| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sticksstones14 | Structured version Visualization version GIF version | ||
| Description: Sticks and stones with definitions as hypotheses. (Contributed by metakunt, 7-Oct-2024.) |
| Ref | Expression |
|---|---|
| sticksstones14.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| sticksstones14.2 | ⊢ (𝜑 → 𝐾 ∈ ℕ0) |
| sticksstones14.3 | ⊢ 𝐹 = (𝑎 ∈ 𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)))) |
| sticksstones14.4 | ⊢ 𝐺 = (𝑏 ∈ 𝐵 ↦ if(𝐾 = 0, {〈1, 𝑁〉}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏‘𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) − 1)))))) |
| sticksstones14.5 | ⊢ 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} |
| sticksstones14.6 | ⊢ 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} |
| Ref | Expression |
|---|---|
| sticksstones14 | ⊢ (𝜑 → (♯‘𝐴) = ((𝑁 + 𝐾)C𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sticksstones14.5 | . . . . 5 ⊢ 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)}) |
| 3 | simpl 482 | . . . . . . 7 ⊢ ((𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁) → 𝑔:(1...(𝐾 + 1))⟶ℕ0) | |
| 4 | 3 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ((𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁) → 𝑔:(1...(𝐾 + 1))⟶ℕ0)) |
| 5 | 4 | ss2abdv 4041 | . . . . 5 ⊢ (𝜑 → {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} ⊆ {𝑔 ∣ 𝑔:(1...(𝐾 + 1))⟶ℕ0}) |
| 6 | fzfid 13989 | . . . . . 6 ⊢ (𝜑 → (1...(𝐾 + 1)) ∈ Fin) | |
| 7 | nn0ex 12505 | . . . . . . 7 ⊢ ℕ0 ∈ V | |
| 8 | 7 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ℕ0 ∈ V) |
| 9 | mapex 7935 | . . . . . 6 ⊢ (((1...(𝐾 + 1)) ∈ Fin ∧ ℕ0 ∈ V) → {𝑔 ∣ 𝑔:(1...(𝐾 + 1))⟶ℕ0} ∈ V) | |
| 10 | 6, 8, 9 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → {𝑔 ∣ 𝑔:(1...(𝐾 + 1))⟶ℕ0} ∈ V) |
| 11 | ssexg 5293 | . . . . 5 ⊢ (({𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} ⊆ {𝑔 ∣ 𝑔:(1...(𝐾 + 1))⟶ℕ0} ∧ {𝑔 ∣ 𝑔:(1...(𝐾 + 1))⟶ℕ0} ∈ V) → {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} ∈ V) | |
| 12 | 5, 10, 11 | syl2anc 584 | . . . 4 ⊢ (𝜑 → {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} ∈ V) |
| 13 | 2, 12 | eqeltrd 2834 | . . 3 ⊢ (𝜑 → 𝐴 ∈ V) |
| 14 | sticksstones14.1 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 15 | sticksstones14.2 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℕ0) | |
| 16 | sticksstones14.3 | . . . 4 ⊢ 𝐹 = (𝑎 ∈ 𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)))) | |
| 17 | sticksstones14.4 | . . . 4 ⊢ 𝐺 = (𝑏 ∈ 𝐵 ↦ if(𝐾 = 0, {〈1, 𝑁〉}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏‘𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) − 1)))))) | |
| 18 | sticksstones14.6 | . . . 4 ⊢ 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} | |
| 19 | 14, 15, 16, 17, 1, 18 | sticksstones13 42118 | . . 3 ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) |
| 20 | 13, 19 | hasheqf1od 14369 | . 2 ⊢ (𝜑 → (♯‘𝐴) = (♯‘𝐵)) |
| 21 | 14, 15 | nn0addcld 12564 | . . 3 ⊢ (𝜑 → (𝑁 + 𝐾) ∈ ℕ0) |
| 22 | 21, 15, 18 | sticksstones5 42109 | . 2 ⊢ (𝜑 → (♯‘𝐵) = ((𝑁 + 𝐾)C𝐾)) |
| 23 | 20, 22 | eqtrd 2770 | 1 ⊢ (𝜑 → (♯‘𝐴) = ((𝑁 + 𝐾)C𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {cab 2713 ∀wral 3051 Vcvv 3459 ⊆ wss 3926 ifcif 4500 {csn 4601 〈cop 4607 class class class wbr 5119 ↦ cmpt 5201 ⟶wf 6526 ‘cfv 6530 (class class class)co 7403 Fincfn 8957 0cc0 11127 1c1 11128 + caddc 11130 < clt 11267 − cmin 11464 ℕ0cn0 12499 ...cfz 13522 Ccbc 14318 ♯chash 14346 Σcsu 15700 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-inf2 9653 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-isom 6539 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-oadd 8482 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-sup 9452 df-inf 9453 df-oi 9522 df-dju 9913 df-card 9951 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-n0 12500 df-z 12587 df-uz 12851 df-rp 13007 df-ico 13366 df-fz 13523 df-fzo 13670 df-seq 14018 df-exp 14078 df-fac 14290 df-bc 14319 df-hash 14347 df-cj 15116 df-re 15117 df-im 15118 df-sqrt 15252 df-abs 15253 df-clim 15502 df-sum 15701 |
| This theorem is referenced by: sticksstones15 42120 |
| Copyright terms: Public domain | W3C validator |