Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linvh Structured version   Visualization version   GIF version

Theorem linvh 42056
Description: If an element has a unique left inverse, then the value satisfies the left inverse value equation. (Contributed by metakunt, 25-Apr-2025.)
Hypotheses
Ref Expression
linvh.1 (𝜑𝑋 ∈ (Base‘𝑅))
linvh.2 (𝜑 → ∃!𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑋) = (0g𝑅))
Assertion
Ref Expression
linvh (𝜑 → (((invg𝑅)‘𝑋)(+g𝑅)𝑋) = (0g𝑅))
Distinct variable groups:   𝑅,𝑖   𝑖,𝑋
Allowed substitution hint:   𝜑(𝑖)

Proof of Theorem linvh
StepHypRef Expression
1 linvh.1 . . . 4 (𝜑𝑋 ∈ (Base‘𝑅))
2 eqid 2734 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
3 eqid 2734 . . . . 5 (+g𝑅) = (+g𝑅)
4 eqid 2734 . . . . 5 (0g𝑅) = (0g𝑅)
5 eqid 2734 . . . . 5 (invg𝑅) = (invg𝑅)
62, 3, 4, 5grpinvval 18967 . . . 4 (𝑋 ∈ (Base‘𝑅) → ((invg𝑅)‘𝑋) = (𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑋) = (0g𝑅)))
71, 6syl 17 . . 3 (𝜑 → ((invg𝑅)‘𝑋) = (𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑋) = (0g𝑅)))
8 linvh.2 . . . 4 (𝜑 → ∃!𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑋) = (0g𝑅))
9 riotacl2 7386 . . . 4 (∃!𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑋) = (0g𝑅) → (𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑋) = (0g𝑅)) ∈ {𝑖 ∈ (Base‘𝑅) ∣ (𝑖(+g𝑅)𝑋) = (0g𝑅)})
108, 9syl 17 . . 3 (𝜑 → (𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑋) = (0g𝑅)) ∈ {𝑖 ∈ (Base‘𝑅) ∣ (𝑖(+g𝑅)𝑋) = (0g𝑅)})
117, 10eqeltrd 2833 . 2 (𝜑 → ((invg𝑅)‘𝑋) ∈ {𝑖 ∈ (Base‘𝑅) ∣ (𝑖(+g𝑅)𝑋) = (0g𝑅)})
12 oveq1 7420 . . . . 5 (𝑖 = ((invg𝑅)‘𝑋) → (𝑖(+g𝑅)𝑋) = (((invg𝑅)‘𝑋)(+g𝑅)𝑋))
1312eqeq1d 2736 . . . 4 (𝑖 = ((invg𝑅)‘𝑋) → ((𝑖(+g𝑅)𝑋) = (0g𝑅) ↔ (((invg𝑅)‘𝑋)(+g𝑅)𝑋) = (0g𝑅)))
1413elrab 3675 . . 3 (((invg𝑅)‘𝑋) ∈ {𝑖 ∈ (Base‘𝑅) ∣ (𝑖(+g𝑅)𝑋) = (0g𝑅)} ↔ (((invg𝑅)‘𝑋) ∈ (Base‘𝑅) ∧ (((invg𝑅)‘𝑋)(+g𝑅)𝑋) = (0g𝑅)))
1514simprbi 496 . 2 (((invg𝑅)‘𝑋) ∈ {𝑖 ∈ (Base‘𝑅) ∣ (𝑖(+g𝑅)𝑋) = (0g𝑅)} → (((invg𝑅)‘𝑋)(+g𝑅)𝑋) = (0g𝑅))
1611, 15syl 17 1 (𝜑 → (((invg𝑅)‘𝑋)(+g𝑅)𝑋) = (0g𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  ∃!wreu 3361  {crab 3419  cfv 6541  crio 7369  (class class class)co 7413  Basecbs 17229  +gcplusg 17273  0gc0g 17455  invgcminusg 18921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-fv 6549  df-riota 7370  df-ov 7416  df-minusg 18924
This theorem is referenced by:  primrootsunit1  42057
  Copyright terms: Public domain W3C validator