| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sticksstones14 | Structured version Visualization version GIF version | ||
| Description: Sticks and stones with definitions as hypotheses. (Contributed by metakunt, 7-Oct-2024.) |
| Ref | Expression |
|---|---|
| sticksstones14.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| sticksstones14.2 | ⊢ (𝜑 → 𝐾 ∈ ℕ0) |
| sticksstones14.3 | ⊢ 𝐹 = (𝑎 ∈ 𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)))) |
| sticksstones14.4 | ⊢ 𝐺 = (𝑏 ∈ 𝐵 ↦ if(𝐾 = 0, {〈1, 𝑁〉}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏‘𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) − 1)))))) |
| sticksstones14.5 | ⊢ 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} |
| sticksstones14.6 | ⊢ 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} |
| Ref | Expression |
|---|---|
| sticksstones14 | ⊢ (𝜑 → (♯‘𝐴) = ((𝑁 + 𝐾)C𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sticksstones14.5 | . . . . 5 ⊢ 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)}) |
| 3 | simpl 482 | . . . . . . 7 ⊢ ((𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁) → 𝑔:(1...(𝐾 + 1))⟶ℕ0) | |
| 4 | 3 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ((𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁) → 𝑔:(1...(𝐾 + 1))⟶ℕ0)) |
| 5 | 4 | ss2abdv 4026 | . . . . 5 ⊢ (𝜑 → {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} ⊆ {𝑔 ∣ 𝑔:(1...(𝐾 + 1))⟶ℕ0}) |
| 6 | fzfid 13914 | . . . . . 6 ⊢ (𝜑 → (1...(𝐾 + 1)) ∈ Fin) | |
| 7 | nn0ex 12424 | . . . . . . 7 ⊢ ℕ0 ∈ V | |
| 8 | 7 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ℕ0 ∈ V) |
| 9 | mapex 7897 | . . . . . 6 ⊢ (((1...(𝐾 + 1)) ∈ Fin ∧ ℕ0 ∈ V) → {𝑔 ∣ 𝑔:(1...(𝐾 + 1))⟶ℕ0} ∈ V) | |
| 10 | 6, 8, 9 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → {𝑔 ∣ 𝑔:(1...(𝐾 + 1))⟶ℕ0} ∈ V) |
| 11 | ssexg 5273 | . . . . 5 ⊢ (({𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} ⊆ {𝑔 ∣ 𝑔:(1...(𝐾 + 1))⟶ℕ0} ∧ {𝑔 ∣ 𝑔:(1...(𝐾 + 1))⟶ℕ0} ∈ V) → {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} ∈ V) | |
| 12 | 5, 10, 11 | syl2anc 584 | . . . 4 ⊢ (𝜑 → {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} ∈ V) |
| 13 | 2, 12 | eqeltrd 2828 | . . 3 ⊢ (𝜑 → 𝐴 ∈ V) |
| 14 | sticksstones14.1 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 15 | sticksstones14.2 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℕ0) | |
| 16 | sticksstones14.3 | . . . 4 ⊢ 𝐹 = (𝑎 ∈ 𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)))) | |
| 17 | sticksstones14.4 | . . . 4 ⊢ 𝐺 = (𝑏 ∈ 𝐵 ↦ if(𝐾 = 0, {〈1, 𝑁〉}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏‘𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) − 1)))))) | |
| 18 | sticksstones14.6 | . . . 4 ⊢ 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} | |
| 19 | 14, 15, 16, 17, 1, 18 | sticksstones13 42140 | . . 3 ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) |
| 20 | 13, 19 | hasheqf1od 14294 | . 2 ⊢ (𝜑 → (♯‘𝐴) = (♯‘𝐵)) |
| 21 | 14, 15 | nn0addcld 12483 | . . 3 ⊢ (𝜑 → (𝑁 + 𝐾) ∈ ℕ0) |
| 22 | 21, 15, 18 | sticksstones5 42131 | . 2 ⊢ (𝜑 → (♯‘𝐵) = ((𝑁 + 𝐾)C𝐾)) |
| 23 | 20, 22 | eqtrd 2764 | 1 ⊢ (𝜑 → (♯‘𝐴) = ((𝑁 + 𝐾)C𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 ∀wral 3044 Vcvv 3444 ⊆ wss 3911 ifcif 4484 {csn 4585 〈cop 4591 class class class wbr 5102 ↦ cmpt 5183 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 Fincfn 8895 0cc0 11044 1c1 11045 + caddc 11047 < clt 11184 − cmin 11381 ℕ0cn0 12418 ...cfz 13444 Ccbc 14243 ♯chash 14271 Σcsu 15628 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-oadd 8415 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-oi 9439 df-dju 9830 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-ico 13288 df-fz 13445 df-fzo 13592 df-seq 13943 df-exp 14003 df-fac 14215 df-bc 14244 df-hash 14272 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-clim 15430 df-sum 15629 |
| This theorem is referenced by: sticksstones15 42142 |
| Copyright terms: Public domain | W3C validator |