Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcvat Structured version   Visualization version   GIF version

Theorem lcvat 39150
Description: If a subspace covers another, it equals the other joined with some atom. This is a consequence of relative atomicity. (cvati 32348 analog.) (Contributed by NM, 11-Jan-2015.)
Hypotheses
Ref Expression
lcvat.s 𝑆 = (LSubSp‘𝑊)
lcvat.p = (LSSum‘𝑊)
lcvat.a 𝐴 = (LSAtoms‘𝑊)
icvat.c 𝐶 = ( ⋖L𝑊)
lcvat.w (𝜑𝑊 ∈ LMod)
lcvat.t (𝜑𝑇𝑆)
lcvat.u (𝜑𝑈𝑆)
lcvat.l (𝜑𝑇𝐶𝑈)
Assertion
Ref Expression
lcvat (𝜑 → ∃𝑞𝐴 (𝑇 𝑞) = 𝑈)
Distinct variable groups:   𝐴,𝑞   𝑆,𝑞   𝑇,𝑞   𝑈,𝑞   𝑊,𝑞   𝜑,𝑞
Allowed substitution hints:   𝐶(𝑞)   (𝑞)

Proof of Theorem lcvat
StepHypRef Expression
1 lcvat.s . . 3 𝑆 = (LSubSp‘𝑊)
2 lcvat.p . . 3 = (LSSum‘𝑊)
3 lcvat.a . . 3 𝐴 = (LSAtoms‘𝑊)
4 lcvat.w . . 3 (𝜑𝑊 ∈ LMod)
5 lcvat.t . . 3 (𝜑𝑇𝑆)
6 lcvat.u . . 3 (𝜑𝑈𝑆)
7 icvat.c . . . 4 𝐶 = ( ⋖L𝑊)
8 lcvat.l . . . 4 (𝜑𝑇𝐶𝑈)
91, 7, 4, 5, 6, 8lcvpss 39144 . . 3 (𝜑𝑇𝑈)
101, 2, 3, 4, 5, 6, 9lrelat 39134 . 2 (𝜑 → ∃𝑞𝐴 (𝑇 ⊊ (𝑇 𝑞) ∧ (𝑇 𝑞) ⊆ 𝑈))
1143ad2ant1 1133 . . . . 5 ((𝜑𝑞𝐴 ∧ (𝑇 ⊊ (𝑇 𝑞) ∧ (𝑇 𝑞) ⊆ 𝑈)) → 𝑊 ∈ LMod)
1253ad2ant1 1133 . . . . 5 ((𝜑𝑞𝐴 ∧ (𝑇 ⊊ (𝑇 𝑞) ∧ (𝑇 𝑞) ⊆ 𝑈)) → 𝑇𝑆)
1363ad2ant1 1133 . . . . 5 ((𝜑𝑞𝐴 ∧ (𝑇 ⊊ (𝑇 𝑞) ∧ (𝑇 𝑞) ⊆ 𝑈)) → 𝑈𝑆)
14 simp2 1137 . . . . . . 7 ((𝜑𝑞𝐴 ∧ (𝑇 ⊊ (𝑇 𝑞) ∧ (𝑇 𝑞) ⊆ 𝑈)) → 𝑞𝐴)
151, 3, 11, 14lsatlssel 39117 . . . . . 6 ((𝜑𝑞𝐴 ∧ (𝑇 ⊊ (𝑇 𝑞) ∧ (𝑇 𝑞) ⊆ 𝑈)) → 𝑞𝑆)
161, 2lsmcl 21019 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑞𝑆) → (𝑇 𝑞) ∈ 𝑆)
1711, 12, 15, 16syl3anc 1373 . . . . 5 ((𝜑𝑞𝐴 ∧ (𝑇 ⊊ (𝑇 𝑞) ∧ (𝑇 𝑞) ⊆ 𝑈)) → (𝑇 𝑞) ∈ 𝑆)
1883ad2ant1 1133 . . . . 5 ((𝜑𝑞𝐴 ∧ (𝑇 ⊊ (𝑇 𝑞) ∧ (𝑇 𝑞) ⊆ 𝑈)) → 𝑇𝐶𝑈)
19 simp3l 1202 . . . . 5 ((𝜑𝑞𝐴 ∧ (𝑇 ⊊ (𝑇 𝑞) ∧ (𝑇 𝑞) ⊆ 𝑈)) → 𝑇 ⊊ (𝑇 𝑞))
20 simp3r 1203 . . . . 5 ((𝜑𝑞𝐴 ∧ (𝑇 ⊊ (𝑇 𝑞) ∧ (𝑇 𝑞) ⊆ 𝑈)) → (𝑇 𝑞) ⊆ 𝑈)
211, 7, 11, 12, 13, 17, 18, 19, 20lcvnbtwn2 39147 . . . 4 ((𝜑𝑞𝐴 ∧ (𝑇 ⊊ (𝑇 𝑞) ∧ (𝑇 𝑞) ⊆ 𝑈)) → (𝑇 𝑞) = 𝑈)
22213exp 1119 . . 3 (𝜑 → (𝑞𝐴 → ((𝑇 ⊊ (𝑇 𝑞) ∧ (𝑇 𝑞) ⊆ 𝑈) → (𝑇 𝑞) = 𝑈)))
2322reximdvai 3144 . 2 (𝜑 → (∃𝑞𝐴 (𝑇 ⊊ (𝑇 𝑞) ∧ (𝑇 𝑞) ⊆ 𝑈) → ∃𝑞𝐴 (𝑇 𝑞) = 𝑈))
2410, 23mpd 15 1 (𝜑 → ∃𝑞𝐴 (𝑇 𝑞) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wrex 3057  wss 3898  wpss 3899   class class class wbr 5093  cfv 6486  (class class class)co 7352  LSSumclsm 19548  LModclmod 20795  LSubSpclss 20866  LSAtomsclsa 39094  L clcv 39138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-0g 17347  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-grp 18851  df-minusg 18852  df-sbg 18853  df-subg 19038  df-cntz 19231  df-lsm 19550  df-cmn 19696  df-abl 19697  df-mgp 20061  df-ur 20102  df-ring 20155  df-lmod 20797  df-lss 20867  df-lsp 20907  df-lsatoms 39096  df-lcv 39139
This theorem is referenced by:  islshpcv  39173
  Copyright terms: Public domain W3C validator