Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  islno Structured version   Visualization version   GIF version

Theorem islno 28133
 Description: The predicate "is a linear operator." (Contributed by NM, 4-Dec-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnoval.1 𝑋 = (BaseSet‘𝑈)
lnoval.2 𝑌 = (BaseSet‘𝑊)
lnoval.3 𝐺 = ( +𝑣𝑈)
lnoval.4 𝐻 = ( +𝑣𝑊)
lnoval.5 𝑅 = ( ·𝑠OLD𝑈)
lnoval.6 𝑆 = ( ·𝑠OLD𝑊)
lnoval.7 𝐿 = (𝑈 LnOp 𝑊)
Assertion
Ref Expression
islno ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑇𝐿 ↔ (𝑇:𝑋𝑌 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝑋𝑧𝑋 (𝑇‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑇𝑦))𝐻(𝑇𝑧)))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑈   𝑥,𝑊,𝑦,𝑧   𝑦,𝑋,𝑧   𝑥,𝑇,𝑦,𝑧
Allowed substitution hints:   𝑅(𝑥,𝑦,𝑧)   𝑆(𝑥,𝑦,𝑧)   𝐺(𝑥,𝑦,𝑧)   𝐻(𝑥,𝑦,𝑧)   𝐿(𝑥,𝑦,𝑧)   𝑋(𝑥)   𝑌(𝑥,𝑦,𝑧)

Proof of Theorem islno
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 lnoval.1 . . . 4 𝑋 = (BaseSet‘𝑈)
2 lnoval.2 . . . 4 𝑌 = (BaseSet‘𝑊)
3 lnoval.3 . . . 4 𝐺 = ( +𝑣𝑈)
4 lnoval.4 . . . 4 𝐻 = ( +𝑣𝑊)
5 lnoval.5 . . . 4 𝑅 = ( ·𝑠OLD𝑈)
6 lnoval.6 . . . 4 𝑆 = ( ·𝑠OLD𝑊)
7 lnoval.7 . . . 4 𝐿 = (𝑈 LnOp 𝑊)
81, 2, 3, 4, 5, 6, 7lnoval 28132 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝐿 = {𝑤 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑥 ∈ ℂ ∀𝑦𝑋𝑧𝑋 (𝑤‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑤𝑦))𝐻(𝑤𝑧))})
98eleq2d 2864 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑇𝐿𝑇 ∈ {𝑤 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑥 ∈ ℂ ∀𝑦𝑋𝑧𝑋 (𝑤‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑤𝑦))𝐻(𝑤𝑧))}))
10 fveq1 6410 . . . . . . 7 (𝑤 = 𝑇 → (𝑤‘((𝑥𝑅𝑦)𝐺𝑧)) = (𝑇‘((𝑥𝑅𝑦)𝐺𝑧)))
11 fveq1 6410 . . . . . . . . 9 (𝑤 = 𝑇 → (𝑤𝑦) = (𝑇𝑦))
1211oveq2d 6894 . . . . . . . 8 (𝑤 = 𝑇 → (𝑥𝑆(𝑤𝑦)) = (𝑥𝑆(𝑇𝑦)))
13 fveq1 6410 . . . . . . . 8 (𝑤 = 𝑇 → (𝑤𝑧) = (𝑇𝑧))
1412, 13oveq12d 6896 . . . . . . 7 (𝑤 = 𝑇 → ((𝑥𝑆(𝑤𝑦))𝐻(𝑤𝑧)) = ((𝑥𝑆(𝑇𝑦))𝐻(𝑇𝑧)))
1510, 14eqeq12d 2814 . . . . . 6 (𝑤 = 𝑇 → ((𝑤‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑤𝑦))𝐻(𝑤𝑧)) ↔ (𝑇‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑇𝑦))𝐻(𝑇𝑧))))
16152ralbidv 3170 . . . . 5 (𝑤 = 𝑇 → (∀𝑦𝑋𝑧𝑋 (𝑤‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑤𝑦))𝐻(𝑤𝑧)) ↔ ∀𝑦𝑋𝑧𝑋 (𝑇‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑇𝑦))𝐻(𝑇𝑧))))
1716ralbidv 3167 . . . 4 (𝑤 = 𝑇 → (∀𝑥 ∈ ℂ ∀𝑦𝑋𝑧𝑋 (𝑤‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑤𝑦))𝐻(𝑤𝑧)) ↔ ∀𝑥 ∈ ℂ ∀𝑦𝑋𝑧𝑋 (𝑇‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑇𝑦))𝐻(𝑇𝑧))))
1817elrab 3556 . . 3 (𝑇 ∈ {𝑤 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑥 ∈ ℂ ∀𝑦𝑋𝑧𝑋 (𝑤‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑤𝑦))𝐻(𝑤𝑧))} ↔ (𝑇 ∈ (𝑌𝑚 𝑋) ∧ ∀𝑥 ∈ ℂ ∀𝑦𝑋𝑧𝑋 (𝑇‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑇𝑦))𝐻(𝑇𝑧))))
192fvexi 6425 . . . . 5 𝑌 ∈ V
201fvexi 6425 . . . . 5 𝑋 ∈ V
2119, 20elmap 8124 . . . 4 (𝑇 ∈ (𝑌𝑚 𝑋) ↔ 𝑇:𝑋𝑌)
2221anbi1i 618 . . 3 ((𝑇 ∈ (𝑌𝑚 𝑋) ∧ ∀𝑥 ∈ ℂ ∀𝑦𝑋𝑧𝑋 (𝑇‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑇𝑦))𝐻(𝑇𝑧))) ↔ (𝑇:𝑋𝑌 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝑋𝑧𝑋 (𝑇‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑇𝑦))𝐻(𝑇𝑧))))
2318, 22bitri 267 . 2 (𝑇 ∈ {𝑤 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑥 ∈ ℂ ∀𝑦𝑋𝑧𝑋 (𝑤‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑤𝑦))𝐻(𝑤𝑧))} ↔ (𝑇:𝑋𝑌 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝑋𝑧𝑋 (𝑇‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑇𝑦))𝐻(𝑇𝑧))))
249, 23syl6bb 279 1 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑇𝐿 ↔ (𝑇:𝑋𝑌 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝑋𝑧𝑋 (𝑇‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑇𝑦))𝐻(𝑇𝑧)))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ wa 385   = wceq 1653   ∈ wcel 2157  ∀wral 3089  {crab 3093  ⟶wf 6097  ‘cfv 6101  (class class class)co 6878   ↑𝑚 cmap 8095  ℂcc 10222  NrmCVeccnv 27964   +𝑣 cpv 27965  BaseSetcba 27966   ·𝑠OLD cns 27967   LnOp clno 28120 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183 This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3387  df-sbc 3634  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-br 4844  df-opab 4906  df-id 5220  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-fv 6109  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-map 8097  df-lno 28124 This theorem is referenced by:  lnolin  28134  lnof  28135  lnocoi  28137  0lno  28170  ipblnfi  28236
 Copyright terms: Public domain W3C validator