![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > om1om1r | Structured version Visualization version GIF version |
Description: Ordinal one is both a left and right identity of ordinal multiplication. Lemma 2.15 of [Schloeder] p. 5. See om1 8563 and om1r 8564 for individual statements. (Contributed by RP, 29-Jan-2025.) |
Ref | Expression |
---|---|
om1om1r | ⊢ (𝐴 ∈ On → ((1o ·o 𝐴) = (𝐴 ·o 1o) ∧ (𝐴 ·o 1o) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | om1r 8564 | . . 3 ⊢ (𝐴 ∈ On → (1o ·o 𝐴) = 𝐴) | |
2 | om1 8563 | . . 3 ⊢ (𝐴 ∈ On → (𝐴 ·o 1o) = 𝐴) | |
3 | 1, 2 | eqtr4d 2769 | . 2 ⊢ (𝐴 ∈ On → (1o ·o 𝐴) = (𝐴 ·o 1o)) |
4 | 3, 2 | jca 510 | 1 ⊢ (𝐴 ∈ On → ((1o ·o 𝐴) = (𝐴 ·o 1o) ∧ (𝐴 ·o 1o) = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 Oncon0 6367 (class class class)co 7415 1oc1o 8480 ·o comu 8485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pr 5425 ax-un 7737 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3366 df-rab 3421 df-v 3466 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3968 df-nul 4325 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4908 df-iun 4997 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6370 df-on 6371 df-lim 6372 df-suc 6373 df-iota 6497 df-fun 6547 df-fn 6548 df-f 6549 df-f1 6550 df-fo 6551 df-f1o 6552 df-fv 6553 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7868 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-oadd 8491 df-omul 8492 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |