HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnopfi Structured version   Visualization version   GIF version

Theorem lnopfi 31948
Description: A linear Hilbert space operator is a Hilbert space operator. (Contributed by NM, 23-Jan-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
lnopl.1 𝑇 ∈ LinOp
Assertion
Ref Expression
lnopfi 𝑇: ℋ⟶ ℋ

Proof of Theorem lnopfi
StepHypRef Expression
1 lnopl.1 . 2 𝑇 ∈ LinOp
2 lnopf 31838 . 2 (𝑇 ∈ LinOp → 𝑇: ℋ⟶ ℋ)
31, 2ax-mp 5 1 𝑇: ℋ⟶ ℋ
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  wf 6495  chba 30898  LinOpclo 30926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-hilex 30978
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-map 8778  df-lnop 31820
This theorem is referenced by:  lnopaddi  31950  lnopsubi  31953  hoddii  31968  nmlnop0iALT  31974  nmlnopgt0i  31976  lnopmi  31979  lnophsi  31980  lnophdi  31981  lnopcoi  31982  lnopco0i  31983  lnopeq0lem1  31984  lnopeq0i  31986  lnopeqi  31987  lnopunilem1  31989  lnopunilem2  31990  lnophmlem2  31996  lnophmi  31997  nmbdoplbi  32003  nmcopexi  32006  nmcoplbi  32007  lnopconi  32013  imaelshi  32037  rnelshi  32038  cnlnadjlem2  32047  cnlnadjlem6  32051  cnlnadjlem7  32052  cnlnadjeui  32056  nmopcoi  32074  bdopcoi  32077  hmopidmchi  32130  hmopidmpji  32131
  Copyright terms: Public domain W3C validator