Step | Hyp | Ref
| Expression |
1 | | mndmolinv.4 |
. . . 4
⊢ (𝜑 → ∃𝑥 ∈ 𝐵 (𝐴(+g‘𝑀)𝑥) = (0g‘𝑀)) |
2 | | nfv 1909 |
. . . . . 6
⊢
Ⅎ𝑦(𝐴(+g‘𝑀)𝑥) = (0g‘𝑀) |
3 | | nfv 1909 |
. . . . . 6
⊢
Ⅎ𝑥(𝐴(+g‘𝑀)𝑦) = (0g‘𝑀) |
4 | | oveq2 7434 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝐴(+g‘𝑀)𝑥) = (𝐴(+g‘𝑀)𝑦)) |
5 | 4 | eqeq1d 2730 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ((𝐴(+g‘𝑀)𝑥) = (0g‘𝑀) ↔ (𝐴(+g‘𝑀)𝑦) = (0g‘𝑀))) |
6 | 2, 3, 5 | cbvrexw 3302 |
. . . . 5
⊢
(∃𝑥 ∈
𝐵 (𝐴(+g‘𝑀)𝑥) = (0g‘𝑀) ↔ ∃𝑦 ∈ 𝐵 (𝐴(+g‘𝑀)𝑦) = (0g‘𝑀)) |
7 | 6 | biimpi 215 |
. . . 4
⊢
(∃𝑥 ∈
𝐵 (𝐴(+g‘𝑀)𝑥) = (0g‘𝑀) → ∃𝑦 ∈ 𝐵 (𝐴(+g‘𝑀)𝑦) = (0g‘𝑀)) |
8 | 1, 7 | syl 17 |
. . 3
⊢ (𝜑 → ∃𝑦 ∈ 𝐵 (𝐴(+g‘𝑀)𝑦) = (0g‘𝑀)) |
9 | | mndmolinv.2 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ Mnd) |
10 | 9 | ad4antr 730 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝐴(+g‘𝑀)𝑦) = (0g‘𝑀)) ∧ 𝑥 ∈ 𝐵) ∧ (𝑥(+g‘𝑀)𝐴) = (0g‘𝑀)) → 𝑀 ∈ Mnd) |
11 | | simplr 767 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝐴(+g‘𝑀)𝑦) = (0g‘𝑀)) ∧ 𝑥 ∈ 𝐵) ∧ (𝑥(+g‘𝑀)𝐴) = (0g‘𝑀)) → 𝑥 ∈ 𝐵) |
12 | | mndmolinv.1 |
. . . . . . . . . . . 12
⊢ 𝐵 = (Base‘𝑀) |
13 | | eqid 2728 |
. . . . . . . . . . . 12
⊢
(+g‘𝑀) = (+g‘𝑀) |
14 | | eqid 2728 |
. . . . . . . . . . . 12
⊢
(0g‘𝑀) = (0g‘𝑀) |
15 | 12, 13, 14 | mndrid 18722 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → (𝑥(+g‘𝑀)(0g‘𝑀)) = 𝑥) |
16 | 10, 11, 15 | syl2anc 582 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝐴(+g‘𝑀)𝑦) = (0g‘𝑀)) ∧ 𝑥 ∈ 𝐵) ∧ (𝑥(+g‘𝑀)𝐴) = (0g‘𝑀)) → (𝑥(+g‘𝑀)(0g‘𝑀)) = 𝑥) |
17 | 16 | eqcomd 2734 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝐴(+g‘𝑀)𝑦) = (0g‘𝑀)) ∧ 𝑥 ∈ 𝐵) ∧ (𝑥(+g‘𝑀)𝐴) = (0g‘𝑀)) → 𝑥 = (𝑥(+g‘𝑀)(0g‘𝑀))) |
18 | | simpllr 774 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝐴(+g‘𝑀)𝑦) = (0g‘𝑀)) ∧ 𝑥 ∈ 𝐵) ∧ (𝑥(+g‘𝑀)𝐴) = (0g‘𝑀)) → (𝐴(+g‘𝑀)𝑦) = (0g‘𝑀)) |
19 | 18 | eqcomd 2734 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝐴(+g‘𝑀)𝑦) = (0g‘𝑀)) ∧ 𝑥 ∈ 𝐵) ∧ (𝑥(+g‘𝑀)𝐴) = (0g‘𝑀)) → (0g‘𝑀) = (𝐴(+g‘𝑀)𝑦)) |
20 | 19 | oveq2d 7442 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝐴(+g‘𝑀)𝑦) = (0g‘𝑀)) ∧ 𝑥 ∈ 𝐵) ∧ (𝑥(+g‘𝑀)𝐴) = (0g‘𝑀)) → (𝑥(+g‘𝑀)(0g‘𝑀)) = (𝑥(+g‘𝑀)(𝐴(+g‘𝑀)𝑦))) |
21 | 17, 20 | eqtrd 2768 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝐴(+g‘𝑀)𝑦) = (0g‘𝑀)) ∧ 𝑥 ∈ 𝐵) ∧ (𝑥(+g‘𝑀)𝐴) = (0g‘𝑀)) → 𝑥 = (𝑥(+g‘𝑀)(𝐴(+g‘𝑀)𝑦))) |
22 | | mndmolinv.3 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ∈ 𝐵) |
23 | 22 | ad4antr 730 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝐴(+g‘𝑀)𝑦) = (0g‘𝑀)) ∧ 𝑥 ∈ 𝐵) ∧ (𝑥(+g‘𝑀)𝐴) = (0g‘𝑀)) → 𝐴 ∈ 𝐵) |
24 | | simp-4r 782 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝐴(+g‘𝑀)𝑦) = (0g‘𝑀)) ∧ 𝑥 ∈ 𝐵) ∧ (𝑥(+g‘𝑀)𝐴) = (0g‘𝑀)) → 𝑦 ∈ 𝐵) |
25 | 11, 23, 24 | 3jca 1125 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝐴(+g‘𝑀)𝑦) = (0g‘𝑀)) ∧ 𝑥 ∈ 𝐵) ∧ (𝑥(+g‘𝑀)𝐴) = (0g‘𝑀)) → (𝑥 ∈ 𝐵 ∧ 𝐴 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) |
26 | 12, 13 | mndass 18710 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ Mnd ∧ (𝑥 ∈ 𝐵 ∧ 𝐴 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑥(+g‘𝑀)𝐴)(+g‘𝑀)𝑦) = (𝑥(+g‘𝑀)(𝐴(+g‘𝑀)𝑦))) |
27 | 10, 25, 26 | syl2anc 582 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝐴(+g‘𝑀)𝑦) = (0g‘𝑀)) ∧ 𝑥 ∈ 𝐵) ∧ (𝑥(+g‘𝑀)𝐴) = (0g‘𝑀)) → ((𝑥(+g‘𝑀)𝐴)(+g‘𝑀)𝑦) = (𝑥(+g‘𝑀)(𝐴(+g‘𝑀)𝑦))) |
28 | 27 | eqcomd 2734 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝐴(+g‘𝑀)𝑦) = (0g‘𝑀)) ∧ 𝑥 ∈ 𝐵) ∧ (𝑥(+g‘𝑀)𝐴) = (0g‘𝑀)) → (𝑥(+g‘𝑀)(𝐴(+g‘𝑀)𝑦)) = ((𝑥(+g‘𝑀)𝐴)(+g‘𝑀)𝑦)) |
29 | | simpr 483 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝐴(+g‘𝑀)𝑦) = (0g‘𝑀)) ∧ 𝑥 ∈ 𝐵) ∧ (𝑥(+g‘𝑀)𝐴) = (0g‘𝑀)) → (𝑥(+g‘𝑀)𝐴) = (0g‘𝑀)) |
30 | 29 | oveq1d 7441 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝐴(+g‘𝑀)𝑦) = (0g‘𝑀)) ∧ 𝑥 ∈ 𝐵) ∧ (𝑥(+g‘𝑀)𝐴) = (0g‘𝑀)) → ((𝑥(+g‘𝑀)𝐴)(+g‘𝑀)𝑦) = ((0g‘𝑀)(+g‘𝑀)𝑦)) |
31 | 12, 13, 14 | mndlid 18721 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ Mnd ∧ 𝑦 ∈ 𝐵) → ((0g‘𝑀)(+g‘𝑀)𝑦) = 𝑦) |
32 | 10, 24, 31 | syl2anc 582 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝐴(+g‘𝑀)𝑦) = (0g‘𝑀)) ∧ 𝑥 ∈ 𝐵) ∧ (𝑥(+g‘𝑀)𝐴) = (0g‘𝑀)) → ((0g‘𝑀)(+g‘𝑀)𝑦) = 𝑦) |
33 | 30, 32 | eqtrd 2768 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝐴(+g‘𝑀)𝑦) = (0g‘𝑀)) ∧ 𝑥 ∈ 𝐵) ∧ (𝑥(+g‘𝑀)𝐴) = (0g‘𝑀)) → ((𝑥(+g‘𝑀)𝐴)(+g‘𝑀)𝑦) = 𝑦) |
34 | 21, 28, 33 | 3eqtrd 2772 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝐴(+g‘𝑀)𝑦) = (0g‘𝑀)) ∧ 𝑥 ∈ 𝐵) ∧ (𝑥(+g‘𝑀)𝐴) = (0g‘𝑀)) → 𝑥 = 𝑦) |
35 | 34 | ex 411 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝐴(+g‘𝑀)𝑦) = (0g‘𝑀)) ∧ 𝑥 ∈ 𝐵) → ((𝑥(+g‘𝑀)𝐴) = (0g‘𝑀) → 𝑥 = 𝑦)) |
36 | 35 | ralrimiva 3143 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝐴(+g‘𝑀)𝑦) = (0g‘𝑀)) → ∀𝑥 ∈ 𝐵 ((𝑥(+g‘𝑀)𝐴) = (0g‘𝑀) → 𝑥 = 𝑦)) |
37 | 36 | ex 411 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ((𝐴(+g‘𝑀)𝑦) = (0g‘𝑀) → ∀𝑥 ∈ 𝐵 ((𝑥(+g‘𝑀)𝐴) = (0g‘𝑀) → 𝑥 = 𝑦))) |
38 | 37 | reximdva 3165 |
. . 3
⊢ (𝜑 → (∃𝑦 ∈ 𝐵 (𝐴(+g‘𝑀)𝑦) = (0g‘𝑀) → ∃𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑥(+g‘𝑀)𝐴) = (0g‘𝑀) → 𝑥 = 𝑦))) |
39 | 8, 38 | mpd 15 |
. 2
⊢ (𝜑 → ∃𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑥(+g‘𝑀)𝐴) = (0g‘𝑀) → 𝑥 = 𝑦)) |
40 | | nfv 1909 |
. . 3
⊢
Ⅎ𝑦(𝑥(+g‘𝑀)𝐴) = (0g‘𝑀) |
41 | 40 | rmo2i 3883 |
. 2
⊢
(∃𝑦 ∈
𝐵 ∀𝑥 ∈ 𝐵 ((𝑥(+g‘𝑀)𝐴) = (0g‘𝑀) → 𝑥 = 𝑦) → ∃*𝑥 ∈ 𝐵 (𝑥(+g‘𝑀)𝐴) = (0g‘𝑀)) |
42 | 39, 41 | syl 17 |
1
⊢ (𝜑 → ∃*𝑥 ∈ 𝐵 (𝑥(+g‘𝑀)𝐴) = (0g‘𝑀)) |