HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnopeq0lem1 Structured version   Visualization version   GIF version

Theorem lnopeq0lem1 31949
Description: Lemma for lnopeq0i 31951. Apply the generalized polarization identity polid2i 31101 to the quadratic form ((𝑇𝑥), 𝑥). (Contributed by NM, 26-Jul-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnopeq0.1 𝑇 ∈ LinOp
lnopeq0lem1.2 𝐴 ∈ ℋ
lnopeq0lem1.3 𝐵 ∈ ℋ
Assertion
Ref Expression
lnopeq0lem1 ((𝑇𝐴) ·ih 𝐵) = (((((𝑇‘(𝐴 + 𝐵)) ·ih (𝐴 + 𝐵)) − ((𝑇‘(𝐴 𝐵)) ·ih (𝐴 𝐵))) + (i · (((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) − ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵)))))) / 4)

Proof of Theorem lnopeq0lem1
StepHypRef Expression
1 lnopeq0lem1.2 . . . 4 𝐴 ∈ ℋ
2 lnopeq0.1 . . . . . 6 𝑇 ∈ LinOp
32lnopfi 31913 . . . . 5 𝑇: ℋ⟶ ℋ
43ffvelcdmi 7017 . . . 4 (𝐴 ∈ ℋ → (𝑇𝐴) ∈ ℋ)
51, 4ax-mp 5 . . 3 (𝑇𝐴) ∈ ℋ
6 lnopeq0lem1.3 . . 3 𝐵 ∈ ℋ
73ffvelcdmi 7017 . . . 4 (𝐵 ∈ ℋ → (𝑇𝐵) ∈ ℋ)
86, 7ax-mp 5 . . 3 (𝑇𝐵) ∈ ℋ
95, 6, 8, 1polid2i 31101 . 2 ((𝑇𝐴) ·ih 𝐵) = ((((((𝑇𝐴) + (𝑇𝐵)) ·ih (𝐴 + 𝐵)) − (((𝑇𝐴) − (𝑇𝐵)) ·ih (𝐴 𝐵))) + (i · ((((𝑇𝐴) + (i · (𝑇𝐵))) ·ih (𝐴 + (i · 𝐵))) − (((𝑇𝐴) − (i · (𝑇𝐵))) ·ih (𝐴 (i · 𝐵)))))) / 4)
102lnopaddi 31915 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 + 𝐵)) = ((𝑇𝐴) + (𝑇𝐵)))
111, 6, 10mp2an 692 . . . . . 6 (𝑇‘(𝐴 + 𝐵)) = ((𝑇𝐴) + (𝑇𝐵))
1211oveq1i 7359 . . . . 5 ((𝑇‘(𝐴 + 𝐵)) ·ih (𝐴 + 𝐵)) = (((𝑇𝐴) + (𝑇𝐵)) ·ih (𝐴 + 𝐵))
132lnopsubi 31918 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 𝐵)) = ((𝑇𝐴) − (𝑇𝐵)))
141, 6, 13mp2an 692 . . . . . 6 (𝑇‘(𝐴 𝐵)) = ((𝑇𝐴) − (𝑇𝐵))
1514oveq1i 7359 . . . . 5 ((𝑇‘(𝐴 𝐵)) ·ih (𝐴 𝐵)) = (((𝑇𝐴) − (𝑇𝐵)) ·ih (𝐴 𝐵))
1612, 15oveq12i 7361 . . . 4 (((𝑇‘(𝐴 + 𝐵)) ·ih (𝐴 + 𝐵)) − ((𝑇‘(𝐴 𝐵)) ·ih (𝐴 𝐵))) = ((((𝑇𝐴) + (𝑇𝐵)) ·ih (𝐴 + 𝐵)) − (((𝑇𝐴) − (𝑇𝐵)) ·ih (𝐴 𝐵)))
17 ax-icn 11068 . . . . . . . 8 i ∈ ℂ
182lnopaddmuli 31917 . . . . . . . 8 ((i ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 + (i · 𝐵))) = ((𝑇𝐴) + (i · (𝑇𝐵))))
1917, 1, 6, 18mp3an 1463 . . . . . . 7 (𝑇‘(𝐴 + (i · 𝐵))) = ((𝑇𝐴) + (i · (𝑇𝐵)))
2019oveq1i 7359 . . . . . 6 ((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) = (((𝑇𝐴) + (i · (𝑇𝐵))) ·ih (𝐴 + (i · 𝐵)))
212lnopsubmuli 31919 . . . . . . . 8 ((i ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 (i · 𝐵))) = ((𝑇𝐴) − (i · (𝑇𝐵))))
2217, 1, 6, 21mp3an 1463 . . . . . . 7 (𝑇‘(𝐴 (i · 𝐵))) = ((𝑇𝐴) − (i · (𝑇𝐵)))
2322oveq1i 7359 . . . . . 6 ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵))) = (((𝑇𝐴) − (i · (𝑇𝐵))) ·ih (𝐴 (i · 𝐵)))
2420, 23oveq12i 7361 . . . . 5 (((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) − ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵)))) = ((((𝑇𝐴) + (i · (𝑇𝐵))) ·ih (𝐴 + (i · 𝐵))) − (((𝑇𝐴) − (i · (𝑇𝐵))) ·ih (𝐴 (i · 𝐵))))
2524oveq2i 7360 . . . 4 (i · (((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) − ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵))))) = (i · ((((𝑇𝐴) + (i · (𝑇𝐵))) ·ih (𝐴 + (i · 𝐵))) − (((𝑇𝐴) − (i · (𝑇𝐵))) ·ih (𝐴 (i · 𝐵)))))
2616, 25oveq12i 7361 . . 3 ((((𝑇‘(𝐴 + 𝐵)) ·ih (𝐴 + 𝐵)) − ((𝑇‘(𝐴 𝐵)) ·ih (𝐴 𝐵))) + (i · (((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) − ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵)))))) = (((((𝑇𝐴) + (𝑇𝐵)) ·ih (𝐴 + 𝐵)) − (((𝑇𝐴) − (𝑇𝐵)) ·ih (𝐴 𝐵))) + (i · ((((𝑇𝐴) + (i · (𝑇𝐵))) ·ih (𝐴 + (i · 𝐵))) − (((𝑇𝐴) − (i · (𝑇𝐵))) ·ih (𝐴 (i · 𝐵))))))
2726oveq1i 7359 . 2 (((((𝑇‘(𝐴 + 𝐵)) ·ih (𝐴 + 𝐵)) − ((𝑇‘(𝐴 𝐵)) ·ih (𝐴 𝐵))) + (i · (((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) − ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵)))))) / 4) = ((((((𝑇𝐴) + (𝑇𝐵)) ·ih (𝐴 + 𝐵)) − (((𝑇𝐴) − (𝑇𝐵)) ·ih (𝐴 𝐵))) + (i · ((((𝑇𝐴) + (i · (𝑇𝐵))) ·ih (𝐴 + (i · 𝐵))) − (((𝑇𝐴) − (i · (𝑇𝐵))) ·ih (𝐴 (i · 𝐵)))))) / 4)
289, 27eqtr4i 2755 1 ((𝑇𝐴) ·ih 𝐵) = (((((𝑇‘(𝐴 + 𝐵)) ·ih (𝐴 + 𝐵)) − ((𝑇‘(𝐴 𝐵)) ·ih (𝐴 𝐵))) + (i · (((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) − ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵)))))) / 4)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  cfv 6482  (class class class)co 7349  cc 11007  ici 11011   + caddc 11012   · cmul 11014  cmin 11347   / cdiv 11777  4c4 12185  chba 30863   + cva 30864   · csm 30865   ·ih csp 30866   cmv 30869  LinOpclo 30891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-hilex 30943  ax-hfvadd 30944  ax-hvass 30946  ax-hv0cl 30947  ax-hvaddid 30948  ax-hfvmul 30949  ax-hvmulid 30950  ax-hvdistr2 30953  ax-hvmul0 30954  ax-hfi 31023  ax-his1 31026  ax-his2 31027  ax-his3 31028
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-cj 15006  df-re 15007  df-im 15008  df-hvsub 30915  df-lnop 31785
This theorem is referenced by:  lnopeq0lem2  31950
  Copyright terms: Public domain W3C validator