HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnopfi Structured version   Visualization version   GIF version

Theorem lnopfi 31799
Description: A linear Hilbert space operator is a Hilbert space operator. (Contributed by NM, 23-Jan-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
lnopl.1 𝑇 ∈ LinOp
Assertion
Ref Expression
lnopfi 𝑇: ℋ⟶ ℋ

Proof of Theorem lnopfi
StepHypRef Expression
1 lnopl.1 . 2 𝑇 ∈ LinOp
2 lnopf 31689 . 2 (𝑇 ∈ LinOp → 𝑇: ℋ⟶ ℋ)
31, 2ax-mp 5 1 𝑇: ℋ⟶ ℋ
Colors of variables: wff setvar class
Syntax hints:  wcel 2098  wf 6549  chba 30749  LinOpclo 30777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-hilex 30829
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-fv 6561  df-ov 7429  df-oprab 7430  df-mpo 7431  df-map 8853  df-lnop 31671
This theorem is referenced by:  lnopaddi  31801  lnopsubi  31804  hoddii  31819  nmlnop0iALT  31825  nmlnopgt0i  31827  lnopmi  31830  lnophsi  31831  lnophdi  31832  lnopcoi  31833  lnopco0i  31834  lnopeq0lem1  31835  lnopeq0i  31837  lnopeqi  31838  lnopunilem1  31840  lnopunilem2  31841  lnophmlem2  31847  lnophmi  31848  nmbdoplbi  31854  nmcopexi  31857  nmcoplbi  31858  lnopconi  31864  imaelshi  31888  rnelshi  31889  cnlnadjlem2  31898  cnlnadjlem6  31902  cnlnadjlem7  31903  cnlnadjeui  31907  nmopcoi  31925  bdopcoi  31928  hmopidmchi  31981  hmopidmpji  31982
  Copyright terms: Public domain W3C validator