![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpinvval | Structured version Visualization version GIF version |
Description: The inverse of a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 7-Aug-2013.) |
Ref | Expression |
---|---|
grpinvval.b | ⊢ 𝐵 = (Base‘𝐺) |
grpinvval.p | ⊢ + = (+g‘𝐺) |
grpinvval.o | ⊢ 0 = (0g‘𝐺) |
grpinvval.n | ⊢ 𝑁 = (invg‘𝐺) |
Ref | Expression |
---|---|
grpinvval | ⊢ (𝑋 ∈ 𝐵 → (𝑁‘𝑋) = (℩𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7458 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑦 + 𝑥) = (𝑦 + 𝑋)) | |
2 | 1 | eqeq1d 2742 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑦 + 𝑥) = 0 ↔ (𝑦 + 𝑋) = 0 )) |
3 | 2 | riotabidv 7408 | . 2 ⊢ (𝑥 = 𝑋 → (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ) = (℩𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 )) |
4 | grpinvval.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
5 | grpinvval.p | . . 3 ⊢ + = (+g‘𝐺) | |
6 | grpinvval.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
7 | grpinvval.n | . . 3 ⊢ 𝑁 = (invg‘𝐺) | |
8 | 4, 5, 6, 7 | grpinvfval 19020 | . 2 ⊢ 𝑁 = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 )) |
9 | riotaex 7410 | . 2 ⊢ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 ) ∈ V | |
10 | 3, 8, 9 | fvmpt 7031 | 1 ⊢ (𝑋 ∈ 𝐵 → (𝑁‘𝑋) = (℩𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ‘cfv 6575 ℩crio 7405 (class class class)co 7450 Basecbs 17260 +gcplusg 17313 0gc0g 17501 invgcminusg 18976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-fv 6583 df-riota 7406 df-ov 7453 df-minusg 18979 |
This theorem is referenced by: grplinv 19031 isgrpinv 19035 xrsinvgval 32993 ringinvval 33217 ressply1invg 33561 linvh 42055 primrootsunit1 42056 |
Copyright terms: Public domain | W3C validator |