| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sticksstones14 | Structured version Visualization version GIF version | ||
| Description: Sticks and stones with definitions as hypotheses. (Contributed by metakunt, 7-Oct-2024.) |
| Ref | Expression |
|---|---|
| sticksstones14.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| sticksstones14.2 | ⊢ (𝜑 → 𝐾 ∈ ℕ0) |
| sticksstones14.3 | ⊢ 𝐹 = (𝑎 ∈ 𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)))) |
| sticksstones14.4 | ⊢ 𝐺 = (𝑏 ∈ 𝐵 ↦ if(𝐾 = 0, {〈1, 𝑁〉}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏‘𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) − 1)))))) |
| sticksstones14.5 | ⊢ 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} |
| sticksstones14.6 | ⊢ 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} |
| Ref | Expression |
|---|---|
| sticksstones14 | ⊢ (𝜑 → (♯‘𝐴) = ((𝑁 + 𝐾)C𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sticksstones14.5 | . . . . 5 ⊢ 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)}) |
| 3 | simpl 482 | . . . . . . 7 ⊢ ((𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁) → 𝑔:(1...(𝐾 + 1))⟶ℕ0) | |
| 4 | 3 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ((𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁) → 𝑔:(1...(𝐾 + 1))⟶ℕ0)) |
| 5 | 4 | ss2abdv 4065 | . . . . 5 ⊢ (𝜑 → {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} ⊆ {𝑔 ∣ 𝑔:(1...(𝐾 + 1))⟶ℕ0}) |
| 6 | fzfid 14015 | . . . . . 6 ⊢ (𝜑 → (1...(𝐾 + 1)) ∈ Fin) | |
| 7 | nn0ex 12534 | . . . . . . 7 ⊢ ℕ0 ∈ V | |
| 8 | 7 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ℕ0 ∈ V) |
| 9 | mapex 7964 | . . . . . 6 ⊢ (((1...(𝐾 + 1)) ∈ Fin ∧ ℕ0 ∈ V) → {𝑔 ∣ 𝑔:(1...(𝐾 + 1))⟶ℕ0} ∈ V) | |
| 10 | 6, 8, 9 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → {𝑔 ∣ 𝑔:(1...(𝐾 + 1))⟶ℕ0} ∈ V) |
| 11 | ssexg 5322 | . . . . 5 ⊢ (({𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} ⊆ {𝑔 ∣ 𝑔:(1...(𝐾 + 1))⟶ℕ0} ∧ {𝑔 ∣ 𝑔:(1...(𝐾 + 1))⟶ℕ0} ∈ V) → {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} ∈ V) | |
| 12 | 5, 10, 11 | syl2anc 584 | . . . 4 ⊢ (𝜑 → {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} ∈ V) |
| 13 | 2, 12 | eqeltrd 2840 | . . 3 ⊢ (𝜑 → 𝐴 ∈ V) |
| 14 | sticksstones14.1 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 15 | sticksstones14.2 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℕ0) | |
| 16 | sticksstones14.3 | . . . 4 ⊢ 𝐹 = (𝑎 ∈ 𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)))) | |
| 17 | sticksstones14.4 | . . . 4 ⊢ 𝐺 = (𝑏 ∈ 𝐵 ↦ if(𝐾 = 0, {〈1, 𝑁〉}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏‘𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) − 1)))))) | |
| 18 | sticksstones14.6 | . . . 4 ⊢ 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} | |
| 19 | 14, 15, 16, 17, 1, 18 | sticksstones13 42161 | . . 3 ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) |
| 20 | 13, 19 | hasheqf1od 14393 | . 2 ⊢ (𝜑 → (♯‘𝐴) = (♯‘𝐵)) |
| 21 | 14, 15 | nn0addcld 12593 | . . 3 ⊢ (𝜑 → (𝑁 + 𝐾) ∈ ℕ0) |
| 22 | 21, 15, 18 | sticksstones5 42152 | . 2 ⊢ (𝜑 → (♯‘𝐵) = ((𝑁 + 𝐾)C𝐾)) |
| 23 | 20, 22 | eqtrd 2776 | 1 ⊢ (𝜑 → (♯‘𝐴) = ((𝑁 + 𝐾)C𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {cab 2713 ∀wral 3060 Vcvv 3479 ⊆ wss 3950 ifcif 4524 {csn 4625 〈cop 4631 class class class wbr 5142 ↦ cmpt 5224 ⟶wf 6556 ‘cfv 6560 (class class class)co 7432 Fincfn 8986 0cc0 11156 1c1 11157 + caddc 11159 < clt 11296 − cmin 11493 ℕ0cn0 12528 ...cfz 13548 Ccbc 14342 ♯chash 14370 Σcsu 15723 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-inf2 9682 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 ax-pre-sup 11234 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-se 5637 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-isom 6569 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-oadd 8511 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-sup 9483 df-inf 9484 df-oi 9551 df-dju 9942 df-card 9980 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-div 11922 df-nn 12268 df-2 12330 df-3 12331 df-n0 12529 df-z 12616 df-uz 12880 df-rp 13036 df-ico 13394 df-fz 13549 df-fzo 13696 df-seq 14044 df-exp 14104 df-fac 14314 df-bc 14343 df-hash 14371 df-cj 15139 df-re 15140 df-im 15141 df-sqrt 15275 df-abs 15276 df-clim 15525 df-sum 15724 |
| This theorem is referenced by: sticksstones15 42163 |
| Copyright terms: Public domain | W3C validator |