![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sticksstones14 | Structured version Visualization version GIF version |
Description: Sticks and stones with definitions as hypotheses. (Contributed by metakunt, 7-Oct-2024.) |
Ref | Expression |
---|---|
sticksstones14.1 | β’ (π β π β β0) |
sticksstones14.2 | β’ (π β πΎ β β0) |
sticksstones14.3 | β’ πΉ = (π β π΄ β¦ (π β (1...πΎ) β¦ (π + Ξ£π β (1...π)(πβπ)))) |
sticksstones14.4 | β’ πΊ = (π β π΅ β¦ if(πΎ = 0, {β¨1, πβ©}, (π β (1...(πΎ + 1)) β¦ if(π = (πΎ + 1), ((π + πΎ) β (πβπΎ)), if(π = 1, ((πβ1) β 1), (((πβπ) β (πβ(π β 1))) β 1)))))) |
sticksstones14.5 | β’ π΄ = {π β£ (π:(1...(πΎ + 1))βΆβ0 β§ Ξ£π β (1...(πΎ + 1))(πβπ) = π)} |
sticksstones14.6 | β’ π΅ = {π β£ (π:(1...πΎ)βΆ(1...(π + πΎ)) β§ βπ₯ β (1...πΎ)βπ¦ β (1...πΎ)(π₯ < π¦ β (πβπ₯) < (πβπ¦)))} |
Ref | Expression |
---|---|
sticksstones14 | β’ (π β (β―βπ΄) = ((π + πΎ)CπΎ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sticksstones14.5 | . . . . 5 β’ π΄ = {π β£ (π:(1...(πΎ + 1))βΆβ0 β§ Ξ£π β (1...(πΎ + 1))(πβπ) = π)} | |
2 | 1 | a1i 11 | . . . 4 β’ (π β π΄ = {π β£ (π:(1...(πΎ + 1))βΆβ0 β§ Ξ£π β (1...(πΎ + 1))(πβπ) = π)}) |
3 | simpl 481 | . . . . . . 7 β’ ((π:(1...(πΎ + 1))βΆβ0 β§ Ξ£π β (1...(πΎ + 1))(πβπ) = π) β π:(1...(πΎ + 1))βΆβ0) | |
4 | 3 | a1i 11 | . . . . . 6 β’ (π β ((π:(1...(πΎ + 1))βΆβ0 β§ Ξ£π β (1...(πΎ + 1))(πβπ) = π) β π:(1...(πΎ + 1))βΆβ0)) |
5 | 4 | ss2abdv 4054 | . . . . 5 β’ (π β {π β£ (π:(1...(πΎ + 1))βΆβ0 β§ Ξ£π β (1...(πΎ + 1))(πβπ) = π)} β {π β£ π:(1...(πΎ + 1))βΆβ0}) |
6 | fzfid 13965 | . . . . . 6 β’ (π β (1...(πΎ + 1)) β Fin) | |
7 | nn0ex 12503 | . . . . . . 7 β’ β0 β V | |
8 | 7 | a1i 11 | . . . . . 6 β’ (π β β0 β V) |
9 | mapex 8844 | . . . . . 6 β’ (((1...(πΎ + 1)) β Fin β§ β0 β V) β {π β£ π:(1...(πΎ + 1))βΆβ0} β V) | |
10 | 6, 8, 9 | syl2anc 582 | . . . . 5 β’ (π β {π β£ π:(1...(πΎ + 1))βΆβ0} β V) |
11 | ssexg 5319 | . . . . 5 β’ (({π β£ (π:(1...(πΎ + 1))βΆβ0 β§ Ξ£π β (1...(πΎ + 1))(πβπ) = π)} β {π β£ π:(1...(πΎ + 1))βΆβ0} β§ {π β£ π:(1...(πΎ + 1))βΆβ0} β V) β {π β£ (π:(1...(πΎ + 1))βΆβ0 β§ Ξ£π β (1...(πΎ + 1))(πβπ) = π)} β V) | |
12 | 5, 10, 11 | syl2anc 582 | . . . 4 β’ (π β {π β£ (π:(1...(πΎ + 1))βΆβ0 β§ Ξ£π β (1...(πΎ + 1))(πβπ) = π)} β V) |
13 | 2, 12 | eqeltrd 2825 | . . 3 β’ (π β π΄ β V) |
14 | sticksstones14.1 | . . . 4 β’ (π β π β β0) | |
15 | sticksstones14.2 | . . . 4 β’ (π β πΎ β β0) | |
16 | sticksstones14.3 | . . . 4 β’ πΉ = (π β π΄ β¦ (π β (1...πΎ) β¦ (π + Ξ£π β (1...π)(πβπ)))) | |
17 | sticksstones14.4 | . . . 4 β’ πΊ = (π β π΅ β¦ if(πΎ = 0, {β¨1, πβ©}, (π β (1...(πΎ + 1)) β¦ if(π = (πΎ + 1), ((π + πΎ) β (πβπΎ)), if(π = 1, ((πβ1) β 1), (((πβπ) β (πβ(π β 1))) β 1)))))) | |
18 | sticksstones14.6 | . . . 4 β’ π΅ = {π β£ (π:(1...πΎ)βΆ(1...(π + πΎ)) β§ βπ₯ β (1...πΎ)βπ¦ β (1...πΎ)(π₯ < π¦ β (πβπ₯) < (πβπ¦)))} | |
19 | 14, 15, 16, 17, 1, 18 | sticksstones13 41683 | . . 3 β’ (π β πΉ:π΄β1-1-ontoβπ΅) |
20 | 13, 19 | hasheqf1od 14339 | . 2 β’ (π β (β―βπ΄) = (β―βπ΅)) |
21 | 14, 15 | nn0addcld 12561 | . . 3 β’ (π β (π + πΎ) β β0) |
22 | 21, 15, 18 | sticksstones5 41674 | . 2 β’ (π β (β―βπ΅) = ((π + πΎ)CπΎ)) |
23 | 20, 22 | eqtrd 2765 | 1 β’ (π β (β―βπ΄) = ((π + πΎ)CπΎ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 {cab 2702 βwral 3051 Vcvv 3463 β wss 3941 ifcif 4525 {csn 4625 β¨cop 4631 class class class wbr 5144 β¦ cmpt 5227 βΆwf 6539 βcfv 6543 (class class class)co 7413 Fincfn 8957 0cc0 11133 1c1 11134 + caddc 11136 < clt 11273 β cmin 11469 β0cn0 12497 ...cfz 13511 Ccbc 14288 β―chash 14316 Ξ£csu 15659 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-inf2 9659 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 ax-pre-sup 11211 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3961 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-int 4946 df-iun 4994 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-se 5629 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-oadd 8484 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-sup 9460 df-inf 9461 df-oi 9528 df-dju 9919 df-card 9957 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-div 11897 df-nn 12238 df-2 12300 df-3 12301 df-n0 12498 df-z 12584 df-uz 12848 df-rp 13002 df-ico 13357 df-fz 13512 df-fzo 13655 df-seq 13994 df-exp 14054 df-fac 14260 df-bc 14289 df-hash 14317 df-cj 15073 df-re 15074 df-im 15075 df-sqrt 15209 df-abs 15210 df-clim 15459 df-sum 15660 |
This theorem is referenced by: sticksstones15 41685 |
Copyright terms: Public domain | W3C validator |