Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  om1om1r Structured version   Visualization version   GIF version

Theorem om1om1r 43246
Description: Ordinal one is both a left and right identity of ordinal multiplication. Lemma 2.15 of [Schloeder] p. 5. See om1 8598 and om1r 8599 for individual statements. (Contributed by RP, 29-Jan-2025.)
Assertion
Ref Expression
om1om1r (𝐴 ∈ On → ((1o ·o 𝐴) = (𝐴 ·o 1o) ∧ (𝐴 ·o 1o) = 𝐴))

Proof of Theorem om1om1r
StepHypRef Expression
1 om1r 8599 . . 3 (𝐴 ∈ On → (1o ·o 𝐴) = 𝐴)
2 om1 8598 . . 3 (𝐴 ∈ On → (𝐴 ·o 1o) = 𝐴)
31, 2eqtr4d 2783 . 2 (𝐴 ∈ On → (1o ·o 𝐴) = (𝐴 ·o 1o))
43, 2jca 511 1 (𝐴 ∈ On → ((1o ·o 𝐴) = (𝐴 ·o 1o) ∧ (𝐴 ·o 1o) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Oncon0 6395  (class class class)co 7448  1oc1o 8515   ·o comu 8520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-omul 8527
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator