Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mndmolinv Structured version   Visualization version   GIF version

Theorem mndmolinv 41597
Description: An element of a monoid that has a right inverse has at most one left inverse. (Contributed by metakunt, 25-Apr-2025.)
Hypotheses
Ref Expression
mndmolinv.1 𝐵 = (Base‘𝑀)
mndmolinv.2 (𝜑𝑀 ∈ Mnd)
mndmolinv.3 (𝜑𝐴𝐵)
mndmolinv.4 (𝜑 → ∃𝑥𝐵 (𝐴(+g𝑀)𝑥) = (0g𝑀))
Assertion
Ref Expression
mndmolinv (𝜑 → ∃*𝑥𝐵 (𝑥(+g𝑀)𝐴) = (0g𝑀))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑀   𝜑,𝑥

Proof of Theorem mndmolinv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mndmolinv.4 . . . 4 (𝜑 → ∃𝑥𝐵 (𝐴(+g𝑀)𝑥) = (0g𝑀))
2 nfv 1909 . . . . . 6 𝑦(𝐴(+g𝑀)𝑥) = (0g𝑀)
3 nfv 1909 . . . . . 6 𝑥(𝐴(+g𝑀)𝑦) = (0g𝑀)
4 oveq2 7434 . . . . . . 7 (𝑥 = 𝑦 → (𝐴(+g𝑀)𝑥) = (𝐴(+g𝑀)𝑦))
54eqeq1d 2730 . . . . . 6 (𝑥 = 𝑦 → ((𝐴(+g𝑀)𝑥) = (0g𝑀) ↔ (𝐴(+g𝑀)𝑦) = (0g𝑀)))
62, 3, 5cbvrexw 3302 . . . . 5 (∃𝑥𝐵 (𝐴(+g𝑀)𝑥) = (0g𝑀) ↔ ∃𝑦𝐵 (𝐴(+g𝑀)𝑦) = (0g𝑀))
76biimpi 215 . . . 4 (∃𝑥𝐵 (𝐴(+g𝑀)𝑥) = (0g𝑀) → ∃𝑦𝐵 (𝐴(+g𝑀)𝑦) = (0g𝑀))
81, 7syl 17 . . 3 (𝜑 → ∃𝑦𝐵 (𝐴(+g𝑀)𝑦) = (0g𝑀))
9 mndmolinv.2 . . . . . . . . . . . 12 (𝜑𝑀 ∈ Mnd)
109ad4antr 730 . . . . . . . . . . 11 (((((𝜑𝑦𝐵) ∧ (𝐴(+g𝑀)𝑦) = (0g𝑀)) ∧ 𝑥𝐵) ∧ (𝑥(+g𝑀)𝐴) = (0g𝑀)) → 𝑀 ∈ Mnd)
11 simplr 767 . . . . . . . . . . 11 (((((𝜑𝑦𝐵) ∧ (𝐴(+g𝑀)𝑦) = (0g𝑀)) ∧ 𝑥𝐵) ∧ (𝑥(+g𝑀)𝐴) = (0g𝑀)) → 𝑥𝐵)
12 mndmolinv.1 . . . . . . . . . . . 12 𝐵 = (Base‘𝑀)
13 eqid 2728 . . . . . . . . . . . 12 (+g𝑀) = (+g𝑀)
14 eqid 2728 . . . . . . . . . . . 12 (0g𝑀) = (0g𝑀)
1512, 13, 14mndrid 18722 . . . . . . . . . . 11 ((𝑀 ∈ Mnd ∧ 𝑥𝐵) → (𝑥(+g𝑀)(0g𝑀)) = 𝑥)
1610, 11, 15syl2anc 582 . . . . . . . . . 10 (((((𝜑𝑦𝐵) ∧ (𝐴(+g𝑀)𝑦) = (0g𝑀)) ∧ 𝑥𝐵) ∧ (𝑥(+g𝑀)𝐴) = (0g𝑀)) → (𝑥(+g𝑀)(0g𝑀)) = 𝑥)
1716eqcomd 2734 . . . . . . . . 9 (((((𝜑𝑦𝐵) ∧ (𝐴(+g𝑀)𝑦) = (0g𝑀)) ∧ 𝑥𝐵) ∧ (𝑥(+g𝑀)𝐴) = (0g𝑀)) → 𝑥 = (𝑥(+g𝑀)(0g𝑀)))
18 simpllr 774 . . . . . . . . . . 11 (((((𝜑𝑦𝐵) ∧ (𝐴(+g𝑀)𝑦) = (0g𝑀)) ∧ 𝑥𝐵) ∧ (𝑥(+g𝑀)𝐴) = (0g𝑀)) → (𝐴(+g𝑀)𝑦) = (0g𝑀))
1918eqcomd 2734 . . . . . . . . . 10 (((((𝜑𝑦𝐵) ∧ (𝐴(+g𝑀)𝑦) = (0g𝑀)) ∧ 𝑥𝐵) ∧ (𝑥(+g𝑀)𝐴) = (0g𝑀)) → (0g𝑀) = (𝐴(+g𝑀)𝑦))
2019oveq2d 7442 . . . . . . . . 9 (((((𝜑𝑦𝐵) ∧ (𝐴(+g𝑀)𝑦) = (0g𝑀)) ∧ 𝑥𝐵) ∧ (𝑥(+g𝑀)𝐴) = (0g𝑀)) → (𝑥(+g𝑀)(0g𝑀)) = (𝑥(+g𝑀)(𝐴(+g𝑀)𝑦)))
2117, 20eqtrd 2768 . . . . . . . 8 (((((𝜑𝑦𝐵) ∧ (𝐴(+g𝑀)𝑦) = (0g𝑀)) ∧ 𝑥𝐵) ∧ (𝑥(+g𝑀)𝐴) = (0g𝑀)) → 𝑥 = (𝑥(+g𝑀)(𝐴(+g𝑀)𝑦)))
22 mndmolinv.3 . . . . . . . . . . . 12 (𝜑𝐴𝐵)
2322ad4antr 730 . . . . . . . . . . 11 (((((𝜑𝑦𝐵) ∧ (𝐴(+g𝑀)𝑦) = (0g𝑀)) ∧ 𝑥𝐵) ∧ (𝑥(+g𝑀)𝐴) = (0g𝑀)) → 𝐴𝐵)
24 simp-4r 782 . . . . . . . . . . 11 (((((𝜑𝑦𝐵) ∧ (𝐴(+g𝑀)𝑦) = (0g𝑀)) ∧ 𝑥𝐵) ∧ (𝑥(+g𝑀)𝐴) = (0g𝑀)) → 𝑦𝐵)
2511, 23, 243jca 1125 . . . . . . . . . 10 (((((𝜑𝑦𝐵) ∧ (𝐴(+g𝑀)𝑦) = (0g𝑀)) ∧ 𝑥𝐵) ∧ (𝑥(+g𝑀)𝐴) = (0g𝑀)) → (𝑥𝐵𝐴𝐵𝑦𝐵))
2612, 13mndass 18710 . . . . . . . . . 10 ((𝑀 ∈ Mnd ∧ (𝑥𝐵𝐴𝐵𝑦𝐵)) → ((𝑥(+g𝑀)𝐴)(+g𝑀)𝑦) = (𝑥(+g𝑀)(𝐴(+g𝑀)𝑦)))
2710, 25, 26syl2anc 582 . . . . . . . . 9 (((((𝜑𝑦𝐵) ∧ (𝐴(+g𝑀)𝑦) = (0g𝑀)) ∧ 𝑥𝐵) ∧ (𝑥(+g𝑀)𝐴) = (0g𝑀)) → ((𝑥(+g𝑀)𝐴)(+g𝑀)𝑦) = (𝑥(+g𝑀)(𝐴(+g𝑀)𝑦)))
2827eqcomd 2734 . . . . . . . 8 (((((𝜑𝑦𝐵) ∧ (𝐴(+g𝑀)𝑦) = (0g𝑀)) ∧ 𝑥𝐵) ∧ (𝑥(+g𝑀)𝐴) = (0g𝑀)) → (𝑥(+g𝑀)(𝐴(+g𝑀)𝑦)) = ((𝑥(+g𝑀)𝐴)(+g𝑀)𝑦))
29 simpr 483 . . . . . . . . . 10 (((((𝜑𝑦𝐵) ∧ (𝐴(+g𝑀)𝑦) = (0g𝑀)) ∧ 𝑥𝐵) ∧ (𝑥(+g𝑀)𝐴) = (0g𝑀)) → (𝑥(+g𝑀)𝐴) = (0g𝑀))
3029oveq1d 7441 . . . . . . . . 9 (((((𝜑𝑦𝐵) ∧ (𝐴(+g𝑀)𝑦) = (0g𝑀)) ∧ 𝑥𝐵) ∧ (𝑥(+g𝑀)𝐴) = (0g𝑀)) → ((𝑥(+g𝑀)𝐴)(+g𝑀)𝑦) = ((0g𝑀)(+g𝑀)𝑦))
3112, 13, 14mndlid 18721 . . . . . . . . . 10 ((𝑀 ∈ Mnd ∧ 𝑦𝐵) → ((0g𝑀)(+g𝑀)𝑦) = 𝑦)
3210, 24, 31syl2anc 582 . . . . . . . . 9 (((((𝜑𝑦𝐵) ∧ (𝐴(+g𝑀)𝑦) = (0g𝑀)) ∧ 𝑥𝐵) ∧ (𝑥(+g𝑀)𝐴) = (0g𝑀)) → ((0g𝑀)(+g𝑀)𝑦) = 𝑦)
3330, 32eqtrd 2768 . . . . . . . 8 (((((𝜑𝑦𝐵) ∧ (𝐴(+g𝑀)𝑦) = (0g𝑀)) ∧ 𝑥𝐵) ∧ (𝑥(+g𝑀)𝐴) = (0g𝑀)) → ((𝑥(+g𝑀)𝐴)(+g𝑀)𝑦) = 𝑦)
3421, 28, 333eqtrd 2772 . . . . . . 7 (((((𝜑𝑦𝐵) ∧ (𝐴(+g𝑀)𝑦) = (0g𝑀)) ∧ 𝑥𝐵) ∧ (𝑥(+g𝑀)𝐴) = (0g𝑀)) → 𝑥 = 𝑦)
3534ex 411 . . . . . 6 ((((𝜑𝑦𝐵) ∧ (𝐴(+g𝑀)𝑦) = (0g𝑀)) ∧ 𝑥𝐵) → ((𝑥(+g𝑀)𝐴) = (0g𝑀) → 𝑥 = 𝑦))
3635ralrimiva 3143 . . . . 5 (((𝜑𝑦𝐵) ∧ (𝐴(+g𝑀)𝑦) = (0g𝑀)) → ∀𝑥𝐵 ((𝑥(+g𝑀)𝐴) = (0g𝑀) → 𝑥 = 𝑦))
3736ex 411 . . . 4 ((𝜑𝑦𝐵) → ((𝐴(+g𝑀)𝑦) = (0g𝑀) → ∀𝑥𝐵 ((𝑥(+g𝑀)𝐴) = (0g𝑀) → 𝑥 = 𝑦)))
3837reximdva 3165 . . 3 (𝜑 → (∃𝑦𝐵 (𝐴(+g𝑀)𝑦) = (0g𝑀) → ∃𝑦𝐵𝑥𝐵 ((𝑥(+g𝑀)𝐴) = (0g𝑀) → 𝑥 = 𝑦)))
398, 38mpd 15 . 2 (𝜑 → ∃𝑦𝐵𝑥𝐵 ((𝑥(+g𝑀)𝐴) = (0g𝑀) → 𝑥 = 𝑦))
40 nfv 1909 . . 3 𝑦(𝑥(+g𝑀)𝐴) = (0g𝑀)
4140rmo2i 3883 . 2 (∃𝑦𝐵𝑥𝐵 ((𝑥(+g𝑀)𝐴) = (0g𝑀) → 𝑥 = 𝑦) → ∃*𝑥𝐵 (𝑥(+g𝑀)𝐴) = (0g𝑀))
4239, 41syl 17 1 (𝜑 → ∃*𝑥𝐵 (𝑥(+g𝑀)𝐴) = (0g𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3058  wrex 3067  ∃*wrmo 3373  cfv 6553  (class class class)co 7426  Basecbs 17187  +gcplusg 17240  0gc0g 17428  Mndcmnd 18701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-iota 6505  df-fun 6555  df-fv 6561  df-riota 7382  df-ov 7429  df-0g 17430  df-mgm 18607  df-sgrp 18686  df-mnd 18702
This theorem is referenced by:  primrootsunit1  41599
  Copyright terms: Public domain W3C validator