HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnopfi Structured version   Visualization version   GIF version

Theorem lnopfi 31905
Description: A linear Hilbert space operator is a Hilbert space operator. (Contributed by NM, 23-Jan-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
lnopl.1 𝑇 ∈ LinOp
Assertion
Ref Expression
lnopfi 𝑇: ℋ⟶ ℋ

Proof of Theorem lnopfi
StepHypRef Expression
1 lnopl.1 . 2 𝑇 ∈ LinOp
2 lnopf 31795 . 2 (𝑇 ∈ LinOp → 𝑇: ℋ⟶ ℋ)
31, 2ax-mp 5 1 𝑇: ℋ⟶ ℋ
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  wf 6510  chba 30855  LinOpclo 30883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-hilex 30935
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-map 8804  df-lnop 31777
This theorem is referenced by:  lnopaddi  31907  lnopsubi  31910  hoddii  31925  nmlnop0iALT  31931  nmlnopgt0i  31933  lnopmi  31936  lnophsi  31937  lnophdi  31938  lnopcoi  31939  lnopco0i  31940  lnopeq0lem1  31941  lnopeq0i  31943  lnopeqi  31944  lnopunilem1  31946  lnopunilem2  31947  lnophmlem2  31953  lnophmi  31954  nmbdoplbi  31960  nmcopexi  31963  nmcoplbi  31964  lnopconi  31970  imaelshi  31994  rnelshi  31995  cnlnadjlem2  32004  cnlnadjlem6  32008  cnlnadjlem7  32009  cnlnadjeui  32013  nmopcoi  32031  bdopcoi  32034  hmopidmchi  32087  hmopidmpji  32088
  Copyright terms: Public domain W3C validator