HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnopfi Structured version   Visualization version   GIF version

Theorem lnopfi 31988
Description: A linear Hilbert space operator is a Hilbert space operator. (Contributed by NM, 23-Jan-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
lnopl.1 𝑇 ∈ LinOp
Assertion
Ref Expression
lnopfi 𝑇: ℋ⟶ ℋ

Proof of Theorem lnopfi
StepHypRef Expression
1 lnopl.1 . 2 𝑇 ∈ LinOp
2 lnopf 31878 . 2 (𝑇 ∈ LinOp → 𝑇: ℋ⟶ ℋ)
31, 2ax-mp 5 1 𝑇: ℋ⟶ ℋ
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  wf 6557  chba 30938  LinOpclo 30966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-hilex 31018
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8868  df-lnop 31860
This theorem is referenced by:  lnopaddi  31990  lnopsubi  31993  hoddii  32008  nmlnop0iALT  32014  nmlnopgt0i  32016  lnopmi  32019  lnophsi  32020  lnophdi  32021  lnopcoi  32022  lnopco0i  32023  lnopeq0lem1  32024  lnopeq0i  32026  lnopeqi  32027  lnopunilem1  32029  lnopunilem2  32030  lnophmlem2  32036  lnophmi  32037  nmbdoplbi  32043  nmcopexi  32046  nmcoplbi  32047  lnopconi  32053  imaelshi  32077  rnelshi  32078  cnlnadjlem2  32087  cnlnadjlem6  32091  cnlnadjlem7  32092  cnlnadjeui  32096  nmopcoi  32114  bdopcoi  32117  hmopidmchi  32170  hmopidmpji  32171
  Copyright terms: Public domain W3C validator