| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > linvh | Structured version Visualization version GIF version | ||
| Description: If an element has a unique left inverse, then the value satisfies the left inverse value equation. (Contributed by metakunt, 25-Apr-2025.) |
| Ref | Expression |
|---|---|
| linvh.1 | ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑅)) |
| linvh.2 | ⊢ (𝜑 → ∃!𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑋) = (0g‘𝑅)) |
| Ref | Expression |
|---|---|
| linvh | ⊢ (𝜑 → (((invg‘𝑅)‘𝑋)(+g‘𝑅)𝑋) = (0g‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | linvh.1 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑅)) | |
| 2 | eqid 2733 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 3 | eqid 2733 | . . . . 5 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 4 | eqid 2733 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 5 | eqid 2733 | . . . . 5 ⊢ (invg‘𝑅) = (invg‘𝑅) | |
| 6 | 2, 3, 4, 5 | grpinvval 18901 | . . . 4 ⊢ (𝑋 ∈ (Base‘𝑅) → ((invg‘𝑅)‘𝑋) = (℩𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑋) = (0g‘𝑅))) |
| 7 | 1, 6 | syl 17 | . . 3 ⊢ (𝜑 → ((invg‘𝑅)‘𝑋) = (℩𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑋) = (0g‘𝑅))) |
| 8 | linvh.2 | . . . 4 ⊢ (𝜑 → ∃!𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑋) = (0g‘𝑅)) | |
| 9 | riotacl2 7328 | . . . 4 ⊢ (∃!𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑋) = (0g‘𝑅) → (℩𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑋) = (0g‘𝑅)) ∈ {𝑖 ∈ (Base‘𝑅) ∣ (𝑖(+g‘𝑅)𝑋) = (0g‘𝑅)}) | |
| 10 | 8, 9 | syl 17 | . . 3 ⊢ (𝜑 → (℩𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑋) = (0g‘𝑅)) ∈ {𝑖 ∈ (Base‘𝑅) ∣ (𝑖(+g‘𝑅)𝑋) = (0g‘𝑅)}) |
| 11 | 7, 10 | eqeltrd 2833 | . 2 ⊢ (𝜑 → ((invg‘𝑅)‘𝑋) ∈ {𝑖 ∈ (Base‘𝑅) ∣ (𝑖(+g‘𝑅)𝑋) = (0g‘𝑅)}) |
| 12 | oveq1 7362 | . . . . 5 ⊢ (𝑖 = ((invg‘𝑅)‘𝑋) → (𝑖(+g‘𝑅)𝑋) = (((invg‘𝑅)‘𝑋)(+g‘𝑅)𝑋)) | |
| 13 | 12 | eqeq1d 2735 | . . . 4 ⊢ (𝑖 = ((invg‘𝑅)‘𝑋) → ((𝑖(+g‘𝑅)𝑋) = (0g‘𝑅) ↔ (((invg‘𝑅)‘𝑋)(+g‘𝑅)𝑋) = (0g‘𝑅))) |
| 14 | 13 | elrab 3643 | . . 3 ⊢ (((invg‘𝑅)‘𝑋) ∈ {𝑖 ∈ (Base‘𝑅) ∣ (𝑖(+g‘𝑅)𝑋) = (0g‘𝑅)} ↔ (((invg‘𝑅)‘𝑋) ∈ (Base‘𝑅) ∧ (((invg‘𝑅)‘𝑋)(+g‘𝑅)𝑋) = (0g‘𝑅))) |
| 15 | 14 | simprbi 496 | . 2 ⊢ (((invg‘𝑅)‘𝑋) ∈ {𝑖 ∈ (Base‘𝑅) ∣ (𝑖(+g‘𝑅)𝑋) = (0g‘𝑅)} → (((invg‘𝑅)‘𝑋)(+g‘𝑅)𝑋) = (0g‘𝑅)) |
| 16 | 11, 15 | syl 17 | 1 ⊢ (𝜑 → (((invg‘𝑅)‘𝑋)(+g‘𝑅)𝑋) = (0g‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ∃!wreu 3345 {crab 3396 ‘cfv 6489 ℩crio 7311 (class class class)co 7355 Basecbs 17127 +gcplusg 17168 0gc0g 17350 invgcminusg 18855 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-fv 6497 df-riota 7312 df-ov 7358 df-minusg 18858 |
| This theorem is referenced by: primrootsunit1 42263 |
| Copyright terms: Public domain | W3C validator |