| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpinvval | Structured version Visualization version GIF version | ||
| Description: The inverse of a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 7-Aug-2013.) |
| Ref | Expression |
|---|---|
| grpinvval.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpinvval.p | ⊢ + = (+g‘𝐺) |
| grpinvval.o | ⊢ 0 = (0g‘𝐺) |
| grpinvval.n | ⊢ 𝑁 = (invg‘𝐺) |
| Ref | Expression |
|---|---|
| grpinvval | ⊢ (𝑋 ∈ 𝐵 → (𝑁‘𝑋) = (℩𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7421 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑦 + 𝑥) = (𝑦 + 𝑋)) | |
| 2 | 1 | eqeq1d 2736 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑦 + 𝑥) = 0 ↔ (𝑦 + 𝑋) = 0 )) |
| 3 | 2 | riotabidv 7372 | . 2 ⊢ (𝑥 = 𝑋 → (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ) = (℩𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 )) |
| 4 | grpinvval.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 5 | grpinvval.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 6 | grpinvval.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 7 | grpinvval.n | . . 3 ⊢ 𝑁 = (invg‘𝐺) | |
| 8 | 4, 5, 6, 7 | grpinvfval 18965 | . 2 ⊢ 𝑁 = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 )) |
| 9 | riotaex 7374 | . 2 ⊢ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 ) ∈ V | |
| 10 | 3, 8, 9 | fvmpt 6996 | 1 ⊢ (𝑋 ∈ 𝐵 → (𝑁‘𝑋) = (℩𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ‘cfv 6541 ℩crio 7369 (class class class)co 7413 Basecbs 17229 +gcplusg 17273 0gc0g 17455 invgcminusg 18921 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-fv 6549 df-riota 7370 df-ov 7416 df-minusg 18924 |
| This theorem is referenced by: grplinv 18976 isgrpinv 18980 xrsinvgval 32949 ringinvval 33178 ressply1invg 33529 linvh 42056 primrootsunit1 42057 |
| Copyright terms: Public domain | W3C validator |