Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcvat Structured version   Visualization version   GIF version

Theorem lcvat 35100
Description: If a subspace covers another, it equals the other joined with some atom. This is a consequence of relative atomicity. (cvati 29776 analog.) (Contributed by NM, 11-Jan-2015.)
Hypotheses
Ref Expression
lcvat.s 𝑆 = (LSubSp‘𝑊)
lcvat.p = (LSSum‘𝑊)
lcvat.a 𝐴 = (LSAtoms‘𝑊)
icvat.c 𝐶 = ( ⋖L𝑊)
lcvat.w (𝜑𝑊 ∈ LMod)
lcvat.t (𝜑𝑇𝑆)
lcvat.u (𝜑𝑈𝑆)
lcvat.l (𝜑𝑇𝐶𝑈)
Assertion
Ref Expression
lcvat (𝜑 → ∃𝑞𝐴 (𝑇 𝑞) = 𝑈)
Distinct variable groups:   𝐴,𝑞   𝑆,𝑞   𝑇,𝑞   𝑈,𝑞   𝑊,𝑞   𝜑,𝑞
Allowed substitution hints:   𝐶(𝑞)   (𝑞)

Proof of Theorem lcvat
StepHypRef Expression
1 lcvat.s . . 3 𝑆 = (LSubSp‘𝑊)
2 lcvat.p . . 3 = (LSSum‘𝑊)
3 lcvat.a . . 3 𝐴 = (LSAtoms‘𝑊)
4 lcvat.w . . 3 (𝜑𝑊 ∈ LMod)
5 lcvat.t . . 3 (𝜑𝑇𝑆)
6 lcvat.u . . 3 (𝜑𝑈𝑆)
7 icvat.c . . . 4 𝐶 = ( ⋖L𝑊)
8 lcvat.l . . . 4 (𝜑𝑇𝐶𝑈)
91, 7, 4, 5, 6, 8lcvpss 35094 . . 3 (𝜑𝑇𝑈)
101, 2, 3, 4, 5, 6, 9lrelat 35084 . 2 (𝜑 → ∃𝑞𝐴 (𝑇 ⊊ (𝑇 𝑞) ∧ (𝑇 𝑞) ⊆ 𝑈))
1143ad2ant1 1167 . . . . 5 ((𝜑𝑞𝐴 ∧ (𝑇 ⊊ (𝑇 𝑞) ∧ (𝑇 𝑞) ⊆ 𝑈)) → 𝑊 ∈ LMod)
1253ad2ant1 1167 . . . . 5 ((𝜑𝑞𝐴 ∧ (𝑇 ⊊ (𝑇 𝑞) ∧ (𝑇 𝑞) ⊆ 𝑈)) → 𝑇𝑆)
1363ad2ant1 1167 . . . . 5 ((𝜑𝑞𝐴 ∧ (𝑇 ⊊ (𝑇 𝑞) ∧ (𝑇 𝑞) ⊆ 𝑈)) → 𝑈𝑆)
14 simp2 1171 . . . . . . 7 ((𝜑𝑞𝐴 ∧ (𝑇 ⊊ (𝑇 𝑞) ∧ (𝑇 𝑞) ⊆ 𝑈)) → 𝑞𝐴)
151, 3, 11, 14lsatlssel 35067 . . . . . 6 ((𝜑𝑞𝐴 ∧ (𝑇 ⊊ (𝑇 𝑞) ∧ (𝑇 𝑞) ⊆ 𝑈)) → 𝑞𝑆)
161, 2lsmcl 19449 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑞𝑆) → (𝑇 𝑞) ∈ 𝑆)
1711, 12, 15, 16syl3anc 1494 . . . . 5 ((𝜑𝑞𝐴 ∧ (𝑇 ⊊ (𝑇 𝑞) ∧ (𝑇 𝑞) ⊆ 𝑈)) → (𝑇 𝑞) ∈ 𝑆)
1883ad2ant1 1167 . . . . 5 ((𝜑𝑞𝐴 ∧ (𝑇 ⊊ (𝑇 𝑞) ∧ (𝑇 𝑞) ⊆ 𝑈)) → 𝑇𝐶𝑈)
19 simp3l 1262 . . . . 5 ((𝜑𝑞𝐴 ∧ (𝑇 ⊊ (𝑇 𝑞) ∧ (𝑇 𝑞) ⊆ 𝑈)) → 𝑇 ⊊ (𝑇 𝑞))
20 simp3r 1263 . . . . 5 ((𝜑𝑞𝐴 ∧ (𝑇 ⊊ (𝑇 𝑞) ∧ (𝑇 𝑞) ⊆ 𝑈)) → (𝑇 𝑞) ⊆ 𝑈)
211, 7, 11, 12, 13, 17, 18, 19, 20lcvnbtwn2 35097 . . . 4 ((𝜑𝑞𝐴 ∧ (𝑇 ⊊ (𝑇 𝑞) ∧ (𝑇 𝑞) ⊆ 𝑈)) → (𝑇 𝑞) = 𝑈)
22213exp 1152 . . 3 (𝜑 → (𝑞𝐴 → ((𝑇 ⊊ (𝑇 𝑞) ∧ (𝑇 𝑞) ⊆ 𝑈) → (𝑇 𝑞) = 𝑈)))
2322reximdvai 3223 . 2 (𝜑 → (∃𝑞𝐴 (𝑇 ⊊ (𝑇 𝑞) ∧ (𝑇 𝑞) ⊆ 𝑈) → ∃𝑞𝐴 (𝑇 𝑞) = 𝑈))
2410, 23mpd 15 1 (𝜑 → ∃𝑞𝐴 (𝑇 𝑞) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1111   = wceq 1656  wcel 2164  wrex 3118  wss 3798  wpss 3799   class class class wbr 4875  cfv 6127  (class class class)co 6910  LSSumclsm 18407  LModclmod 19226  LSubSpclss 19295  LSAtomsclsa 35044  L clcv 35088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-er 8014  df-en 8229  df-dom 8230  df-sdom 8231  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-nn 11358  df-2 11421  df-ndx 16232  df-slot 16233  df-base 16235  df-sets 16236  df-ress 16237  df-plusg 16325  df-0g 16462  df-mgm 17602  df-sgrp 17644  df-mnd 17655  df-submnd 17696  df-grp 17786  df-minusg 17787  df-sbg 17788  df-subg 17949  df-cntz 18107  df-lsm 18409  df-cmn 18555  df-abl 18556  df-mgp 18851  df-ur 18863  df-ring 18910  df-lmod 19228  df-lss 19296  df-lsp 19338  df-lsatoms 35046  df-lcv 35089
This theorem is referenced by:  islshpcv  35123
  Copyright terms: Public domain W3C validator