MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvval Structured version   Visualization version   GIF version

Theorem grpinvval 18535
Description: The inverse of a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 7-Aug-2013.)
Hypotheses
Ref Expression
grpinvval.b 𝐵 = (Base‘𝐺)
grpinvval.p + = (+g𝐺)
grpinvval.o 0 = (0g𝐺)
grpinvval.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
grpinvval (𝑋𝐵 → (𝑁𝑋) = (𝑦𝐵 (𝑦 + 𝑋) = 0 ))
Distinct variable groups:   𝑦,𝐵   𝑦,𝐺   𝑦,𝑋
Allowed substitution hints:   + (𝑦)   𝑁(𝑦)   0 (𝑦)

Proof of Theorem grpinvval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7263 . . . 4 (𝑥 = 𝑋 → (𝑦 + 𝑥) = (𝑦 + 𝑋))
21eqeq1d 2740 . . 3 (𝑥 = 𝑋 → ((𝑦 + 𝑥) = 0 ↔ (𝑦 + 𝑋) = 0 ))
32riotabidv 7214 . 2 (𝑥 = 𝑋 → (𝑦𝐵 (𝑦 + 𝑥) = 0 ) = (𝑦𝐵 (𝑦 + 𝑋) = 0 ))
4 grpinvval.b . . 3 𝐵 = (Base‘𝐺)
5 grpinvval.p . . 3 + = (+g𝐺)
6 grpinvval.o . . 3 0 = (0g𝐺)
7 grpinvval.n . . 3 𝑁 = (invg𝐺)
84, 5, 6, 7grpinvfval 18533 . 2 𝑁 = (𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 ))
9 riotaex 7216 . 2 (𝑦𝐵 (𝑦 + 𝑋) = 0 ) ∈ V
103, 8, 9fvmpt 6857 1 (𝑋𝐵 → (𝑁𝑋) = (𝑦𝐵 (𝑦 + 𝑋) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  cfv 6418  crio 7211  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  0gc0g 17067  invgcminusg 18493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-riota 7212  df-ov 7258  df-minusg 18496
This theorem is referenced by:  grplinv  18543  isgrpinv  18547  xrsinvgval  31188  ringinvval  31391
  Copyright terms: Public domain W3C validator