| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | mndmolinv.4 | . . . 4
⊢ (𝜑 → ∃𝑥 ∈ 𝐵 (𝐴(+g‘𝑀)𝑥) = (0g‘𝑀)) | 
| 2 |  | nfv 1914 | . . . . . 6
⊢
Ⅎ𝑦(𝐴(+g‘𝑀)𝑥) = (0g‘𝑀) | 
| 3 |  | nfv 1914 | . . . . . 6
⊢
Ⅎ𝑥(𝐴(+g‘𝑀)𝑦) = (0g‘𝑀) | 
| 4 |  | oveq2 7439 | . . . . . . 7
⊢ (𝑥 = 𝑦 → (𝐴(+g‘𝑀)𝑥) = (𝐴(+g‘𝑀)𝑦)) | 
| 5 | 4 | eqeq1d 2739 | . . . . . 6
⊢ (𝑥 = 𝑦 → ((𝐴(+g‘𝑀)𝑥) = (0g‘𝑀) ↔ (𝐴(+g‘𝑀)𝑦) = (0g‘𝑀))) | 
| 6 | 2, 3, 5 | cbvrexw 3307 | . . . . 5
⊢
(∃𝑥 ∈
𝐵 (𝐴(+g‘𝑀)𝑥) = (0g‘𝑀) ↔ ∃𝑦 ∈ 𝐵 (𝐴(+g‘𝑀)𝑦) = (0g‘𝑀)) | 
| 7 | 6 | biimpi 216 | . . . 4
⊢
(∃𝑥 ∈
𝐵 (𝐴(+g‘𝑀)𝑥) = (0g‘𝑀) → ∃𝑦 ∈ 𝐵 (𝐴(+g‘𝑀)𝑦) = (0g‘𝑀)) | 
| 8 | 1, 7 | syl 17 | . . 3
⊢ (𝜑 → ∃𝑦 ∈ 𝐵 (𝐴(+g‘𝑀)𝑦) = (0g‘𝑀)) | 
| 9 |  | mndmolinv.2 | . . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ Mnd) | 
| 10 | 9 | ad4antr 732 | . . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝐴(+g‘𝑀)𝑦) = (0g‘𝑀)) ∧ 𝑥 ∈ 𝐵) ∧ (𝑥(+g‘𝑀)𝐴) = (0g‘𝑀)) → 𝑀 ∈ Mnd) | 
| 11 |  | simplr 769 | . . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝐴(+g‘𝑀)𝑦) = (0g‘𝑀)) ∧ 𝑥 ∈ 𝐵) ∧ (𝑥(+g‘𝑀)𝐴) = (0g‘𝑀)) → 𝑥 ∈ 𝐵) | 
| 12 |  | mndmolinv.1 | . . . . . . . . . . . 12
⊢ 𝐵 = (Base‘𝑀) | 
| 13 |  | eqid 2737 | . . . . . . . . . . . 12
⊢
(+g‘𝑀) = (+g‘𝑀) | 
| 14 |  | eqid 2737 | . . . . . . . . . . . 12
⊢
(0g‘𝑀) = (0g‘𝑀) | 
| 15 | 12, 13, 14 | mndrid 18768 | . . . . . . . . . . 11
⊢ ((𝑀 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → (𝑥(+g‘𝑀)(0g‘𝑀)) = 𝑥) | 
| 16 | 10, 11, 15 | syl2anc 584 | . . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝐴(+g‘𝑀)𝑦) = (0g‘𝑀)) ∧ 𝑥 ∈ 𝐵) ∧ (𝑥(+g‘𝑀)𝐴) = (0g‘𝑀)) → (𝑥(+g‘𝑀)(0g‘𝑀)) = 𝑥) | 
| 17 | 16 | eqcomd 2743 | . . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝐴(+g‘𝑀)𝑦) = (0g‘𝑀)) ∧ 𝑥 ∈ 𝐵) ∧ (𝑥(+g‘𝑀)𝐴) = (0g‘𝑀)) → 𝑥 = (𝑥(+g‘𝑀)(0g‘𝑀))) | 
| 18 |  | simpllr 776 | . . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝐴(+g‘𝑀)𝑦) = (0g‘𝑀)) ∧ 𝑥 ∈ 𝐵) ∧ (𝑥(+g‘𝑀)𝐴) = (0g‘𝑀)) → (𝐴(+g‘𝑀)𝑦) = (0g‘𝑀)) | 
| 19 | 18 | eqcomd 2743 | . . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝐴(+g‘𝑀)𝑦) = (0g‘𝑀)) ∧ 𝑥 ∈ 𝐵) ∧ (𝑥(+g‘𝑀)𝐴) = (0g‘𝑀)) → (0g‘𝑀) = (𝐴(+g‘𝑀)𝑦)) | 
| 20 | 19 | oveq2d 7447 | . . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝐴(+g‘𝑀)𝑦) = (0g‘𝑀)) ∧ 𝑥 ∈ 𝐵) ∧ (𝑥(+g‘𝑀)𝐴) = (0g‘𝑀)) → (𝑥(+g‘𝑀)(0g‘𝑀)) = (𝑥(+g‘𝑀)(𝐴(+g‘𝑀)𝑦))) | 
| 21 | 17, 20 | eqtrd 2777 | . . . . . . . 8
⊢
(((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝐴(+g‘𝑀)𝑦) = (0g‘𝑀)) ∧ 𝑥 ∈ 𝐵) ∧ (𝑥(+g‘𝑀)𝐴) = (0g‘𝑀)) → 𝑥 = (𝑥(+g‘𝑀)(𝐴(+g‘𝑀)𝑦))) | 
| 22 |  | mndmolinv.3 | . . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ∈ 𝐵) | 
| 23 | 22 | ad4antr 732 | . . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝐴(+g‘𝑀)𝑦) = (0g‘𝑀)) ∧ 𝑥 ∈ 𝐵) ∧ (𝑥(+g‘𝑀)𝐴) = (0g‘𝑀)) → 𝐴 ∈ 𝐵) | 
| 24 |  | simp-4r 784 | . . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝐴(+g‘𝑀)𝑦) = (0g‘𝑀)) ∧ 𝑥 ∈ 𝐵) ∧ (𝑥(+g‘𝑀)𝐴) = (0g‘𝑀)) → 𝑦 ∈ 𝐵) | 
| 25 | 11, 23, 24 | 3jca 1129 | . . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝐴(+g‘𝑀)𝑦) = (0g‘𝑀)) ∧ 𝑥 ∈ 𝐵) ∧ (𝑥(+g‘𝑀)𝐴) = (0g‘𝑀)) → (𝑥 ∈ 𝐵 ∧ 𝐴 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) | 
| 26 | 12, 13 | mndass 18756 | . . . . . . . . . 10
⊢ ((𝑀 ∈ Mnd ∧ (𝑥 ∈ 𝐵 ∧ 𝐴 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑥(+g‘𝑀)𝐴)(+g‘𝑀)𝑦) = (𝑥(+g‘𝑀)(𝐴(+g‘𝑀)𝑦))) | 
| 27 | 10, 25, 26 | syl2anc 584 | . . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝐴(+g‘𝑀)𝑦) = (0g‘𝑀)) ∧ 𝑥 ∈ 𝐵) ∧ (𝑥(+g‘𝑀)𝐴) = (0g‘𝑀)) → ((𝑥(+g‘𝑀)𝐴)(+g‘𝑀)𝑦) = (𝑥(+g‘𝑀)(𝐴(+g‘𝑀)𝑦))) | 
| 28 | 27 | eqcomd 2743 | . . . . . . . 8
⊢
(((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝐴(+g‘𝑀)𝑦) = (0g‘𝑀)) ∧ 𝑥 ∈ 𝐵) ∧ (𝑥(+g‘𝑀)𝐴) = (0g‘𝑀)) → (𝑥(+g‘𝑀)(𝐴(+g‘𝑀)𝑦)) = ((𝑥(+g‘𝑀)𝐴)(+g‘𝑀)𝑦)) | 
| 29 |  | simpr 484 | . . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝐴(+g‘𝑀)𝑦) = (0g‘𝑀)) ∧ 𝑥 ∈ 𝐵) ∧ (𝑥(+g‘𝑀)𝐴) = (0g‘𝑀)) → (𝑥(+g‘𝑀)𝐴) = (0g‘𝑀)) | 
| 30 | 29 | oveq1d 7446 | . . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝐴(+g‘𝑀)𝑦) = (0g‘𝑀)) ∧ 𝑥 ∈ 𝐵) ∧ (𝑥(+g‘𝑀)𝐴) = (0g‘𝑀)) → ((𝑥(+g‘𝑀)𝐴)(+g‘𝑀)𝑦) = ((0g‘𝑀)(+g‘𝑀)𝑦)) | 
| 31 | 12, 13, 14 | mndlid 18767 | . . . . . . . . . 10
⊢ ((𝑀 ∈ Mnd ∧ 𝑦 ∈ 𝐵) → ((0g‘𝑀)(+g‘𝑀)𝑦) = 𝑦) | 
| 32 | 10, 24, 31 | syl2anc 584 | . . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝐴(+g‘𝑀)𝑦) = (0g‘𝑀)) ∧ 𝑥 ∈ 𝐵) ∧ (𝑥(+g‘𝑀)𝐴) = (0g‘𝑀)) → ((0g‘𝑀)(+g‘𝑀)𝑦) = 𝑦) | 
| 33 | 30, 32 | eqtrd 2777 | . . . . . . . 8
⊢
(((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝐴(+g‘𝑀)𝑦) = (0g‘𝑀)) ∧ 𝑥 ∈ 𝐵) ∧ (𝑥(+g‘𝑀)𝐴) = (0g‘𝑀)) → ((𝑥(+g‘𝑀)𝐴)(+g‘𝑀)𝑦) = 𝑦) | 
| 34 | 21, 28, 33 | 3eqtrd 2781 | . . . . . . 7
⊢
(((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝐴(+g‘𝑀)𝑦) = (0g‘𝑀)) ∧ 𝑥 ∈ 𝐵) ∧ (𝑥(+g‘𝑀)𝐴) = (0g‘𝑀)) → 𝑥 = 𝑦) | 
| 35 | 34 | ex 412 | . . . . . 6
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝐴(+g‘𝑀)𝑦) = (0g‘𝑀)) ∧ 𝑥 ∈ 𝐵) → ((𝑥(+g‘𝑀)𝐴) = (0g‘𝑀) → 𝑥 = 𝑦)) | 
| 36 | 35 | ralrimiva 3146 | . . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ (𝐴(+g‘𝑀)𝑦) = (0g‘𝑀)) → ∀𝑥 ∈ 𝐵 ((𝑥(+g‘𝑀)𝐴) = (0g‘𝑀) → 𝑥 = 𝑦)) | 
| 37 | 36 | ex 412 | . . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ((𝐴(+g‘𝑀)𝑦) = (0g‘𝑀) → ∀𝑥 ∈ 𝐵 ((𝑥(+g‘𝑀)𝐴) = (0g‘𝑀) → 𝑥 = 𝑦))) | 
| 38 | 37 | reximdva 3168 | . . 3
⊢ (𝜑 → (∃𝑦 ∈ 𝐵 (𝐴(+g‘𝑀)𝑦) = (0g‘𝑀) → ∃𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑥(+g‘𝑀)𝐴) = (0g‘𝑀) → 𝑥 = 𝑦))) | 
| 39 | 8, 38 | mpd 15 | . 2
⊢ (𝜑 → ∃𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑥(+g‘𝑀)𝐴) = (0g‘𝑀) → 𝑥 = 𝑦)) | 
| 40 |  | nfv 1914 | . . 3
⊢
Ⅎ𝑦(𝑥(+g‘𝑀)𝐴) = (0g‘𝑀) | 
| 41 | 40 | rmo2i 3888 | . 2
⊢
(∃𝑦 ∈
𝐵 ∀𝑥 ∈ 𝐵 ((𝑥(+g‘𝑀)𝐴) = (0g‘𝑀) → 𝑥 = 𝑦) → ∃*𝑥 ∈ 𝐵 (𝑥(+g‘𝑀)𝐴) = (0g‘𝑀)) | 
| 42 | 39, 41 | syl 17 | 1
⊢ (𝜑 → ∃*𝑥 ∈ 𝐵 (𝑥(+g‘𝑀)𝐴) = (0g‘𝑀)) |