| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > lnopfi | Structured version Visualization version GIF version | ||
| Description: A linear Hilbert space operator is a Hilbert space operator. (Contributed by NM, 23-Jan-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| lnopl.1 | ⊢ 𝑇 ∈ LinOp |
| Ref | Expression |
|---|---|
| lnopfi | ⊢ 𝑇: ℋ⟶ ℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnopl.1 | . 2 ⊢ 𝑇 ∈ LinOp | |
| 2 | lnopf 31839 | . 2 ⊢ (𝑇 ∈ LinOp → 𝑇: ℋ⟶ ℋ) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝑇: ℋ⟶ ℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 ⟶wf 6477 ℋchba 30899 LinOpclo 30927 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-hilex 30979 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-lnop 31821 |
| This theorem is referenced by: lnopaddi 31951 lnopsubi 31954 hoddii 31969 nmlnop0iALT 31975 nmlnopgt0i 31977 lnopmi 31980 lnophsi 31981 lnophdi 31982 lnopcoi 31983 lnopco0i 31984 lnopeq0lem1 31985 lnopeq0i 31987 lnopeqi 31988 lnopunilem1 31990 lnopunilem2 31991 lnophmlem2 31997 lnophmi 31998 nmbdoplbi 32004 nmcopexi 32007 nmcoplbi 32008 lnopconi 32014 imaelshi 32038 rnelshi 32039 cnlnadjlem2 32048 cnlnadjlem6 32052 cnlnadjlem7 32053 cnlnadjeui 32057 nmopcoi 32075 bdopcoi 32078 hmopidmchi 32131 hmopidmpji 32132 |
| Copyright terms: Public domain | W3C validator |