HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnopeq0lem1 Structured version   Visualization version   GIF version

Theorem lnopeq0lem1 32034
Description: Lemma for lnopeq0i 32036. Apply the generalized polarization identity polid2i 31186 to the quadratic form ((𝑇𝑥), 𝑥). (Contributed by NM, 26-Jul-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnopeq0.1 𝑇 ∈ LinOp
lnopeq0lem1.2 𝐴 ∈ ℋ
lnopeq0lem1.3 𝐵 ∈ ℋ
Assertion
Ref Expression
lnopeq0lem1 ((𝑇𝐴) ·ih 𝐵) = (((((𝑇‘(𝐴 + 𝐵)) ·ih (𝐴 + 𝐵)) − ((𝑇‘(𝐴 𝐵)) ·ih (𝐴 𝐵))) + (i · (((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) − ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵)))))) / 4)

Proof of Theorem lnopeq0lem1
StepHypRef Expression
1 lnopeq0lem1.2 . . . 4 𝐴 ∈ ℋ
2 lnopeq0.1 . . . . . 6 𝑇 ∈ LinOp
32lnopfi 31998 . . . . 5 𝑇: ℋ⟶ ℋ
43ffvelcdmi 7103 . . . 4 (𝐴 ∈ ℋ → (𝑇𝐴) ∈ ℋ)
51, 4ax-mp 5 . . 3 (𝑇𝐴) ∈ ℋ
6 lnopeq0lem1.3 . . 3 𝐵 ∈ ℋ
73ffvelcdmi 7103 . . . 4 (𝐵 ∈ ℋ → (𝑇𝐵) ∈ ℋ)
86, 7ax-mp 5 . . 3 (𝑇𝐵) ∈ ℋ
95, 6, 8, 1polid2i 31186 . 2 ((𝑇𝐴) ·ih 𝐵) = ((((((𝑇𝐴) + (𝑇𝐵)) ·ih (𝐴 + 𝐵)) − (((𝑇𝐴) − (𝑇𝐵)) ·ih (𝐴 𝐵))) + (i · ((((𝑇𝐴) + (i · (𝑇𝐵))) ·ih (𝐴 + (i · 𝐵))) − (((𝑇𝐴) − (i · (𝑇𝐵))) ·ih (𝐴 (i · 𝐵)))))) / 4)
102lnopaddi 32000 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 + 𝐵)) = ((𝑇𝐴) + (𝑇𝐵)))
111, 6, 10mp2an 692 . . . . . 6 (𝑇‘(𝐴 + 𝐵)) = ((𝑇𝐴) + (𝑇𝐵))
1211oveq1i 7441 . . . . 5 ((𝑇‘(𝐴 + 𝐵)) ·ih (𝐴 + 𝐵)) = (((𝑇𝐴) + (𝑇𝐵)) ·ih (𝐴 + 𝐵))
132lnopsubi 32003 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 𝐵)) = ((𝑇𝐴) − (𝑇𝐵)))
141, 6, 13mp2an 692 . . . . . 6 (𝑇‘(𝐴 𝐵)) = ((𝑇𝐴) − (𝑇𝐵))
1514oveq1i 7441 . . . . 5 ((𝑇‘(𝐴 𝐵)) ·ih (𝐴 𝐵)) = (((𝑇𝐴) − (𝑇𝐵)) ·ih (𝐴 𝐵))
1612, 15oveq12i 7443 . . . 4 (((𝑇‘(𝐴 + 𝐵)) ·ih (𝐴 + 𝐵)) − ((𝑇‘(𝐴 𝐵)) ·ih (𝐴 𝐵))) = ((((𝑇𝐴) + (𝑇𝐵)) ·ih (𝐴 + 𝐵)) − (((𝑇𝐴) − (𝑇𝐵)) ·ih (𝐴 𝐵)))
17 ax-icn 11212 . . . . . . . 8 i ∈ ℂ
182lnopaddmuli 32002 . . . . . . . 8 ((i ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 + (i · 𝐵))) = ((𝑇𝐴) + (i · (𝑇𝐵))))
1917, 1, 6, 18mp3an 1460 . . . . . . 7 (𝑇‘(𝐴 + (i · 𝐵))) = ((𝑇𝐴) + (i · (𝑇𝐵)))
2019oveq1i 7441 . . . . . 6 ((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) = (((𝑇𝐴) + (i · (𝑇𝐵))) ·ih (𝐴 + (i · 𝐵)))
212lnopsubmuli 32004 . . . . . . . 8 ((i ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 (i · 𝐵))) = ((𝑇𝐴) − (i · (𝑇𝐵))))
2217, 1, 6, 21mp3an 1460 . . . . . . 7 (𝑇‘(𝐴 (i · 𝐵))) = ((𝑇𝐴) − (i · (𝑇𝐵)))
2322oveq1i 7441 . . . . . 6 ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵))) = (((𝑇𝐴) − (i · (𝑇𝐵))) ·ih (𝐴 (i · 𝐵)))
2420, 23oveq12i 7443 . . . . 5 (((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) − ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵)))) = ((((𝑇𝐴) + (i · (𝑇𝐵))) ·ih (𝐴 + (i · 𝐵))) − (((𝑇𝐴) − (i · (𝑇𝐵))) ·ih (𝐴 (i · 𝐵))))
2524oveq2i 7442 . . . 4 (i · (((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) − ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵))))) = (i · ((((𝑇𝐴) + (i · (𝑇𝐵))) ·ih (𝐴 + (i · 𝐵))) − (((𝑇𝐴) − (i · (𝑇𝐵))) ·ih (𝐴 (i · 𝐵)))))
2616, 25oveq12i 7443 . . 3 ((((𝑇‘(𝐴 + 𝐵)) ·ih (𝐴 + 𝐵)) − ((𝑇‘(𝐴 𝐵)) ·ih (𝐴 𝐵))) + (i · (((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) − ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵)))))) = (((((𝑇𝐴) + (𝑇𝐵)) ·ih (𝐴 + 𝐵)) − (((𝑇𝐴) − (𝑇𝐵)) ·ih (𝐴 𝐵))) + (i · ((((𝑇𝐴) + (i · (𝑇𝐵))) ·ih (𝐴 + (i · 𝐵))) − (((𝑇𝐴) − (i · (𝑇𝐵))) ·ih (𝐴 (i · 𝐵))))))
2726oveq1i 7441 . 2 (((((𝑇‘(𝐴 + 𝐵)) ·ih (𝐴 + 𝐵)) − ((𝑇‘(𝐴 𝐵)) ·ih (𝐴 𝐵))) + (i · (((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) − ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵)))))) / 4) = ((((((𝑇𝐴) + (𝑇𝐵)) ·ih (𝐴 + 𝐵)) − (((𝑇𝐴) − (𝑇𝐵)) ·ih (𝐴 𝐵))) + (i · ((((𝑇𝐴) + (i · (𝑇𝐵))) ·ih (𝐴 + (i · 𝐵))) − (((𝑇𝐴) − (i · (𝑇𝐵))) ·ih (𝐴 (i · 𝐵)))))) / 4)
289, 27eqtr4i 2766 1 ((𝑇𝐴) ·ih 𝐵) = (((((𝑇‘(𝐴 + 𝐵)) ·ih (𝐴 + 𝐵)) − ((𝑇‘(𝐴 𝐵)) ·ih (𝐴 𝐵))) + (i · (((𝑇‘(𝐴 + (i · 𝐵))) ·ih (𝐴 + (i · 𝐵))) − ((𝑇‘(𝐴 (i · 𝐵))) ·ih (𝐴 (i · 𝐵)))))) / 4)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2106  cfv 6563  (class class class)co 7431  cc 11151  ici 11155   + caddc 11156   · cmul 11158  cmin 11490   / cdiv 11918  4c4 12321  chba 30948   + cva 30949   · csm 30950   ·ih csp 30951   cmv 30954  LinOpclo 30976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-hilex 31028  ax-hfvadd 31029  ax-hvass 31031  ax-hv0cl 31032  ax-hvaddid 31033  ax-hfvmul 31034  ax-hvmulid 31035  ax-hvdistr2 31038  ax-hvmul0 31039  ax-hfi 31108  ax-his1 31111  ax-his2 31112  ax-his3 31113
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-2 12327  df-3 12328  df-4 12329  df-cj 15135  df-re 15136  df-im 15137  df-hvsub 31000  df-lnop 31870
This theorem is referenced by:  lnopeq0lem2  32035
  Copyright terms: Public domain W3C validator