MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvval Structured version   Visualization version   GIF version

Theorem grpinvval 18890
Description: The inverse of a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 7-Aug-2013.)
Hypotheses
Ref Expression
grpinvval.b 𝐵 = (Base‘𝐺)
grpinvval.p + = (+g𝐺)
grpinvval.o 0 = (0g𝐺)
grpinvval.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
grpinvval (𝑋𝐵 → (𝑁𝑋) = (𝑦𝐵 (𝑦 + 𝑋) = 0 ))
Distinct variable groups:   𝑦,𝐵   𝑦,𝐺   𝑦,𝑋
Allowed substitution hints:   + (𝑦)   𝑁(𝑦)   0 (𝑦)

Proof of Theorem grpinvval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7354 . . . 4 (𝑥 = 𝑋 → (𝑦 + 𝑥) = (𝑦 + 𝑋))
21eqeq1d 2733 . . 3 (𝑥 = 𝑋 → ((𝑦 + 𝑥) = 0 ↔ (𝑦 + 𝑋) = 0 ))
32riotabidv 7305 . 2 (𝑥 = 𝑋 → (𝑦𝐵 (𝑦 + 𝑥) = 0 ) = (𝑦𝐵 (𝑦 + 𝑋) = 0 ))
4 grpinvval.b . . 3 𝐵 = (Base‘𝐺)
5 grpinvval.p . . 3 + = (+g𝐺)
6 grpinvval.o . . 3 0 = (0g𝐺)
7 grpinvval.n . . 3 𝑁 = (invg𝐺)
84, 5, 6, 7grpinvfval 18888 . 2 𝑁 = (𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 ))
9 riotaex 7307 . 2 (𝑦𝐵 (𝑦 + 𝑋) = 0 ) ∈ V
103, 8, 9fvmpt 6929 1 (𝑋𝐵 → (𝑁𝑋) = (𝑦𝐵 (𝑦 + 𝑋) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cfv 6481  crio 7302  (class class class)co 7346  Basecbs 17117  +gcplusg 17158  0gc0g 17340  invgcminusg 18844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-riota 7303  df-ov 7349  df-minusg 18847
This theorem is referenced by:  grplinv  18899  isgrpinv  18903  xrsinvgval  32984  ringinvval  33197  ressply1invg  33527  linvh  42128  primrootsunit1  42129
  Copyright terms: Public domain W3C validator