Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sticksstones14 Structured version   Visualization version   GIF version

Theorem sticksstones14 42162
Description: Sticks and stones with definitions as hypotheses. (Contributed by metakunt, 7-Oct-2024.)
Hypotheses
Ref Expression
sticksstones14.1 (𝜑𝑁 ∈ ℕ0)
sticksstones14.2 (𝜑𝐾 ∈ ℕ0)
sticksstones14.3 𝐹 = (𝑎𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))))
sticksstones14.4 𝐺 = (𝑏𝐵 ↦ if(𝐾 = 0, {⟨1, 𝑁⟩}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1))))))
sticksstones14.5 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)}
sticksstones14.6 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))}
Assertion
Ref Expression
sticksstones14 (𝜑 → (♯‘𝐴) = ((𝑁 + 𝐾)C𝐾))
Distinct variable groups:   𝐴,𝑎,𝑖,𝑘,𝑙   𝐴,𝑏,𝑖,𝑘,𝑙   𝐴,𝑗,𝑥,𝑦,𝑎,𝑘,𝑙   𝐵,𝑎,𝑓,𝑗,𝑙   𝐵,𝑏,𝑓,𝑗   𝐵,𝑖,𝑘   𝐹,𝑏,𝑖,𝑘   𝐾,𝑎,𝑓,𝑗,𝑙,𝑥,𝑦   𝐾,𝑏,𝑥,𝑦   𝑔,𝐾,𝑖,𝑘,𝑎   𝑁,𝑎,𝑓,𝑗,𝑙,𝑥,𝑦   𝑁,𝑏,𝑔,𝑖,𝑘   𝜑,𝑎,𝑓,𝑗,𝑙,𝑥,𝑦   𝑔,𝑏,𝜑,𝑖,𝑘
Allowed substitution hints:   𝐴(𝑓,𝑔)   𝐵(𝑥,𝑦,𝑔)   𝐹(𝑥,𝑦,𝑓,𝑔,𝑗,𝑎,𝑙)   𝐺(𝑥,𝑦,𝑓,𝑔,𝑖,𝑗,𝑘,𝑎,𝑏,𝑙)

Proof of Theorem sticksstones14
StepHypRef Expression
1 sticksstones14.5 . . . . 5 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)}
21a1i 11 . . . 4 (𝜑𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)})
3 simpl 482 . . . . . . 7 ((𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁) → 𝑔:(1...(𝐾 + 1))⟶ℕ0)
43a1i 11 . . . . . 6 (𝜑 → ((𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁) → 𝑔:(1...(𝐾 + 1))⟶ℕ0))
54ss2abdv 4065 . . . . 5 (𝜑 → {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)} ⊆ {𝑔𝑔:(1...(𝐾 + 1))⟶ℕ0})
6 fzfid 14015 . . . . . 6 (𝜑 → (1...(𝐾 + 1)) ∈ Fin)
7 nn0ex 12534 . . . . . . 7 0 ∈ V
87a1i 11 . . . . . 6 (𝜑 → ℕ0 ∈ V)
9 mapex 7964 . . . . . 6 (((1...(𝐾 + 1)) ∈ Fin ∧ ℕ0 ∈ V) → {𝑔𝑔:(1...(𝐾 + 1))⟶ℕ0} ∈ V)
106, 8, 9syl2anc 584 . . . . 5 (𝜑 → {𝑔𝑔:(1...(𝐾 + 1))⟶ℕ0} ∈ V)
11 ssexg 5322 . . . . 5 (({𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)} ⊆ {𝑔𝑔:(1...(𝐾 + 1))⟶ℕ0} ∧ {𝑔𝑔:(1...(𝐾 + 1))⟶ℕ0} ∈ V) → {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)} ∈ V)
125, 10, 11syl2anc 584 . . . 4 (𝜑 → {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)} ∈ V)
132, 12eqeltrd 2840 . . 3 (𝜑𝐴 ∈ V)
14 sticksstones14.1 . . . 4 (𝜑𝑁 ∈ ℕ0)
15 sticksstones14.2 . . . 4 (𝜑𝐾 ∈ ℕ0)
16 sticksstones14.3 . . . 4 𝐹 = (𝑎𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))))
17 sticksstones14.4 . . . 4 𝐺 = (𝑏𝐵 ↦ if(𝐾 = 0, {⟨1, 𝑁⟩}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1))))))
18 sticksstones14.6 . . . 4 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))}
1914, 15, 16, 17, 1, 18sticksstones13 42161 . . 3 (𝜑𝐹:𝐴1-1-onto𝐵)
2013, 19hasheqf1od 14393 . 2 (𝜑 → (♯‘𝐴) = (♯‘𝐵))
2114, 15nn0addcld 12593 . . 3 (𝜑 → (𝑁 + 𝐾) ∈ ℕ0)
2221, 15, 18sticksstones5 42152 . 2 (𝜑 → (♯‘𝐵) = ((𝑁 + 𝐾)C𝐾))
2320, 22eqtrd 2776 1 (𝜑 → (♯‘𝐴) = ((𝑁 + 𝐾)C𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  {cab 2713  wral 3060  Vcvv 3479  wss 3950  ifcif 4524  {csn 4625  cop 4631   class class class wbr 5142  cmpt 5224  wf 6556  cfv 6560  (class class class)co 7432  Fincfn 8986  0cc0 11156  1c1 11157   + caddc 11159   < clt 11296  cmin 11493  0cn0 12528  ...cfz 13548  Ccbc 14342  chash 14370  Σcsu 15723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-oadd 8511  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-sup 9483  df-inf 9484  df-oi 9551  df-dju 9942  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-n0 12529  df-z 12616  df-uz 12880  df-rp 13036  df-ico 13394  df-fz 13549  df-fzo 13696  df-seq 14044  df-exp 14104  df-fac 14314  df-bc 14343  df-hash 14371  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-clim 15525  df-sum 15724
This theorem is referenced by:  sticksstones15  42163
  Copyright terms: Public domain W3C validator