Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linvh Structured version   Visualization version   GIF version

Theorem linvh 41598
Description: If an element has a unique left inverse, then the value satisfies the left inverse value equation. (Contributed by metakunt, 25-Apr-2025.)
Hypotheses
Ref Expression
linvh.1 (𝜑𝑋 ∈ (Base‘𝑅))
linvh.2 (𝜑 → ∃!𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑋) = (0g𝑅))
Assertion
Ref Expression
linvh (𝜑 → (((invg𝑅)‘𝑋)(+g𝑅)𝑋) = (0g𝑅))
Distinct variable groups:   𝑅,𝑖   𝑖,𝑋
Allowed substitution hint:   𝜑(𝑖)

Proof of Theorem linvh
StepHypRef Expression
1 linvh.1 . . . 4 (𝜑𝑋 ∈ (Base‘𝑅))
2 eqid 2728 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
3 eqid 2728 . . . . 5 (+g𝑅) = (+g𝑅)
4 eqid 2728 . . . . 5 (0g𝑅) = (0g𝑅)
5 eqid 2728 . . . . 5 (invg𝑅) = (invg𝑅)
62, 3, 4, 5grpinvval 18944 . . . 4 (𝑋 ∈ (Base‘𝑅) → ((invg𝑅)‘𝑋) = (𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑋) = (0g𝑅)))
71, 6syl 17 . . 3 (𝜑 → ((invg𝑅)‘𝑋) = (𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑋) = (0g𝑅)))
8 linvh.2 . . . 4 (𝜑 → ∃!𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑋) = (0g𝑅))
9 riotacl2 7399 . . . 4 (∃!𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑋) = (0g𝑅) → (𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑋) = (0g𝑅)) ∈ {𝑖 ∈ (Base‘𝑅) ∣ (𝑖(+g𝑅)𝑋) = (0g𝑅)})
108, 9syl 17 . . 3 (𝜑 → (𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑋) = (0g𝑅)) ∈ {𝑖 ∈ (Base‘𝑅) ∣ (𝑖(+g𝑅)𝑋) = (0g𝑅)})
117, 10eqeltrd 2829 . 2 (𝜑 → ((invg𝑅)‘𝑋) ∈ {𝑖 ∈ (Base‘𝑅) ∣ (𝑖(+g𝑅)𝑋) = (0g𝑅)})
12 oveq1 7433 . . . . 5 (𝑖 = ((invg𝑅)‘𝑋) → (𝑖(+g𝑅)𝑋) = (((invg𝑅)‘𝑋)(+g𝑅)𝑋))
1312eqeq1d 2730 . . . 4 (𝑖 = ((invg𝑅)‘𝑋) → ((𝑖(+g𝑅)𝑋) = (0g𝑅) ↔ (((invg𝑅)‘𝑋)(+g𝑅)𝑋) = (0g𝑅)))
1413elrab 3684 . . 3 (((invg𝑅)‘𝑋) ∈ {𝑖 ∈ (Base‘𝑅) ∣ (𝑖(+g𝑅)𝑋) = (0g𝑅)} ↔ (((invg𝑅)‘𝑋) ∈ (Base‘𝑅) ∧ (((invg𝑅)‘𝑋)(+g𝑅)𝑋) = (0g𝑅)))
1514simprbi 495 . 2 (((invg𝑅)‘𝑋) ∈ {𝑖 ∈ (Base‘𝑅) ∣ (𝑖(+g𝑅)𝑋) = (0g𝑅)} → (((invg𝑅)‘𝑋)(+g𝑅)𝑋) = (0g𝑅))
1611, 15syl 17 1 (𝜑 → (((invg𝑅)‘𝑋)(+g𝑅)𝑋) = (0g𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  ∃!wreu 3372  {crab 3430  cfv 6553  crio 7381  (class class class)co 7426  Basecbs 17187  +gcplusg 17240  0gc0g 17428  invgcminusg 18898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-fv 6561  df-riota 7382  df-ov 7429  df-minusg 18901
This theorem is referenced by:  primrootsunit1  41599
  Copyright terms: Public domain W3C validator