![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sticksstones14 | Structured version Visualization version GIF version |
Description: Sticks and stones with definitions as hypotheses. (Contributed by metakunt, 7-Oct-2024.) |
Ref | Expression |
---|---|
sticksstones14.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
sticksstones14.2 | ⊢ (𝜑 → 𝐾 ∈ ℕ0) |
sticksstones14.3 | ⊢ 𝐹 = (𝑎 ∈ 𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)))) |
sticksstones14.4 | ⊢ 𝐺 = (𝑏 ∈ 𝐵 ↦ if(𝐾 = 0, {〈1, 𝑁〉}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏‘𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) − 1)))))) |
sticksstones14.5 | ⊢ 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} |
sticksstones14.6 | ⊢ 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} |
Ref | Expression |
---|---|
sticksstones14 | ⊢ (𝜑 → (♯‘𝐴) = ((𝑁 + 𝐾)C𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sticksstones14.5 | . . . . 5 ⊢ 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} | |
2 | 1 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)}) |
3 | simpl 481 | . . . . . . 7 ⊢ ((𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁) → 𝑔:(1...(𝐾 + 1))⟶ℕ0) | |
4 | 3 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ((𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁) → 𝑔:(1...(𝐾 + 1))⟶ℕ0)) |
5 | 4 | ss2abdv 4060 | . . . . 5 ⊢ (𝜑 → {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} ⊆ {𝑔 ∣ 𝑔:(1...(𝐾 + 1))⟶ℕ0}) |
6 | fzfid 13993 | . . . . . 6 ⊢ (𝜑 → (1...(𝐾 + 1)) ∈ Fin) | |
7 | nn0ex 12530 | . . . . . . 7 ⊢ ℕ0 ∈ V | |
8 | 7 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ℕ0 ∈ V) |
9 | mapex 7952 | . . . . . 6 ⊢ (((1...(𝐾 + 1)) ∈ Fin ∧ ℕ0 ∈ V) → {𝑔 ∣ 𝑔:(1...(𝐾 + 1))⟶ℕ0} ∈ V) | |
10 | 6, 8, 9 | syl2anc 582 | . . . . 5 ⊢ (𝜑 → {𝑔 ∣ 𝑔:(1...(𝐾 + 1))⟶ℕ0} ∈ V) |
11 | ssexg 5328 | . . . . 5 ⊢ (({𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} ⊆ {𝑔 ∣ 𝑔:(1...(𝐾 + 1))⟶ℕ0} ∧ {𝑔 ∣ 𝑔:(1...(𝐾 + 1))⟶ℕ0} ∈ V) → {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} ∈ V) | |
12 | 5, 10, 11 | syl2anc 582 | . . . 4 ⊢ (𝜑 → {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} ∈ V) |
13 | 2, 12 | eqeltrd 2826 | . . 3 ⊢ (𝜑 → 𝐴 ∈ V) |
14 | sticksstones14.1 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
15 | sticksstones14.2 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℕ0) | |
16 | sticksstones14.3 | . . . 4 ⊢ 𝐹 = (𝑎 ∈ 𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)))) | |
17 | sticksstones14.4 | . . . 4 ⊢ 𝐺 = (𝑏 ∈ 𝐵 ↦ if(𝐾 = 0, {〈1, 𝑁〉}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏‘𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) − 1)))))) | |
18 | sticksstones14.6 | . . . 4 ⊢ 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} | |
19 | 14, 15, 16, 17, 1, 18 | sticksstones13 41857 | . . 3 ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) |
20 | 13, 19 | hasheqf1od 14370 | . 2 ⊢ (𝜑 → (♯‘𝐴) = (♯‘𝐵)) |
21 | 14, 15 | nn0addcld 12588 | . . 3 ⊢ (𝜑 → (𝑁 + 𝐾) ∈ ℕ0) |
22 | 21, 15, 18 | sticksstones5 41848 | . 2 ⊢ (𝜑 → (♯‘𝐵) = ((𝑁 + 𝐾)C𝐾)) |
23 | 20, 22 | eqtrd 2766 | 1 ⊢ (𝜑 → (♯‘𝐴) = ((𝑁 + 𝐾)C𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 {cab 2703 ∀wral 3051 Vcvv 3462 ⊆ wss 3947 ifcif 4533 {csn 4633 〈cop 4639 class class class wbr 5153 ↦ cmpt 5236 ⟶wf 6550 ‘cfv 6554 (class class class)co 7424 Fincfn 8974 0cc0 11158 1c1 11159 + caddc 11161 < clt 11298 − cmin 11494 ℕ0cn0 12524 ...cfz 13538 Ccbc 14319 ♯chash 14347 Σcsu 15690 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-inf2 9684 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 ax-pre-sup 11236 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-int 4955 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-isom 6563 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-oadd 8500 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-sup 9485 df-inf 9486 df-oi 9553 df-dju 9944 df-card 9982 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-div 11922 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12611 df-uz 12875 df-rp 13029 df-ico 13384 df-fz 13539 df-fzo 13682 df-seq 14022 df-exp 14082 df-fac 14291 df-bc 14320 df-hash 14348 df-cj 15104 df-re 15105 df-im 15106 df-sqrt 15240 df-abs 15241 df-clim 15490 df-sum 15691 |
This theorem is referenced by: sticksstones15 41859 |
Copyright terms: Public domain | W3C validator |