![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcvat | Structured version Visualization version GIF version |
Description: If a subspace covers another, it equals the other joined with some atom. This is a consequence of relative atomicity. (cvati 32395 analog.) (Contributed by NM, 11-Jan-2015.) |
Ref | Expression |
---|---|
lcvat.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lcvat.p | ⊢ ⊕ = (LSSum‘𝑊) |
lcvat.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
icvat.c | ⊢ 𝐶 = ( ⋖L ‘𝑊) |
lcvat.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lcvat.t | ⊢ (𝜑 → 𝑇 ∈ 𝑆) |
lcvat.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lcvat.l | ⊢ (𝜑 → 𝑇𝐶𝑈) |
Ref | Expression |
---|---|
lcvat | ⊢ (𝜑 → ∃𝑞 ∈ 𝐴 (𝑇 ⊕ 𝑞) = 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcvat.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
2 | lcvat.p | . . 3 ⊢ ⊕ = (LSSum‘𝑊) | |
3 | lcvat.a | . . 3 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
4 | lcvat.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
5 | lcvat.t | . . 3 ⊢ (𝜑 → 𝑇 ∈ 𝑆) | |
6 | lcvat.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
7 | icvat.c | . . . 4 ⊢ 𝐶 = ( ⋖L ‘𝑊) | |
8 | lcvat.l | . . . 4 ⊢ (𝜑 → 𝑇𝐶𝑈) | |
9 | 1, 7, 4, 5, 6, 8 | lcvpss 39006 | . . 3 ⊢ (𝜑 → 𝑇 ⊊ 𝑈) |
10 | 1, 2, 3, 4, 5, 6, 9 | lrelat 38996 | . 2 ⊢ (𝜑 → ∃𝑞 ∈ 𝐴 (𝑇 ⊊ (𝑇 ⊕ 𝑞) ∧ (𝑇 ⊕ 𝑞) ⊆ 𝑈)) |
11 | 4 | 3ad2ant1 1132 | . . . . 5 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴 ∧ (𝑇 ⊊ (𝑇 ⊕ 𝑞) ∧ (𝑇 ⊕ 𝑞) ⊆ 𝑈)) → 𝑊 ∈ LMod) |
12 | 5 | 3ad2ant1 1132 | . . . . 5 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴 ∧ (𝑇 ⊊ (𝑇 ⊕ 𝑞) ∧ (𝑇 ⊕ 𝑞) ⊆ 𝑈)) → 𝑇 ∈ 𝑆) |
13 | 6 | 3ad2ant1 1132 | . . . . 5 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴 ∧ (𝑇 ⊊ (𝑇 ⊕ 𝑞) ∧ (𝑇 ⊕ 𝑞) ⊆ 𝑈)) → 𝑈 ∈ 𝑆) |
14 | simp2 1136 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴 ∧ (𝑇 ⊊ (𝑇 ⊕ 𝑞) ∧ (𝑇 ⊕ 𝑞) ⊆ 𝑈)) → 𝑞 ∈ 𝐴) | |
15 | 1, 3, 11, 14 | lsatlssel 38979 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴 ∧ (𝑇 ⊊ (𝑇 ⊕ 𝑞) ∧ (𝑇 ⊕ 𝑞) ⊆ 𝑈)) → 𝑞 ∈ 𝑆) |
16 | 1, 2 | lsmcl 21100 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑞 ∈ 𝑆) → (𝑇 ⊕ 𝑞) ∈ 𝑆) |
17 | 11, 12, 15, 16 | syl3anc 1370 | . . . . 5 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴 ∧ (𝑇 ⊊ (𝑇 ⊕ 𝑞) ∧ (𝑇 ⊕ 𝑞) ⊆ 𝑈)) → (𝑇 ⊕ 𝑞) ∈ 𝑆) |
18 | 8 | 3ad2ant1 1132 | . . . . 5 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴 ∧ (𝑇 ⊊ (𝑇 ⊕ 𝑞) ∧ (𝑇 ⊕ 𝑞) ⊆ 𝑈)) → 𝑇𝐶𝑈) |
19 | simp3l 1200 | . . . . 5 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴 ∧ (𝑇 ⊊ (𝑇 ⊕ 𝑞) ∧ (𝑇 ⊕ 𝑞) ⊆ 𝑈)) → 𝑇 ⊊ (𝑇 ⊕ 𝑞)) | |
20 | simp3r 1201 | . . . . 5 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴 ∧ (𝑇 ⊊ (𝑇 ⊕ 𝑞) ∧ (𝑇 ⊕ 𝑞) ⊆ 𝑈)) → (𝑇 ⊕ 𝑞) ⊆ 𝑈) | |
21 | 1, 7, 11, 12, 13, 17, 18, 19, 20 | lcvnbtwn2 39009 | . . . 4 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴 ∧ (𝑇 ⊊ (𝑇 ⊕ 𝑞) ∧ (𝑇 ⊕ 𝑞) ⊆ 𝑈)) → (𝑇 ⊕ 𝑞) = 𝑈) |
22 | 21 | 3exp 1118 | . . 3 ⊢ (𝜑 → (𝑞 ∈ 𝐴 → ((𝑇 ⊊ (𝑇 ⊕ 𝑞) ∧ (𝑇 ⊕ 𝑞) ⊆ 𝑈) → (𝑇 ⊕ 𝑞) = 𝑈))) |
23 | 22 | reximdvai 3163 | . 2 ⊢ (𝜑 → (∃𝑞 ∈ 𝐴 (𝑇 ⊊ (𝑇 ⊕ 𝑞) ∧ (𝑇 ⊕ 𝑞) ⊆ 𝑈) → ∃𝑞 ∈ 𝐴 (𝑇 ⊕ 𝑞) = 𝑈)) |
24 | 10, 23 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑞 ∈ 𝐴 (𝑇 ⊕ 𝑞) = 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∃wrex 3068 ⊆ wss 3963 ⊊ wpss 3964 class class class wbr 5148 ‘cfv 6563 (class class class)co 7431 LSSumclsm 19667 LModclmod 20875 LSubSpclss 20947 LSAtomsclsa 38956 ⋖L clcv 39000 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-submnd 18810 df-grp 18967 df-minusg 18968 df-sbg 18969 df-subg 19154 df-cntz 19348 df-lsm 19669 df-cmn 19815 df-abl 19816 df-mgp 20153 df-ur 20200 df-ring 20253 df-lmod 20877 df-lss 20948 df-lsp 20988 df-lsatoms 38958 df-lcv 39001 |
This theorem is referenced by: islshpcv 39035 |
Copyright terms: Public domain | W3C validator |