Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linvh Structured version   Visualization version   GIF version

Theorem linvh 42084
Description: If an element has a unique left inverse, then the value satisfies the left inverse value equation. (Contributed by metakunt, 25-Apr-2025.)
Hypotheses
Ref Expression
linvh.1 (𝜑𝑋 ∈ (Base‘𝑅))
linvh.2 (𝜑 → ∃!𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑋) = (0g𝑅))
Assertion
Ref Expression
linvh (𝜑 → (((invg𝑅)‘𝑋)(+g𝑅)𝑋) = (0g𝑅))
Distinct variable groups:   𝑅,𝑖   𝑖,𝑋
Allowed substitution hint:   𝜑(𝑖)

Proof of Theorem linvh
StepHypRef Expression
1 linvh.1 . . . 4 (𝜑𝑋 ∈ (Base‘𝑅))
2 eqid 2729 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
3 eqid 2729 . . . . 5 (+g𝑅) = (+g𝑅)
4 eqid 2729 . . . . 5 (0g𝑅) = (0g𝑅)
5 eqid 2729 . . . . 5 (invg𝑅) = (invg𝑅)
62, 3, 4, 5grpinvval 18912 . . . 4 (𝑋 ∈ (Base‘𝑅) → ((invg𝑅)‘𝑋) = (𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑋) = (0g𝑅)))
71, 6syl 17 . . 3 (𝜑 → ((invg𝑅)‘𝑋) = (𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑋) = (0g𝑅)))
8 linvh.2 . . . 4 (𝜑 → ∃!𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑋) = (0g𝑅))
9 riotacl2 7360 . . . 4 (∃!𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑋) = (0g𝑅) → (𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑋) = (0g𝑅)) ∈ {𝑖 ∈ (Base‘𝑅) ∣ (𝑖(+g𝑅)𝑋) = (0g𝑅)})
108, 9syl 17 . . 3 (𝜑 → (𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑋) = (0g𝑅)) ∈ {𝑖 ∈ (Base‘𝑅) ∣ (𝑖(+g𝑅)𝑋) = (0g𝑅)})
117, 10eqeltrd 2828 . 2 (𝜑 → ((invg𝑅)‘𝑋) ∈ {𝑖 ∈ (Base‘𝑅) ∣ (𝑖(+g𝑅)𝑋) = (0g𝑅)})
12 oveq1 7394 . . . . 5 (𝑖 = ((invg𝑅)‘𝑋) → (𝑖(+g𝑅)𝑋) = (((invg𝑅)‘𝑋)(+g𝑅)𝑋))
1312eqeq1d 2731 . . . 4 (𝑖 = ((invg𝑅)‘𝑋) → ((𝑖(+g𝑅)𝑋) = (0g𝑅) ↔ (((invg𝑅)‘𝑋)(+g𝑅)𝑋) = (0g𝑅)))
1413elrab 3659 . . 3 (((invg𝑅)‘𝑋) ∈ {𝑖 ∈ (Base‘𝑅) ∣ (𝑖(+g𝑅)𝑋) = (0g𝑅)} ↔ (((invg𝑅)‘𝑋) ∈ (Base‘𝑅) ∧ (((invg𝑅)‘𝑋)(+g𝑅)𝑋) = (0g𝑅)))
1514simprbi 496 . 2 (((invg𝑅)‘𝑋) ∈ {𝑖 ∈ (Base‘𝑅) ∣ (𝑖(+g𝑅)𝑋) = (0g𝑅)} → (((invg𝑅)‘𝑋)(+g𝑅)𝑋) = (0g𝑅))
1611, 15syl 17 1 (𝜑 → (((invg𝑅)‘𝑋)(+g𝑅)𝑋) = (0g𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  ∃!wreu 3352  {crab 3405  cfv 6511  crio 7343  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  0gc0g 17402  invgcminusg 18866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-riota 7344  df-ov 7390  df-minusg 18869
This theorem is referenced by:  primrootsunit1  42085
  Copyright terms: Public domain W3C validator