| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > linvh | Structured version Visualization version GIF version | ||
| Description: If an element has a unique left inverse, then the value satisfies the left inverse value equation. (Contributed by metakunt, 25-Apr-2025.) |
| Ref | Expression |
|---|---|
| linvh.1 | ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑅)) |
| linvh.2 | ⊢ (𝜑 → ∃!𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑋) = (0g‘𝑅)) |
| Ref | Expression |
|---|---|
| linvh | ⊢ (𝜑 → (((invg‘𝑅)‘𝑋)(+g‘𝑅)𝑋) = (0g‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | linvh.1 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑅)) | |
| 2 | eqid 2730 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 3 | eqid 2730 | . . . . 5 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 4 | eqid 2730 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 5 | eqid 2730 | . . . . 5 ⊢ (invg‘𝑅) = (invg‘𝑅) | |
| 6 | 2, 3, 4, 5 | grpinvval 18918 | . . . 4 ⊢ (𝑋 ∈ (Base‘𝑅) → ((invg‘𝑅)‘𝑋) = (℩𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑋) = (0g‘𝑅))) |
| 7 | 1, 6 | syl 17 | . . 3 ⊢ (𝜑 → ((invg‘𝑅)‘𝑋) = (℩𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑋) = (0g‘𝑅))) |
| 8 | linvh.2 | . . . 4 ⊢ (𝜑 → ∃!𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑋) = (0g‘𝑅)) | |
| 9 | riotacl2 7362 | . . . 4 ⊢ (∃!𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑋) = (0g‘𝑅) → (℩𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑋) = (0g‘𝑅)) ∈ {𝑖 ∈ (Base‘𝑅) ∣ (𝑖(+g‘𝑅)𝑋) = (0g‘𝑅)}) | |
| 10 | 8, 9 | syl 17 | . . 3 ⊢ (𝜑 → (℩𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑋) = (0g‘𝑅)) ∈ {𝑖 ∈ (Base‘𝑅) ∣ (𝑖(+g‘𝑅)𝑋) = (0g‘𝑅)}) |
| 11 | 7, 10 | eqeltrd 2829 | . 2 ⊢ (𝜑 → ((invg‘𝑅)‘𝑋) ∈ {𝑖 ∈ (Base‘𝑅) ∣ (𝑖(+g‘𝑅)𝑋) = (0g‘𝑅)}) |
| 12 | oveq1 7396 | . . . . 5 ⊢ (𝑖 = ((invg‘𝑅)‘𝑋) → (𝑖(+g‘𝑅)𝑋) = (((invg‘𝑅)‘𝑋)(+g‘𝑅)𝑋)) | |
| 13 | 12 | eqeq1d 2732 | . . . 4 ⊢ (𝑖 = ((invg‘𝑅)‘𝑋) → ((𝑖(+g‘𝑅)𝑋) = (0g‘𝑅) ↔ (((invg‘𝑅)‘𝑋)(+g‘𝑅)𝑋) = (0g‘𝑅))) |
| 14 | 13 | elrab 3661 | . . 3 ⊢ (((invg‘𝑅)‘𝑋) ∈ {𝑖 ∈ (Base‘𝑅) ∣ (𝑖(+g‘𝑅)𝑋) = (0g‘𝑅)} ↔ (((invg‘𝑅)‘𝑋) ∈ (Base‘𝑅) ∧ (((invg‘𝑅)‘𝑋)(+g‘𝑅)𝑋) = (0g‘𝑅))) |
| 15 | 14 | simprbi 496 | . 2 ⊢ (((invg‘𝑅)‘𝑋) ∈ {𝑖 ∈ (Base‘𝑅) ∣ (𝑖(+g‘𝑅)𝑋) = (0g‘𝑅)} → (((invg‘𝑅)‘𝑋)(+g‘𝑅)𝑋) = (0g‘𝑅)) |
| 16 | 11, 15 | syl 17 | 1 ⊢ (𝜑 → (((invg‘𝑅)‘𝑋)(+g‘𝑅)𝑋) = (0g‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∃!wreu 3354 {crab 3408 ‘cfv 6513 ℩crio 7345 (class class class)co 7389 Basecbs 17185 +gcplusg 17226 0gc0g 17408 invgcminusg 18872 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-fv 6521 df-riota 7346 df-ov 7392 df-minusg 18875 |
| This theorem is referenced by: primrootsunit1 42080 |
| Copyright terms: Public domain | W3C validator |