Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsmcv2 Structured version   Visualization version   GIF version

Theorem lsmcv2 37345
Description: Subspace sum has the covering property (using spans of singletons to represent atoms). Proposition 1(ii) of [Kalmbach] p. 153. (spansncv2 30943 analog.) (Contributed by NM, 10-Jan-2015.)
Hypotheses
Ref Expression
lsmcv2.v 𝑉 = (Base‘𝑊)
lsmcv2.s 𝑆 = (LSubSp‘𝑊)
lsmcv2.n 𝑁 = (LSpan‘𝑊)
lsmcv2.p = (LSSum‘𝑊)
lsmcv2.c 𝐶 = ( ⋖L𝑊)
lsmcv2.w (𝜑𝑊 ∈ LVec)
lsmcv2.u (𝜑𝑈𝑆)
lsmcv2.x (𝜑𝑋𝑉)
lsmcv2.l (𝜑 → ¬ (𝑁‘{𝑋}) ⊆ 𝑈)
Assertion
Ref Expression
lsmcv2 (𝜑𝑈𝐶(𝑈 (𝑁‘{𝑋})))

Proof of Theorem lsmcv2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 lsmcv2.l . . 3 (𝜑 → ¬ (𝑁‘{𝑋}) ⊆ 𝑈)
2 lsmcv2.p . . . 4 = (LSSum‘𝑊)
3 lsmcv2.w . . . . . . 7 (𝜑𝑊 ∈ LVec)
4 lveclmod 20474 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
53, 4syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
6 lsmcv2.s . . . . . . 7 𝑆 = (LSubSp‘𝑊)
76lsssssubg 20326 . . . . . 6 (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊))
85, 7syl 17 . . . . 5 (𝜑𝑆 ⊆ (SubGrp‘𝑊))
9 lsmcv2.u . . . . 5 (𝜑𝑈𝑆)
108, 9sseldd 3937 . . . 4 (𝜑𝑈 ∈ (SubGrp‘𝑊))
11 lsmcv2.x . . . . . 6 (𝜑𝑋𝑉)
12 lsmcv2.v . . . . . . 7 𝑉 = (Base‘𝑊)
13 lsmcv2.n . . . . . . 7 𝑁 = (LSpan‘𝑊)
1412, 6, 13lspsncl 20345 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ 𝑆)
155, 11, 14syl2anc 585 . . . . 5 (𝜑 → (𝑁‘{𝑋}) ∈ 𝑆)
168, 15sseldd 3937 . . . 4 (𝜑 → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
172, 10, 16lssnle 19376 . . 3 (𝜑 → (¬ (𝑁‘{𝑋}) ⊆ 𝑈𝑈 ⊊ (𝑈 (𝑁‘{𝑋}))))
181, 17mpbid 231 . 2 (𝜑𝑈 ⊊ (𝑈 (𝑁‘{𝑋})))
19 3simpa 1148 . . . . 5 ((𝜑𝑥𝑆 ∧ (𝑈𝑥𝑥 ⊆ (𝑈 (𝑁‘{𝑋})))) → (𝜑𝑥𝑆))
20 simp3l 1201 . . . . 5 ((𝜑𝑥𝑆 ∧ (𝑈𝑥𝑥 ⊆ (𝑈 (𝑁‘{𝑋})))) → 𝑈𝑥)
21 simp3r 1202 . . . . 5 ((𝜑𝑥𝑆 ∧ (𝑈𝑥𝑥 ⊆ (𝑈 (𝑁‘{𝑋})))) → 𝑥 ⊆ (𝑈 (𝑁‘{𝑋})))
223adantr 482 . . . . . 6 ((𝜑𝑥𝑆) → 𝑊 ∈ LVec)
239adantr 482 . . . . . 6 ((𝜑𝑥𝑆) → 𝑈𝑆)
24 simpr 486 . . . . . 6 ((𝜑𝑥𝑆) → 𝑥𝑆)
2511adantr 482 . . . . . 6 ((𝜑𝑥𝑆) → 𝑋𝑉)
2612, 6, 13, 2, 22, 23, 24, 25lsmcv 20509 . . . . 5 (((𝜑𝑥𝑆) ∧ 𝑈𝑥𝑥 ⊆ (𝑈 (𝑁‘{𝑋}))) → 𝑥 = (𝑈 (𝑁‘{𝑋})))
2719, 20, 21, 26syl3anc 1371 . . . 4 ((𝜑𝑥𝑆 ∧ (𝑈𝑥𝑥 ⊆ (𝑈 (𝑁‘{𝑋})))) → 𝑥 = (𝑈 (𝑁‘{𝑋})))
28273exp 1119 . . 3 (𝜑 → (𝑥𝑆 → ((𝑈𝑥𝑥 ⊆ (𝑈 (𝑁‘{𝑋}))) → 𝑥 = (𝑈 (𝑁‘{𝑋})))))
2928ralrimiv 3139 . 2 (𝜑 → ∀𝑥𝑆 ((𝑈𝑥𝑥 ⊆ (𝑈 (𝑁‘{𝑋}))) → 𝑥 = (𝑈 (𝑁‘{𝑋}))))
30 lsmcv2.c . . 3 𝐶 = ( ⋖L𝑊)
316, 2lsmcl 20451 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆 ∧ (𝑁‘{𝑋}) ∈ 𝑆) → (𝑈 (𝑁‘{𝑋})) ∈ 𝑆)
325, 9, 15, 31syl3anc 1371 . . 3 (𝜑 → (𝑈 (𝑁‘{𝑋})) ∈ 𝑆)
336, 30, 3, 9, 32lcvbr2 37338 . 2 (𝜑 → (𝑈𝐶(𝑈 (𝑁‘{𝑋})) ↔ (𝑈 ⊊ (𝑈 (𝑁‘{𝑋})) ∧ ∀𝑥𝑆 ((𝑈𝑥𝑥 ⊆ (𝑈 (𝑁‘{𝑋}))) → 𝑥 = (𝑈 (𝑁‘{𝑋}))))))
3418, 29, 33mpbir2and 711 1 (𝜑𝑈𝐶(𝑈 (𝑁‘{𝑋})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  w3a 1087   = wceq 1541  wcel 2106  wral 3062  wss 3902  wpss 3903  {csn 4578   class class class wbr 5097  cfv 6484  (class class class)co 7342  Basecbs 17010  SubGrpcsubg 18846  LSSumclsm 19336  LModclmod 20229  LSubSpclss 20299  LSpanclspn 20339  LVecclvec 20470  L clcv 37334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5234  ax-sep 5248  ax-nul 5255  ax-pow 5313  ax-pr 5377  ax-un 7655  ax-cnex 11033  ax-resscn 11034  ax-1cn 11035  ax-icn 11036  ax-addcl 11037  ax-addrcl 11038  ax-mulcl 11039  ax-mulrcl 11040  ax-mulcom 11041  ax-addass 11042  ax-mulass 11043  ax-distr 11044  ax-i2m1 11045  ax-1ne0 11046  ax-1rid 11047  ax-rnegex 11048  ax-rrecex 11049  ax-cnre 11050  ax-pre-lttri 11051  ax-pre-lttrn 11052  ax-pre-ltadd 11053  ax-pre-mulgt0 11054
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3921  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-int 4900  df-iun 4948  df-br 5098  df-opab 5160  df-mpt 5181  df-tr 5215  df-id 5523  df-eprel 5529  df-po 5537  df-so 5538  df-fr 5580  df-we 5582  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-pred 6243  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-f1 6489  df-fo 6490  df-f1o 6491  df-fv 6492  df-riota 7298  df-ov 7345  df-oprab 7346  df-mpo 7347  df-om 7786  df-1st 7904  df-2nd 7905  df-tpos 8117  df-frecs 8172  df-wrecs 8203  df-recs 8277  df-rdg 8316  df-er 8574  df-en 8810  df-dom 8811  df-sdom 8812  df-pnf 11117  df-mnf 11118  df-xr 11119  df-ltxr 11120  df-le 11121  df-sub 11313  df-neg 11314  df-nn 12080  df-2 12142  df-3 12143  df-sets 16963  df-slot 16981  df-ndx 16993  df-base 17011  df-ress 17040  df-plusg 17073  df-mulr 17074  df-0g 17250  df-mgm 18424  df-sgrp 18473  df-mnd 18484  df-submnd 18529  df-grp 18677  df-minusg 18678  df-sbg 18679  df-subg 18849  df-cntz 19020  df-lsm 19338  df-cmn 19484  df-abl 19485  df-mgp 19816  df-ur 19833  df-ring 19880  df-oppr 19957  df-dvdsr 19978  df-unit 19979  df-invr 20009  df-drng 20095  df-lmod 20231  df-lss 20300  df-lsp 20340  df-lvec 20471  df-lcv 37335
This theorem is referenced by:  lcv1  37357
  Copyright terms: Public domain W3C validator