| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > linvh | Structured version Visualization version GIF version | ||
| Description: If an element has a unique left inverse, then the value satisfies the left inverse value equation. (Contributed by metakunt, 25-Apr-2025.) |
| Ref | Expression |
|---|---|
| linvh.1 | ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑅)) |
| linvh.2 | ⊢ (𝜑 → ∃!𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑋) = (0g‘𝑅)) |
| Ref | Expression |
|---|---|
| linvh | ⊢ (𝜑 → (((invg‘𝑅)‘𝑋)(+g‘𝑅)𝑋) = (0g‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | linvh.1 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑅)) | |
| 2 | eqid 2734 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 3 | eqid 2734 | . . . . 5 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 4 | eqid 2734 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 5 | eqid 2734 | . . . . 5 ⊢ (invg‘𝑅) = (invg‘𝑅) | |
| 6 | 2, 3, 4, 5 | grpinvval 18967 | . . . 4 ⊢ (𝑋 ∈ (Base‘𝑅) → ((invg‘𝑅)‘𝑋) = (℩𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑋) = (0g‘𝑅))) |
| 7 | 1, 6 | syl 17 | . . 3 ⊢ (𝜑 → ((invg‘𝑅)‘𝑋) = (℩𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑋) = (0g‘𝑅))) |
| 8 | linvh.2 | . . . 4 ⊢ (𝜑 → ∃!𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑋) = (0g‘𝑅)) | |
| 9 | riotacl2 7386 | . . . 4 ⊢ (∃!𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑋) = (0g‘𝑅) → (℩𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑋) = (0g‘𝑅)) ∈ {𝑖 ∈ (Base‘𝑅) ∣ (𝑖(+g‘𝑅)𝑋) = (0g‘𝑅)}) | |
| 10 | 8, 9 | syl 17 | . . 3 ⊢ (𝜑 → (℩𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑋) = (0g‘𝑅)) ∈ {𝑖 ∈ (Base‘𝑅) ∣ (𝑖(+g‘𝑅)𝑋) = (0g‘𝑅)}) |
| 11 | 7, 10 | eqeltrd 2833 | . 2 ⊢ (𝜑 → ((invg‘𝑅)‘𝑋) ∈ {𝑖 ∈ (Base‘𝑅) ∣ (𝑖(+g‘𝑅)𝑋) = (0g‘𝑅)}) |
| 12 | oveq1 7420 | . . . . 5 ⊢ (𝑖 = ((invg‘𝑅)‘𝑋) → (𝑖(+g‘𝑅)𝑋) = (((invg‘𝑅)‘𝑋)(+g‘𝑅)𝑋)) | |
| 13 | 12 | eqeq1d 2736 | . . . 4 ⊢ (𝑖 = ((invg‘𝑅)‘𝑋) → ((𝑖(+g‘𝑅)𝑋) = (0g‘𝑅) ↔ (((invg‘𝑅)‘𝑋)(+g‘𝑅)𝑋) = (0g‘𝑅))) |
| 14 | 13 | elrab 3675 | . . 3 ⊢ (((invg‘𝑅)‘𝑋) ∈ {𝑖 ∈ (Base‘𝑅) ∣ (𝑖(+g‘𝑅)𝑋) = (0g‘𝑅)} ↔ (((invg‘𝑅)‘𝑋) ∈ (Base‘𝑅) ∧ (((invg‘𝑅)‘𝑋)(+g‘𝑅)𝑋) = (0g‘𝑅))) |
| 15 | 14 | simprbi 496 | . 2 ⊢ (((invg‘𝑅)‘𝑋) ∈ {𝑖 ∈ (Base‘𝑅) ∣ (𝑖(+g‘𝑅)𝑋) = (0g‘𝑅)} → (((invg‘𝑅)‘𝑋)(+g‘𝑅)𝑋) = (0g‘𝑅)) |
| 16 | 11, 15 | syl 17 | 1 ⊢ (𝜑 → (((invg‘𝑅)‘𝑋)(+g‘𝑅)𝑋) = (0g‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ∃!wreu 3361 {crab 3419 ‘cfv 6541 ℩crio 7369 (class class class)co 7413 Basecbs 17229 +gcplusg 17273 0gc0g 17455 invgcminusg 18921 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-fv 6549 df-riota 7370 df-ov 7416 df-minusg 18924 |
| This theorem is referenced by: primrootsunit1 42057 |
| Copyright terms: Public domain | W3C validator |