Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linvh Structured version   Visualization version   GIF version

Theorem linvh 42079
Description: If an element has a unique left inverse, then the value satisfies the left inverse value equation. (Contributed by metakunt, 25-Apr-2025.)
Hypotheses
Ref Expression
linvh.1 (𝜑𝑋 ∈ (Base‘𝑅))
linvh.2 (𝜑 → ∃!𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑋) = (0g𝑅))
Assertion
Ref Expression
linvh (𝜑 → (((invg𝑅)‘𝑋)(+g𝑅)𝑋) = (0g𝑅))
Distinct variable groups:   𝑅,𝑖   𝑖,𝑋
Allowed substitution hint:   𝜑(𝑖)

Proof of Theorem linvh
StepHypRef Expression
1 linvh.1 . . . 4 (𝜑𝑋 ∈ (Base‘𝑅))
2 eqid 2730 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
3 eqid 2730 . . . . 5 (+g𝑅) = (+g𝑅)
4 eqid 2730 . . . . 5 (0g𝑅) = (0g𝑅)
5 eqid 2730 . . . . 5 (invg𝑅) = (invg𝑅)
62, 3, 4, 5grpinvval 18918 . . . 4 (𝑋 ∈ (Base‘𝑅) → ((invg𝑅)‘𝑋) = (𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑋) = (0g𝑅)))
71, 6syl 17 . . 3 (𝜑 → ((invg𝑅)‘𝑋) = (𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑋) = (0g𝑅)))
8 linvh.2 . . . 4 (𝜑 → ∃!𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑋) = (0g𝑅))
9 riotacl2 7362 . . . 4 (∃!𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑋) = (0g𝑅) → (𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑋) = (0g𝑅)) ∈ {𝑖 ∈ (Base‘𝑅) ∣ (𝑖(+g𝑅)𝑋) = (0g𝑅)})
108, 9syl 17 . . 3 (𝜑 → (𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑋) = (0g𝑅)) ∈ {𝑖 ∈ (Base‘𝑅) ∣ (𝑖(+g𝑅)𝑋) = (0g𝑅)})
117, 10eqeltrd 2829 . 2 (𝜑 → ((invg𝑅)‘𝑋) ∈ {𝑖 ∈ (Base‘𝑅) ∣ (𝑖(+g𝑅)𝑋) = (0g𝑅)})
12 oveq1 7396 . . . . 5 (𝑖 = ((invg𝑅)‘𝑋) → (𝑖(+g𝑅)𝑋) = (((invg𝑅)‘𝑋)(+g𝑅)𝑋))
1312eqeq1d 2732 . . . 4 (𝑖 = ((invg𝑅)‘𝑋) → ((𝑖(+g𝑅)𝑋) = (0g𝑅) ↔ (((invg𝑅)‘𝑋)(+g𝑅)𝑋) = (0g𝑅)))
1413elrab 3661 . . 3 (((invg𝑅)‘𝑋) ∈ {𝑖 ∈ (Base‘𝑅) ∣ (𝑖(+g𝑅)𝑋) = (0g𝑅)} ↔ (((invg𝑅)‘𝑋) ∈ (Base‘𝑅) ∧ (((invg𝑅)‘𝑋)(+g𝑅)𝑋) = (0g𝑅)))
1514simprbi 496 . 2 (((invg𝑅)‘𝑋) ∈ {𝑖 ∈ (Base‘𝑅) ∣ (𝑖(+g𝑅)𝑋) = (0g𝑅)} → (((invg𝑅)‘𝑋)(+g𝑅)𝑋) = (0g𝑅))
1611, 15syl 17 1 (𝜑 → (((invg𝑅)‘𝑋)(+g𝑅)𝑋) = (0g𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  ∃!wreu 3354  {crab 3408  cfv 6513  crio 7345  (class class class)co 7389  Basecbs 17185  +gcplusg 17226  0gc0g 17408  invgcminusg 18872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-fv 6521  df-riota 7346  df-ov 7392  df-minusg 18875
This theorem is referenced by:  primrootsunit1  42080
  Copyright terms: Public domain W3C validator