| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lcvat | Structured version Visualization version GIF version | ||
| Description: If a subspace covers another, it equals the other joined with some atom. This is a consequence of relative atomicity. (cvati 32385 analog.) (Contributed by NM, 11-Jan-2015.) |
| Ref | Expression |
|---|---|
| lcvat.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lcvat.p | ⊢ ⊕ = (LSSum‘𝑊) |
| lcvat.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
| icvat.c | ⊢ 𝐶 = ( ⋖L ‘𝑊) |
| lcvat.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lcvat.t | ⊢ (𝜑 → 𝑇 ∈ 𝑆) |
| lcvat.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| lcvat.l | ⊢ (𝜑 → 𝑇𝐶𝑈) |
| Ref | Expression |
|---|---|
| lcvat | ⊢ (𝜑 → ∃𝑞 ∈ 𝐴 (𝑇 ⊕ 𝑞) = 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcvat.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 2 | lcvat.p | . . 3 ⊢ ⊕ = (LSSum‘𝑊) | |
| 3 | lcvat.a | . . 3 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
| 4 | lcvat.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 5 | lcvat.t | . . 3 ⊢ (𝜑 → 𝑇 ∈ 𝑆) | |
| 6 | lcvat.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
| 7 | icvat.c | . . . 4 ⊢ 𝐶 = ( ⋖L ‘𝑊) | |
| 8 | lcvat.l | . . . 4 ⊢ (𝜑 → 𝑇𝐶𝑈) | |
| 9 | 1, 7, 4, 5, 6, 8 | lcvpss 39025 | . . 3 ⊢ (𝜑 → 𝑇 ⊊ 𝑈) |
| 10 | 1, 2, 3, 4, 5, 6, 9 | lrelat 39015 | . 2 ⊢ (𝜑 → ∃𝑞 ∈ 𝐴 (𝑇 ⊊ (𝑇 ⊕ 𝑞) ∧ (𝑇 ⊕ 𝑞) ⊆ 𝑈)) |
| 11 | 4 | 3ad2ant1 1134 | . . . . 5 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴 ∧ (𝑇 ⊊ (𝑇 ⊕ 𝑞) ∧ (𝑇 ⊕ 𝑞) ⊆ 𝑈)) → 𝑊 ∈ LMod) |
| 12 | 5 | 3ad2ant1 1134 | . . . . 5 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴 ∧ (𝑇 ⊊ (𝑇 ⊕ 𝑞) ∧ (𝑇 ⊕ 𝑞) ⊆ 𝑈)) → 𝑇 ∈ 𝑆) |
| 13 | 6 | 3ad2ant1 1134 | . . . . 5 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴 ∧ (𝑇 ⊊ (𝑇 ⊕ 𝑞) ∧ (𝑇 ⊕ 𝑞) ⊆ 𝑈)) → 𝑈 ∈ 𝑆) |
| 14 | simp2 1138 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴 ∧ (𝑇 ⊊ (𝑇 ⊕ 𝑞) ∧ (𝑇 ⊕ 𝑞) ⊆ 𝑈)) → 𝑞 ∈ 𝐴) | |
| 15 | 1, 3, 11, 14 | lsatlssel 38998 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴 ∧ (𝑇 ⊊ (𝑇 ⊕ 𝑞) ∧ (𝑇 ⊕ 𝑞) ⊆ 𝑈)) → 𝑞 ∈ 𝑆) |
| 16 | 1, 2 | lsmcl 21082 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑞 ∈ 𝑆) → (𝑇 ⊕ 𝑞) ∈ 𝑆) |
| 17 | 11, 12, 15, 16 | syl3anc 1373 | . . . . 5 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴 ∧ (𝑇 ⊊ (𝑇 ⊕ 𝑞) ∧ (𝑇 ⊕ 𝑞) ⊆ 𝑈)) → (𝑇 ⊕ 𝑞) ∈ 𝑆) |
| 18 | 8 | 3ad2ant1 1134 | . . . . 5 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴 ∧ (𝑇 ⊊ (𝑇 ⊕ 𝑞) ∧ (𝑇 ⊕ 𝑞) ⊆ 𝑈)) → 𝑇𝐶𝑈) |
| 19 | simp3l 1202 | . . . . 5 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴 ∧ (𝑇 ⊊ (𝑇 ⊕ 𝑞) ∧ (𝑇 ⊕ 𝑞) ⊆ 𝑈)) → 𝑇 ⊊ (𝑇 ⊕ 𝑞)) | |
| 20 | simp3r 1203 | . . . . 5 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴 ∧ (𝑇 ⊊ (𝑇 ⊕ 𝑞) ∧ (𝑇 ⊕ 𝑞) ⊆ 𝑈)) → (𝑇 ⊕ 𝑞) ⊆ 𝑈) | |
| 21 | 1, 7, 11, 12, 13, 17, 18, 19, 20 | lcvnbtwn2 39028 | . . . 4 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴 ∧ (𝑇 ⊊ (𝑇 ⊕ 𝑞) ∧ (𝑇 ⊕ 𝑞) ⊆ 𝑈)) → (𝑇 ⊕ 𝑞) = 𝑈) |
| 22 | 21 | 3exp 1120 | . . 3 ⊢ (𝜑 → (𝑞 ∈ 𝐴 → ((𝑇 ⊊ (𝑇 ⊕ 𝑞) ∧ (𝑇 ⊕ 𝑞) ⊆ 𝑈) → (𝑇 ⊕ 𝑞) = 𝑈))) |
| 23 | 22 | reximdvai 3165 | . 2 ⊢ (𝜑 → (∃𝑞 ∈ 𝐴 (𝑇 ⊊ (𝑇 ⊕ 𝑞) ∧ (𝑇 ⊕ 𝑞) ⊆ 𝑈) → ∃𝑞 ∈ 𝐴 (𝑇 ⊕ 𝑞) = 𝑈)) |
| 24 | 10, 23 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑞 ∈ 𝐴 (𝑇 ⊕ 𝑞) = 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ∃wrex 3070 ⊆ wss 3951 ⊊ wpss 3952 class class class wbr 5143 ‘cfv 6561 (class class class)co 7431 LSSumclsm 19652 LModclmod 20858 LSubSpclss 20929 LSAtomsclsa 38975 ⋖L clcv 39019 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-0g 17486 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-submnd 18797 df-grp 18954 df-minusg 18955 df-sbg 18956 df-subg 19141 df-cntz 19335 df-lsm 19654 df-cmn 19800 df-abl 19801 df-mgp 20138 df-ur 20179 df-ring 20232 df-lmod 20860 df-lss 20930 df-lsp 20970 df-lsatoms 38977 df-lcv 39020 |
| This theorem is referenced by: islshpcv 39054 |
| Copyright terms: Public domain | W3C validator |