Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > lnopfi | Structured version Visualization version GIF version |
Description: A linear Hilbert space operator is a Hilbert space operator. (Contributed by NM, 23-Jan-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lnopl.1 | ⊢ 𝑇 ∈ LinOp |
Ref | Expression |
---|---|
lnopfi | ⊢ 𝑇: ℋ⟶ ℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lnopl.1 | . 2 ⊢ 𝑇 ∈ LinOp | |
2 | lnopf 30122 | . 2 ⊢ (𝑇 ∈ LinOp → 𝑇: ℋ⟶ ℋ) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝑇: ℋ⟶ ℋ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ⟶wf 6414 ℋchba 29182 LinOpclo 29210 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-hilex 29262 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 df-lnop 30104 |
This theorem is referenced by: lnopaddi 30234 lnopsubi 30237 hoddii 30252 nmlnop0iALT 30258 nmlnopgt0i 30260 lnopmi 30263 lnophsi 30264 lnophdi 30265 lnopcoi 30266 lnopco0i 30267 lnopeq0lem1 30268 lnopeq0i 30270 lnopeqi 30271 lnopunilem1 30273 lnopunilem2 30274 lnophmlem2 30280 lnophmi 30281 nmbdoplbi 30287 nmcopexi 30290 nmcoplbi 30291 lnopconi 30297 imaelshi 30321 rnelshi 30322 cnlnadjlem2 30331 cnlnadjlem6 30335 cnlnadjlem7 30336 cnlnadjeui 30340 nmopcoi 30358 bdopcoi 30361 hmopidmchi 30414 hmopidmpji 30415 |
Copyright terms: Public domain | W3C validator |