![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > lnopfi | Structured version Visualization version GIF version |
Description: A linear Hilbert space operator is a Hilbert space operator. (Contributed by NM, 23-Jan-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lnopl.1 | ⊢ 𝑇 ∈ LinOp |
Ref | Expression |
---|---|
lnopfi | ⊢ 𝑇: ℋ⟶ ℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lnopl.1 | . 2 ⊢ 𝑇 ∈ LinOp | |
2 | lnopf 31891 | . 2 ⊢ (𝑇 ∈ LinOp → 𝑇: ℋ⟶ ℋ) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝑇: ℋ⟶ ℋ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ⟶wf 6569 ℋchba 30951 LinOpclo 30979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-hilex 31031 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-map 8886 df-lnop 31873 |
This theorem is referenced by: lnopaddi 32003 lnopsubi 32006 hoddii 32021 nmlnop0iALT 32027 nmlnopgt0i 32029 lnopmi 32032 lnophsi 32033 lnophdi 32034 lnopcoi 32035 lnopco0i 32036 lnopeq0lem1 32037 lnopeq0i 32039 lnopeqi 32040 lnopunilem1 32042 lnopunilem2 32043 lnophmlem2 32049 lnophmi 32050 nmbdoplbi 32056 nmcopexi 32059 nmcoplbi 32060 lnopconi 32066 imaelshi 32090 rnelshi 32091 cnlnadjlem2 32100 cnlnadjlem6 32104 cnlnadjlem7 32105 cnlnadjeui 32109 nmopcoi 32127 bdopcoi 32130 hmopidmchi 32183 hmopidmpji 32184 |
Copyright terms: Public domain | W3C validator |