-0g 17460 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-submnd 18767 df-grp 18924 df-minusg 18925 df-sbg 18926 df-subg 19111 df-cntz 19305 df-lsm 19622 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-oppr 20302 df-dvdsr 20322 df-unit 20323 df-invr 20353 df-drng 20696 df-lmod 20824 df-lss 20894 df-lsp 20934 df-lvec 21066 df-lcv 39042 |
| This theorem is referenced by: lcv1 39064 |
| Copyright terms: Public domain | W3C validator |