MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islno Structured version   Visualization version   GIF version

Theorem islno 30772
Description: The predicate "is a linear operator." (Contributed by NM, 4-Dec-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnoval.1 𝑋 = (BaseSet‘𝑈)
lnoval.2 𝑌 = (BaseSet‘𝑊)
lnoval.3 𝐺 = ( +𝑣𝑈)
lnoval.4 𝐻 = ( +𝑣𝑊)
lnoval.5 𝑅 = ( ·𝑠OLD𝑈)
lnoval.6 𝑆 = ( ·𝑠OLD𝑊)
lnoval.7 𝐿 = (𝑈 LnOp 𝑊)
Assertion
Ref Expression
islno ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑇𝐿 ↔ (𝑇:𝑋𝑌 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝑋𝑧𝑋 (𝑇‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑇𝑦))𝐻(𝑇𝑧)))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑈   𝑥,𝑊,𝑦,𝑧   𝑦,𝑋,𝑧   𝑥,𝑇,𝑦,𝑧
Allowed substitution hints:   𝑅(𝑥,𝑦,𝑧)   𝑆(𝑥,𝑦,𝑧)   𝐺(𝑥,𝑦,𝑧)   𝐻(𝑥,𝑦,𝑧)   𝐿(𝑥,𝑦,𝑧)   𝑋(𝑥)   𝑌(𝑥,𝑦,𝑧)

Proof of Theorem islno
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 lnoval.1 . . . 4 𝑋 = (BaseSet‘𝑈)
2 lnoval.2 . . . 4 𝑌 = (BaseSet‘𝑊)
3 lnoval.3 . . . 4 𝐺 = ( +𝑣𝑈)
4 lnoval.4 . . . 4 𝐻 = ( +𝑣𝑊)
5 lnoval.5 . . . 4 𝑅 = ( ·𝑠OLD𝑈)
6 lnoval.6 . . . 4 𝑆 = ( ·𝑠OLD𝑊)
7 lnoval.7 . . . 4 𝐿 = (𝑈 LnOp 𝑊)
81, 2, 3, 4, 5, 6, 7lnoval 30771 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝐿 = {𝑤 ∈ (𝑌m 𝑋) ∣ ∀𝑥 ∈ ℂ ∀𝑦𝑋𝑧𝑋 (𝑤‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑤𝑦))𝐻(𝑤𝑧))})
98eleq2d 2827 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑇𝐿𝑇 ∈ {𝑤 ∈ (𝑌m 𝑋) ∣ ∀𝑥 ∈ ℂ ∀𝑦𝑋𝑧𝑋 (𝑤‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑤𝑦))𝐻(𝑤𝑧))}))
10 fveq1 6905 . . . . . . 7 (𝑤 = 𝑇 → (𝑤‘((𝑥𝑅𝑦)𝐺𝑧)) = (𝑇‘((𝑥𝑅𝑦)𝐺𝑧)))
11 fveq1 6905 . . . . . . . . 9 (𝑤 = 𝑇 → (𝑤𝑦) = (𝑇𝑦))
1211oveq2d 7447 . . . . . . . 8 (𝑤 = 𝑇 → (𝑥𝑆(𝑤𝑦)) = (𝑥𝑆(𝑇𝑦)))
13 fveq1 6905 . . . . . . . 8 (𝑤 = 𝑇 → (𝑤𝑧) = (𝑇𝑧))
1412, 13oveq12d 7449 . . . . . . 7 (𝑤 = 𝑇 → ((𝑥𝑆(𝑤𝑦))𝐻(𝑤𝑧)) = ((𝑥𝑆(𝑇𝑦))𝐻(𝑇𝑧)))
1510, 14eqeq12d 2753 . . . . . 6 (𝑤 = 𝑇 → ((𝑤‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑤𝑦))𝐻(𝑤𝑧)) ↔ (𝑇‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑇𝑦))𝐻(𝑇𝑧))))
16152ralbidv 3221 . . . . 5 (𝑤 = 𝑇 → (∀𝑦𝑋𝑧𝑋 (𝑤‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑤𝑦))𝐻(𝑤𝑧)) ↔ ∀𝑦𝑋𝑧𝑋 (𝑇‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑇𝑦))𝐻(𝑇𝑧))))
1716ralbidv 3178 . . . 4 (𝑤 = 𝑇 → (∀𝑥 ∈ ℂ ∀𝑦𝑋𝑧𝑋 (𝑤‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑤𝑦))𝐻(𝑤𝑧)) ↔ ∀𝑥 ∈ ℂ ∀𝑦𝑋𝑧𝑋 (𝑇‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑇𝑦))𝐻(𝑇𝑧))))
1817elrab 3692 . . 3 (𝑇 ∈ {𝑤 ∈ (𝑌m 𝑋) ∣ ∀𝑥 ∈ ℂ ∀𝑦𝑋𝑧𝑋 (𝑤‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑤𝑦))𝐻(𝑤𝑧))} ↔ (𝑇 ∈ (𝑌m 𝑋) ∧ ∀𝑥 ∈ ℂ ∀𝑦𝑋𝑧𝑋 (𝑇‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑇𝑦))𝐻(𝑇𝑧))))
192fvexi 6920 . . . . 5 𝑌 ∈ V
201fvexi 6920 . . . . 5 𝑋 ∈ V
2119, 20elmap 8911 . . . 4 (𝑇 ∈ (𝑌m 𝑋) ↔ 𝑇:𝑋𝑌)
2221anbi1i 624 . . 3 ((𝑇 ∈ (𝑌m 𝑋) ∧ ∀𝑥 ∈ ℂ ∀𝑦𝑋𝑧𝑋 (𝑇‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑇𝑦))𝐻(𝑇𝑧))) ↔ (𝑇:𝑋𝑌 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝑋𝑧𝑋 (𝑇‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑇𝑦))𝐻(𝑇𝑧))))
2318, 22bitri 275 . 2 (𝑇 ∈ {𝑤 ∈ (𝑌m 𝑋) ∣ ∀𝑥 ∈ ℂ ∀𝑦𝑋𝑧𝑋 (𝑤‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑤𝑦))𝐻(𝑤𝑧))} ↔ (𝑇:𝑋𝑌 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝑋𝑧𝑋 (𝑇‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑇𝑦))𝐻(𝑇𝑧))))
249, 23bitrdi 287 1 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑇𝐿 ↔ (𝑇:𝑋𝑌 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝑋𝑧𝑋 (𝑇‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑇𝑦))𝐻(𝑇𝑧)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  {crab 3436  wf 6557  cfv 6561  (class class class)co 7431  m cmap 8866  cc 11153  NrmCVeccnv 30603   +𝑣 cpv 30604  BaseSetcba 30605   ·𝑠OLD cns 30606   LnOp clno 30759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8868  df-lno 30763
This theorem is referenced by:  lnolin  30773  lnof  30774  lnocoi  30776  0lno  30809  ipblnfi  30874
  Copyright terms: Public domain W3C validator