| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > lnopfi | Structured version Visualization version GIF version | ||
| Description: A linear Hilbert space operator is a Hilbert space operator. (Contributed by NM, 23-Jan-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| lnopl.1 | ⊢ 𝑇 ∈ LinOp |
| Ref | Expression |
|---|---|
| lnopfi | ⊢ 𝑇: ℋ⟶ ℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnopl.1 | . 2 ⊢ 𝑇 ∈ LinOp | |
| 2 | lnopf 31807 | . 2 ⊢ (𝑇 ∈ LinOp → 𝑇: ℋ⟶ ℋ) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝑇: ℋ⟶ ℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ⟶wf 6478 ℋchba 30867 LinOpclo 30895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-hilex 30947 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-map 8755 df-lnop 31789 |
| This theorem is referenced by: lnopaddi 31919 lnopsubi 31922 hoddii 31937 nmlnop0iALT 31943 nmlnopgt0i 31945 lnopmi 31948 lnophsi 31949 lnophdi 31950 lnopcoi 31951 lnopco0i 31952 lnopeq0lem1 31953 lnopeq0i 31955 lnopeqi 31956 lnopunilem1 31958 lnopunilem2 31959 lnophmlem2 31965 lnophmi 31966 nmbdoplbi 31972 nmcopexi 31975 nmcoplbi 31976 lnopconi 31982 imaelshi 32006 rnelshi 32007 cnlnadjlem2 32016 cnlnadjlem6 32020 cnlnadjlem7 32021 cnlnadjeui 32025 nmopcoi 32043 bdopcoi 32046 hmopidmchi 32099 hmopidmpji 32100 |
| Copyright terms: Public domain | W3C validator |