Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sticksstones14 Structured version   Visualization version   GIF version

Theorem sticksstones14 42143
Description: Sticks and stones with definitions as hypotheses. (Contributed by metakunt, 7-Oct-2024.)
Hypotheses
Ref Expression
sticksstones14.1 (𝜑𝑁 ∈ ℕ0)
sticksstones14.2 (𝜑𝐾 ∈ ℕ0)
sticksstones14.3 𝐹 = (𝑎𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))))
sticksstones14.4 𝐺 = (𝑏𝐵 ↦ if(𝐾 = 0, {⟨1, 𝑁⟩}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1))))))
sticksstones14.5 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)}
sticksstones14.6 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))}
Assertion
Ref Expression
sticksstones14 (𝜑 → (♯‘𝐴) = ((𝑁 + 𝐾)C𝐾))
Distinct variable groups:   𝐴,𝑎,𝑖,𝑘,𝑙   𝐴,𝑏,𝑖,𝑘,𝑙   𝐴,𝑗,𝑥,𝑦,𝑎,𝑘,𝑙   𝐵,𝑎,𝑓,𝑗,𝑙   𝐵,𝑏,𝑓,𝑗   𝐵,𝑖,𝑘   𝐹,𝑏,𝑖,𝑘   𝐾,𝑎,𝑓,𝑗,𝑙,𝑥,𝑦   𝐾,𝑏,𝑥,𝑦   𝑔,𝐾,𝑖,𝑘,𝑎   𝑁,𝑎,𝑓,𝑗,𝑙,𝑥,𝑦   𝑁,𝑏,𝑔,𝑖,𝑘   𝜑,𝑎,𝑓,𝑗,𝑙,𝑥,𝑦   𝑔,𝑏,𝜑,𝑖,𝑘
Allowed substitution hints:   𝐴(𝑓,𝑔)   𝐵(𝑥,𝑦,𝑔)   𝐹(𝑥,𝑦,𝑓,𝑔,𝑗,𝑎,𝑙)   𝐺(𝑥,𝑦,𝑓,𝑔,𝑖,𝑗,𝑘,𝑎,𝑏,𝑙)

Proof of Theorem sticksstones14
StepHypRef Expression
1 sticksstones14.5 . . . . 5 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)}
21a1i 11 . . . 4 (𝜑𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)})
3 simpl 482 . . . . . . 7 ((𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁) → 𝑔:(1...(𝐾 + 1))⟶ℕ0)
43a1i 11 . . . . . 6 (𝜑 → ((𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁) → 𝑔:(1...(𝐾 + 1))⟶ℕ0))
54ss2abdv 4018 . . . . 5 (𝜑 → {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)} ⊆ {𝑔𝑔:(1...(𝐾 + 1))⟶ℕ0})
6 fzfid 13880 . . . . . 6 (𝜑 → (1...(𝐾 + 1)) ∈ Fin)
7 nn0ex 12390 . . . . . . 7 0 ∈ V
87a1i 11 . . . . . 6 (𝜑 → ℕ0 ∈ V)
9 mapex 7874 . . . . . 6 (((1...(𝐾 + 1)) ∈ Fin ∧ ℕ0 ∈ V) → {𝑔𝑔:(1...(𝐾 + 1))⟶ℕ0} ∈ V)
106, 8, 9syl2anc 584 . . . . 5 (𝜑 → {𝑔𝑔:(1...(𝐾 + 1))⟶ℕ0} ∈ V)
11 ssexg 5262 . . . . 5 (({𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)} ⊆ {𝑔𝑔:(1...(𝐾 + 1))⟶ℕ0} ∧ {𝑔𝑔:(1...(𝐾 + 1))⟶ℕ0} ∈ V) → {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)} ∈ V)
125, 10, 11syl2anc 584 . . . 4 (𝜑 → {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)} ∈ V)
132, 12eqeltrd 2828 . . 3 (𝜑𝐴 ∈ V)
14 sticksstones14.1 . . . 4 (𝜑𝑁 ∈ ℕ0)
15 sticksstones14.2 . . . 4 (𝜑𝐾 ∈ ℕ0)
16 sticksstones14.3 . . . 4 𝐹 = (𝑎𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))))
17 sticksstones14.4 . . . 4 𝐺 = (𝑏𝐵 ↦ if(𝐾 = 0, {⟨1, 𝑁⟩}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1))))))
18 sticksstones14.6 . . . 4 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))}
1914, 15, 16, 17, 1, 18sticksstones13 42142 . . 3 (𝜑𝐹:𝐴1-1-onto𝐵)
2013, 19hasheqf1od 14260 . 2 (𝜑 → (♯‘𝐴) = (♯‘𝐵))
2114, 15nn0addcld 12449 . . 3 (𝜑 → (𝑁 + 𝐾) ∈ ℕ0)
2221, 15, 18sticksstones5 42133 . 2 (𝜑 → (♯‘𝐵) = ((𝑁 + 𝐾)C𝐾))
2320, 22eqtrd 2764 1 (𝜑 → (♯‘𝐴) = ((𝑁 + 𝐾)C𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2707  wral 3044  Vcvv 3436  wss 3903  ifcif 4476  {csn 4577  cop 4583   class class class wbr 5092  cmpt 5173  wf 6478  cfv 6482  (class class class)co 7349  Fincfn 8872  0cc0 11009  1c1 11010   + caddc 11012   < clt 11149  cmin 11347  0cn0 12384  ...cfz 13410  Ccbc 14209  chash 14237  Σcsu 15593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-oadd 8392  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-oi 9402  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-ico 13254  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594
This theorem is referenced by:  sticksstones15  42144
  Copyright terms: Public domain W3C validator