HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnopeq0lem1 Structured version   Visualization version   GIF version

Theorem lnopeq0lem1 31892
Description: Lemma for lnopeq0i 31894. Apply the generalized polarization identity polid2i 31044 to the quadratic form ((𝑇𝑥), 𝑥). (Contributed by NM, 26-Jul-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnopeq0.1 𝑇 ∈ LinOp
lnopeq0lem1.2 𝐴 ∈ ℋ
lnopeq0lem1.3 𝐵 ∈ ℋ
Assertion
Ref Expression
lnopeq0lem1 ((𝑇𝐴) ·ih 𝐵) = (((((𝑇‘(𝐴 + 𝐵)) ·ih (𝐴 + 𝐵)) − ((𝑇‘(𝐴 𝐵)) ·ih (𝐴 𝐵))) + (i · (((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) − ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵)))))) / 4)

Proof of Theorem lnopeq0lem1
StepHypRef Expression
1 lnopeq0lem1.2 . . . 4 𝐴 ∈ ℋ
2 lnopeq0.1 . . . . . 6 𝑇 ∈ LinOp
32lnopfi 31856 . . . . 5 𝑇: ℋ⟶ ℋ
43ffvelcdmi 7092 . . . 4 (𝐴 ∈ ℋ → (𝑇𝐴) ∈ ℋ)
51, 4ax-mp 5 . . 3 (𝑇𝐴) ∈ ℋ
6 lnopeq0lem1.3 . . 3 𝐵 ∈ ℋ
73ffvelcdmi 7092 . . . 4 (𝐵 ∈ ℋ → (𝑇𝐵) ∈ ℋ)
86, 7ax-mp 5 . . 3 (𝑇𝐵) ∈ ℋ
95, 6, 8, 1polid2i 31044 . 2 ((𝑇𝐴) ·ih 𝐵) = ((((((𝑇𝐴) + (𝑇𝐵)) ·ih (𝐴 + 𝐵)) − (((𝑇𝐴) − (𝑇𝐵)) ·ih (𝐴 𝐵))) + (i · ((((𝑇𝐴) + (i · (𝑇𝐵))) ·ih (𝐴 + (i · 𝐵))) − (((𝑇𝐴) − (i · (𝑇𝐵))) ·ih (𝐴 (i · 𝐵)))))) / 4)
102lnopaddi 31858 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 + 𝐵)) = ((𝑇𝐴) + (𝑇𝐵)))
111, 6, 10mp2an 690 . . . . . 6 (𝑇‘(𝐴 + 𝐵)) = ((𝑇𝐴) + (𝑇𝐵))
1211oveq1i 7429 . . . . 5 ((𝑇‘(𝐴 + 𝐵)) ·ih (𝐴 + 𝐵)) = (((𝑇𝐴) + (𝑇𝐵)) ·ih (𝐴 + 𝐵))
132lnopsubi 31861 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 𝐵)) = ((𝑇𝐴) − (𝑇𝐵)))
141, 6, 13mp2an 690 . . . . . 6 (𝑇‘(𝐴 𝐵)) = ((𝑇𝐴) − (𝑇𝐵))
1514oveq1i 7429 . . . . 5 ((𝑇‘(𝐴 𝐵)) ·ih (𝐴 𝐵)) = (((𝑇𝐴) − (𝑇𝐵)) ·ih (𝐴 𝐵))
1612, 15oveq12i 7431 . . . 4 (((𝑇‘(𝐴 + 𝐵)) ·ih (𝐴 + 𝐵)) − ((𝑇‘(𝐴 𝐵)) ·ih (𝐴 𝐵))) = ((((𝑇𝐴) + (𝑇𝐵)) ·ih (𝐴 + 𝐵)) − (((𝑇𝐴) − (𝑇𝐵)) ·ih (𝐴 𝐵)))
17 ax-icn 11204 . . . . . . . 8 i ∈ ℂ
182lnopaddmuli 31860 . . . . . . . 8 ((i ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 + (i · 𝐵))) = ((𝑇𝐴) + (i · (𝑇𝐵))))
1917, 1, 6, 18mp3an 1457 . . . . . . 7 (𝑇‘(𝐴 + (i · 𝐵))) = ((𝑇𝐴) + (i · (𝑇𝐵)))
2019oveq1i 7429 . . . . . 6 ((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) = (((𝑇𝐴) + (i · (𝑇𝐵))) ·ih (𝐴 + (i · 𝐵)))
212lnopsubmuli 31862 . . . . . . . 8 ((i ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 (i · 𝐵))) = ((𝑇𝐴) − (i · (𝑇𝐵))))
2217, 1, 6, 21mp3an 1457 . . . . . . 7 (𝑇‘(𝐴 (i · 𝐵))) = ((𝑇𝐴) − (i · (𝑇𝐵)))
2322oveq1i 7429 . . . . . 6 ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵))) = (((𝑇𝐴) − (i · (𝑇𝐵))) ·ih (𝐴 (i · 𝐵)))
2420, 23oveq12i 7431 . . . . 5 (((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) − ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵)))) = ((((𝑇𝐴) + (i · (𝑇𝐵))) ·ih (𝐴 + (i · 𝐵))) − (((𝑇𝐴) − (i · (𝑇𝐵))) ·ih (𝐴 (i · 𝐵))))
2524oveq2i 7430 . . . 4 (i · (((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) − ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵))))) = (i · ((((𝑇𝐴) + (i · (𝑇𝐵))) ·ih (𝐴 + (i · 𝐵))) − (((𝑇𝐴) − (i · (𝑇𝐵))) ·ih (𝐴 (i · 𝐵)))))
2616, 25oveq12i 7431 . . 3 ((((𝑇‘(𝐴 + 𝐵)) ·ih (𝐴 + 𝐵)) − ((𝑇‘(𝐴 𝐵)) ·ih (𝐴 𝐵))) + (i · (((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) − ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵)))))) = (((((𝑇𝐴) + (𝑇𝐵)) ·ih (𝐴 + 𝐵)) − (((𝑇𝐴) − (𝑇𝐵)) ·ih (𝐴 𝐵))) + (i · ((((𝑇𝐴) + (i · (𝑇𝐵))) ·ih (𝐴 + (i · 𝐵))) − (((𝑇𝐴) − (i · (𝑇𝐵))) ·ih (𝐴 (i · 𝐵))))))
2726oveq1i 7429 . 2 (((((𝑇‘(𝐴 + 𝐵)) ·ih (𝐴 + 𝐵)) − ((𝑇‘(𝐴 𝐵)) ·ih (𝐴 𝐵))) + (i · (((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) − ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵)))))) / 4) = ((((((𝑇𝐴) + (𝑇𝐵)) ·ih (𝐴 + 𝐵)) − (((𝑇𝐴) − (𝑇𝐵)) ·ih (𝐴 𝐵))) + (i · ((((𝑇𝐴) + (i · (𝑇𝐵))) ·ih (𝐴 + (i · 𝐵))) − (((𝑇𝐴) − (i · (𝑇𝐵))) ·ih (𝐴 (i · 𝐵)))))) / 4)
289, 27eqtr4i 2756 1 ((𝑇𝐴) ·ih 𝐵) = (((((𝑇‘(𝐴 + 𝐵)) ·ih (𝐴 + 𝐵)) − ((𝑇‘(𝐴 𝐵)) ·ih (𝐴 𝐵))) + (i · (((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) − ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵)))))) / 4)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wcel 2098  cfv 6549  (class class class)co 7419  cc 11143  ici 11147   + caddc 11148   · cmul 11150  cmin 11481   / cdiv 11908  4c4 12307  chba 30806   + cva 30807   · csm 30808   ·ih csp 30809   cmv 30812  LinOpclo 30834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-resscn 11202  ax-1cn 11203  ax-icn 11204  ax-addcl 11205  ax-addrcl 11206  ax-mulcl 11207  ax-mulrcl 11208  ax-mulcom 11209  ax-addass 11210  ax-mulass 11211  ax-distr 11212  ax-i2m1 11213  ax-1ne0 11214  ax-1rid 11215  ax-rnegex 11216  ax-rrecex 11217  ax-cnre 11218  ax-pre-lttri 11219  ax-pre-lttrn 11220  ax-pre-ltadd 11221  ax-pre-mulgt0 11222  ax-hilex 30886  ax-hfvadd 30887  ax-hvass 30889  ax-hv0cl 30890  ax-hvaddid 30891  ax-hfvmul 30892  ax-hvmulid 30893  ax-hvdistr2 30896  ax-hvmul0 30897  ax-hfi 30966  ax-his1 30969  ax-his2 30970  ax-his3 30971
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-po 5590  df-so 5591  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11287  df-mnf 11288  df-xr 11289  df-ltxr 11290  df-le 11291  df-sub 11483  df-neg 11484  df-div 11909  df-2 12313  df-3 12314  df-4 12315  df-cj 15087  df-re 15088  df-im 15089  df-hvsub 30858  df-lnop 31728
This theorem is referenced by:  lnopeq0lem2  31893
  Copyright terms: Public domain W3C validator