Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linvh Structured version   Visualization version   GIF version

Theorem linvh 42129
Description: If an element has a unique left inverse, then the value satisfies the left inverse value equation. (Contributed by metakunt, 25-Apr-2025.)
Hypotheses
Ref Expression
linvh.1 (𝜑𝑋 ∈ (Base‘𝑅))
linvh.2 (𝜑 → ∃!𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑋) = (0g𝑅))
Assertion
Ref Expression
linvh (𝜑 → (((invg𝑅)‘𝑋)(+g𝑅)𝑋) = (0g𝑅))
Distinct variable groups:   𝑅,𝑖   𝑖,𝑋
Allowed substitution hint:   𝜑(𝑖)

Proof of Theorem linvh
StepHypRef Expression
1 linvh.1 . . . 4 (𝜑𝑋 ∈ (Base‘𝑅))
2 eqid 2731 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
3 eqid 2731 . . . . 5 (+g𝑅) = (+g𝑅)
4 eqid 2731 . . . . 5 (0g𝑅) = (0g𝑅)
5 eqid 2731 . . . . 5 (invg𝑅) = (invg𝑅)
62, 3, 4, 5grpinvval 18888 . . . 4 (𝑋 ∈ (Base‘𝑅) → ((invg𝑅)‘𝑋) = (𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑋) = (0g𝑅)))
71, 6syl 17 . . 3 (𝜑 → ((invg𝑅)‘𝑋) = (𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑋) = (0g𝑅)))
8 linvh.2 . . . 4 (𝜑 → ∃!𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑋) = (0g𝑅))
9 riotacl2 7314 . . . 4 (∃!𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑋) = (0g𝑅) → (𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑋) = (0g𝑅)) ∈ {𝑖 ∈ (Base‘𝑅) ∣ (𝑖(+g𝑅)𝑋) = (0g𝑅)})
108, 9syl 17 . . 3 (𝜑 → (𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑋) = (0g𝑅)) ∈ {𝑖 ∈ (Base‘𝑅) ∣ (𝑖(+g𝑅)𝑋) = (0g𝑅)})
117, 10eqeltrd 2831 . 2 (𝜑 → ((invg𝑅)‘𝑋) ∈ {𝑖 ∈ (Base‘𝑅) ∣ (𝑖(+g𝑅)𝑋) = (0g𝑅)})
12 oveq1 7348 . . . . 5 (𝑖 = ((invg𝑅)‘𝑋) → (𝑖(+g𝑅)𝑋) = (((invg𝑅)‘𝑋)(+g𝑅)𝑋))
1312eqeq1d 2733 . . . 4 (𝑖 = ((invg𝑅)‘𝑋) → ((𝑖(+g𝑅)𝑋) = (0g𝑅) ↔ (((invg𝑅)‘𝑋)(+g𝑅)𝑋) = (0g𝑅)))
1413elrab 3642 . . 3 (((invg𝑅)‘𝑋) ∈ {𝑖 ∈ (Base‘𝑅) ∣ (𝑖(+g𝑅)𝑋) = (0g𝑅)} ↔ (((invg𝑅)‘𝑋) ∈ (Base‘𝑅) ∧ (((invg𝑅)‘𝑋)(+g𝑅)𝑋) = (0g𝑅)))
1514simprbi 496 . 2 (((invg𝑅)‘𝑋) ∈ {𝑖 ∈ (Base‘𝑅) ∣ (𝑖(+g𝑅)𝑋) = (0g𝑅)} → (((invg𝑅)‘𝑋)(+g𝑅)𝑋) = (0g𝑅))
1611, 15syl 17 1 (𝜑 → (((invg𝑅)‘𝑋)(+g𝑅)𝑋) = (0g𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  ∃!wreu 3344  {crab 3395  cfv 6476  crio 7297  (class class class)co 7341  Basecbs 17115  +gcplusg 17156  0gc0g 17338  invgcminusg 18842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-fv 6484  df-riota 7298  df-ov 7344  df-minusg 18845
This theorem is referenced by:  primrootsunit1  42130
  Copyright terms: Public domain W3C validator