Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsmcv2 Structured version   Visualization version   GIF version

Theorem lsmcv2 39149
Description: Subspace sum has the covering property (using spans of singletons to represent atoms). Proposition 1(ii) of [Kalmbach] p. 153. (spansncv2 32275 analog.) (Contributed by NM, 10-Jan-2015.)
Hypotheses
Ref Expression
lsmcv2.v 𝑉 = (Base‘𝑊)
lsmcv2.s 𝑆 = (LSubSp‘𝑊)
lsmcv2.n 𝑁 = (LSpan‘𝑊)
lsmcv2.p = (LSSum‘𝑊)
lsmcv2.c 𝐶 = ( ⋖L𝑊)
lsmcv2.w (𝜑𝑊 ∈ LVec)
lsmcv2.u (𝜑𝑈𝑆)
lsmcv2.x (𝜑𝑋𝑉)
lsmcv2.l (𝜑 → ¬ (𝑁‘{𝑋}) ⊆ 𝑈)
Assertion
Ref Expression
lsmcv2 (𝜑𝑈𝐶(𝑈 (𝑁‘{𝑋})))

Proof of Theorem lsmcv2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 lsmcv2.l . . 3 (𝜑 → ¬ (𝑁‘{𝑋}) ⊆ 𝑈)
2 lsmcv2.p . . . 4 = (LSSum‘𝑊)
3 lsmcv2.w . . . . . . 7 (𝜑𝑊 ∈ LVec)
4 lveclmod 21042 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
53, 4syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
6 lsmcv2.s . . . . . . 7 𝑆 = (LSubSp‘𝑊)
76lsssssubg 20893 . . . . . 6 (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊))
85, 7syl 17 . . . . 5 (𝜑𝑆 ⊆ (SubGrp‘𝑊))
9 lsmcv2.u . . . . 5 (𝜑𝑈𝑆)
108, 9sseldd 3931 . . . 4 (𝜑𝑈 ∈ (SubGrp‘𝑊))
11 lsmcv2.x . . . . . 6 (𝜑𝑋𝑉)
12 lsmcv2.v . . . . . . 7 𝑉 = (Base‘𝑊)
13 lsmcv2.n . . . . . . 7 𝑁 = (LSpan‘𝑊)
1412, 6, 13lspsncl 20912 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ 𝑆)
155, 11, 14syl2anc 584 . . . . 5 (𝜑 → (𝑁‘{𝑋}) ∈ 𝑆)
168, 15sseldd 3931 . . . 4 (𝜑 → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
172, 10, 16lssnle 19588 . . 3 (𝜑 → (¬ (𝑁‘{𝑋}) ⊆ 𝑈𝑈 ⊊ (𝑈 (𝑁‘{𝑋}))))
181, 17mpbid 232 . 2 (𝜑𝑈 ⊊ (𝑈 (𝑁‘{𝑋})))
19 3simpa 1148 . . . . 5 ((𝜑𝑥𝑆 ∧ (𝑈𝑥𝑥 ⊆ (𝑈 (𝑁‘{𝑋})))) → (𝜑𝑥𝑆))
20 simp3l 1202 . . . . 5 ((𝜑𝑥𝑆 ∧ (𝑈𝑥𝑥 ⊆ (𝑈 (𝑁‘{𝑋})))) → 𝑈𝑥)
21 simp3r 1203 . . . . 5 ((𝜑𝑥𝑆 ∧ (𝑈𝑥𝑥 ⊆ (𝑈 (𝑁‘{𝑋})))) → 𝑥 ⊆ (𝑈 (𝑁‘{𝑋})))
223adantr 480 . . . . . 6 ((𝜑𝑥𝑆) → 𝑊 ∈ LVec)
239adantr 480 . . . . . 6 ((𝜑𝑥𝑆) → 𝑈𝑆)
24 simpr 484 . . . . . 6 ((𝜑𝑥𝑆) → 𝑥𝑆)
2511adantr 480 . . . . . 6 ((𝜑𝑥𝑆) → 𝑋𝑉)
2612, 6, 13, 2, 22, 23, 24, 25lsmcv 21080 . . . . 5 (((𝜑𝑥𝑆) ∧ 𝑈𝑥𝑥 ⊆ (𝑈 (𝑁‘{𝑋}))) → 𝑥 = (𝑈 (𝑁‘{𝑋})))
2719, 20, 21, 26syl3anc 1373 . . . 4 ((𝜑𝑥𝑆 ∧ (𝑈𝑥𝑥 ⊆ (𝑈 (𝑁‘{𝑋})))) → 𝑥 = (𝑈 (𝑁‘{𝑋})))
28273exp 1119 . . 3 (𝜑 → (𝑥𝑆 → ((𝑈𝑥𝑥 ⊆ (𝑈 (𝑁‘{𝑋}))) → 𝑥 = (𝑈 (𝑁‘{𝑋})))))
2928ralrimiv 3124 . 2 (𝜑 → ∀𝑥𝑆 ((𝑈𝑥𝑥 ⊆ (𝑈 (𝑁‘{𝑋}))) → 𝑥 = (𝑈 (𝑁‘{𝑋}))))
30 lsmcv2.c . . 3 𝐶 = ( ⋖L𝑊)
316, 2lsmcl 21019 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆 ∧ (𝑁‘{𝑋}) ∈ 𝑆) → (𝑈 (𝑁‘{𝑋})) ∈ 𝑆)
325, 9, 15, 31syl3anc 1373 . . 3 (𝜑 → (𝑈 (𝑁‘{𝑋})) ∈ 𝑆)
336, 30, 3, 9, 32lcvbr2 39142 . 2 (𝜑 → (𝑈𝐶(𝑈 (𝑁‘{𝑋})) ↔ (𝑈 ⊊ (𝑈 (𝑁‘{𝑋})) ∧ ∀𝑥𝑆 ((𝑈𝑥𝑥 ⊆ (𝑈 (𝑁‘{𝑋}))) → 𝑥 = (𝑈 (𝑁‘{𝑋}))))))
3418, 29, 33mpbir2and 713 1 (𝜑𝑈𝐶(𝑈 (𝑁‘{𝑋})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048  wss 3898  wpss 3899  {csn 4575   class class class wbr 5093  cfv 6486  (class class class)co 7352  Basecbs 17122  SubGrpcsubg 19035  LSSumclsm 19548  LModclmod 20795  LSubSpclss 20866  LSpanclspn 20906  LVecclvec 21038  L clcv 39138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-0g 17347  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-grp 18851  df-minusg 18852  df-sbg 18853  df-subg 19038  df-cntz 19231  df-lsm 19550  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-invr 20308  df-drng 20648  df-lmod 20797  df-lss 20867  df-lsp 20907  df-lvec 21039  df-lcv 39139
This theorem is referenced by:  lcv1  39161
  Copyright terms: Public domain W3C validator