| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > lnopfi | Structured version Visualization version GIF version | ||
| Description: A linear Hilbert space operator is a Hilbert space operator. (Contributed by NM, 23-Jan-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| lnopl.1 | ⊢ 𝑇 ∈ LinOp |
| Ref | Expression |
|---|---|
| lnopfi | ⊢ 𝑇: ℋ⟶ ℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnopl.1 | . 2 ⊢ 𝑇 ∈ LinOp | |
| 2 | lnopf 31795 | . 2 ⊢ (𝑇 ∈ LinOp → 𝑇: ℋ⟶ ℋ) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝑇: ℋ⟶ ℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ⟶wf 6510 ℋchba 30855 LinOpclo 30883 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-hilex 30935 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-map 8804 df-lnop 31777 |
| This theorem is referenced by: lnopaddi 31907 lnopsubi 31910 hoddii 31925 nmlnop0iALT 31931 nmlnopgt0i 31933 lnopmi 31936 lnophsi 31937 lnophdi 31938 lnopcoi 31939 lnopco0i 31940 lnopeq0lem1 31941 lnopeq0i 31943 lnopeqi 31944 lnopunilem1 31946 lnopunilem2 31947 lnophmlem2 31953 lnophmi 31954 nmbdoplbi 31960 nmcopexi 31963 nmcoplbi 31964 lnopconi 31970 imaelshi 31994 rnelshi 31995 cnlnadjlem2 32004 cnlnadjlem6 32008 cnlnadjlem7 32009 cnlnadjeui 32013 nmopcoi 32031 bdopcoi 32034 hmopidmchi 32087 hmopidmpji 32088 |
| Copyright terms: Public domain | W3C validator |