![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > linvh | Structured version Visualization version GIF version |
Description: If an element has a unique left inverse, then the value satisfies the left inverse value equation. (Contributed by metakunt, 25-Apr-2025.) |
Ref | Expression |
---|---|
linvh.1 | ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑅)) |
linvh.2 | ⊢ (𝜑 → ∃!𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑋) = (0g‘𝑅)) |
Ref | Expression |
---|---|
linvh | ⊢ (𝜑 → (((invg‘𝑅)‘𝑋)(+g‘𝑅)𝑋) = (0g‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | linvh.1 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑅)) | |
2 | eqid 2740 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | eqid 2740 | . . . . 5 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
4 | eqid 2740 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
5 | eqid 2740 | . . . . 5 ⊢ (invg‘𝑅) = (invg‘𝑅) | |
6 | 2, 3, 4, 5 | grpinvval 19022 | . . . 4 ⊢ (𝑋 ∈ (Base‘𝑅) → ((invg‘𝑅)‘𝑋) = (℩𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑋) = (0g‘𝑅))) |
7 | 1, 6 | syl 17 | . . 3 ⊢ (𝜑 → ((invg‘𝑅)‘𝑋) = (℩𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑋) = (0g‘𝑅))) |
8 | linvh.2 | . . . 4 ⊢ (𝜑 → ∃!𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑋) = (0g‘𝑅)) | |
9 | riotacl2 7423 | . . . 4 ⊢ (∃!𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑋) = (0g‘𝑅) → (℩𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑋) = (0g‘𝑅)) ∈ {𝑖 ∈ (Base‘𝑅) ∣ (𝑖(+g‘𝑅)𝑋) = (0g‘𝑅)}) | |
10 | 8, 9 | syl 17 | . . 3 ⊢ (𝜑 → (℩𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑋) = (0g‘𝑅)) ∈ {𝑖 ∈ (Base‘𝑅) ∣ (𝑖(+g‘𝑅)𝑋) = (0g‘𝑅)}) |
11 | 7, 10 | eqeltrd 2844 | . 2 ⊢ (𝜑 → ((invg‘𝑅)‘𝑋) ∈ {𝑖 ∈ (Base‘𝑅) ∣ (𝑖(+g‘𝑅)𝑋) = (0g‘𝑅)}) |
12 | oveq1 7457 | . . . . 5 ⊢ (𝑖 = ((invg‘𝑅)‘𝑋) → (𝑖(+g‘𝑅)𝑋) = (((invg‘𝑅)‘𝑋)(+g‘𝑅)𝑋)) | |
13 | 12 | eqeq1d 2742 | . . . 4 ⊢ (𝑖 = ((invg‘𝑅)‘𝑋) → ((𝑖(+g‘𝑅)𝑋) = (0g‘𝑅) ↔ (((invg‘𝑅)‘𝑋)(+g‘𝑅)𝑋) = (0g‘𝑅))) |
14 | 13 | elrab 3708 | . . 3 ⊢ (((invg‘𝑅)‘𝑋) ∈ {𝑖 ∈ (Base‘𝑅) ∣ (𝑖(+g‘𝑅)𝑋) = (0g‘𝑅)} ↔ (((invg‘𝑅)‘𝑋) ∈ (Base‘𝑅) ∧ (((invg‘𝑅)‘𝑋)(+g‘𝑅)𝑋) = (0g‘𝑅))) |
15 | 14 | simprbi 496 | . 2 ⊢ (((invg‘𝑅)‘𝑋) ∈ {𝑖 ∈ (Base‘𝑅) ∣ (𝑖(+g‘𝑅)𝑋) = (0g‘𝑅)} → (((invg‘𝑅)‘𝑋)(+g‘𝑅)𝑋) = (0g‘𝑅)) |
16 | 11, 15 | syl 17 | 1 ⊢ (𝜑 → (((invg‘𝑅)‘𝑋)(+g‘𝑅)𝑋) = (0g‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∃!wreu 3386 {crab 3443 ‘cfv 6575 ℩crio 7405 (class class class)co 7450 Basecbs 17260 +gcplusg 17313 0gc0g 17501 invgcminusg 18976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-fv 6583 df-riota 7406 df-ov 7453 df-minusg 18979 |
This theorem is referenced by: primrootsunit1 42056 |
Copyright terms: Public domain | W3C validator |