| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > lnopfi | Structured version Visualization version GIF version | ||
| Description: A linear Hilbert space operator is a Hilbert space operator. (Contributed by NM, 23-Jan-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| lnopl.1 | ⊢ 𝑇 ∈ LinOp |
| Ref | Expression |
|---|---|
| lnopfi | ⊢ 𝑇: ℋ⟶ ℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnopl.1 | . 2 ⊢ 𝑇 ∈ LinOp | |
| 2 | lnopf 31788 | . 2 ⊢ (𝑇 ∈ LinOp → 𝑇: ℋ⟶ ℋ) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝑇: ℋ⟶ ℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ⟶wf 6507 ℋchba 30848 LinOpclo 30876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-hilex 30928 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-map 8801 df-lnop 31770 |
| This theorem is referenced by: lnopaddi 31900 lnopsubi 31903 hoddii 31918 nmlnop0iALT 31924 nmlnopgt0i 31926 lnopmi 31929 lnophsi 31930 lnophdi 31931 lnopcoi 31932 lnopco0i 31933 lnopeq0lem1 31934 lnopeq0i 31936 lnopeqi 31937 lnopunilem1 31939 lnopunilem2 31940 lnophmlem2 31946 lnophmi 31947 nmbdoplbi 31953 nmcopexi 31956 nmcoplbi 31957 lnopconi 31963 imaelshi 31987 rnelshi 31988 cnlnadjlem2 31997 cnlnadjlem6 32001 cnlnadjlem7 32002 cnlnadjeui 32006 nmopcoi 32024 bdopcoi 32027 hmopidmchi 32080 hmopidmpji 32081 |
| Copyright terms: Public domain | W3C validator |