Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sticksstones14 | Structured version Visualization version GIF version |
Description: Sticks and stones with definitions as hypotheses. (Contributed by metakunt, 7-Oct-2024.) |
Ref | Expression |
---|---|
sticksstones14.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
sticksstones14.2 | ⊢ (𝜑 → 𝐾 ∈ ℕ0) |
sticksstones14.3 | ⊢ 𝐹 = (𝑎 ∈ 𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)))) |
sticksstones14.4 | ⊢ 𝐺 = (𝑏 ∈ 𝐵 ↦ if(𝐾 = 0, {〈1, 𝑁〉}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏‘𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) − 1)))))) |
sticksstones14.5 | ⊢ 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} |
sticksstones14.6 | ⊢ 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} |
Ref | Expression |
---|---|
sticksstones14 | ⊢ (𝜑 → (♯‘𝐴) = ((𝑁 + 𝐾)C𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sticksstones14.5 | . . . . 5 ⊢ 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} | |
2 | 1 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)}) |
3 | simpl 483 | . . . . . . 7 ⊢ ((𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁) → 𝑔:(1...(𝐾 + 1))⟶ℕ0) | |
4 | 3 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ((𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁) → 𝑔:(1...(𝐾 + 1))⟶ℕ0)) |
5 | 4 | ss2abdv 3996 | . . . . 5 ⊢ (𝜑 → {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} ⊆ {𝑔 ∣ 𝑔:(1...(𝐾 + 1))⟶ℕ0}) |
6 | fzfid 13703 | . . . . . 6 ⊢ (𝜑 → (1...(𝐾 + 1)) ∈ Fin) | |
7 | nn0ex 12249 | . . . . . . 7 ⊢ ℕ0 ∈ V | |
8 | 7 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ℕ0 ∈ V) |
9 | mapex 8608 | . . . . . 6 ⊢ (((1...(𝐾 + 1)) ∈ Fin ∧ ℕ0 ∈ V) → {𝑔 ∣ 𝑔:(1...(𝐾 + 1))⟶ℕ0} ∈ V) | |
10 | 6, 8, 9 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → {𝑔 ∣ 𝑔:(1...(𝐾 + 1))⟶ℕ0} ∈ V) |
11 | ssexg 5245 | . . . . 5 ⊢ (({𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} ⊆ {𝑔 ∣ 𝑔:(1...(𝐾 + 1))⟶ℕ0} ∧ {𝑔 ∣ 𝑔:(1...(𝐾 + 1))⟶ℕ0} ∈ V) → {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} ∈ V) | |
12 | 5, 10, 11 | syl2anc 584 | . . . 4 ⊢ (𝜑 → {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} ∈ V) |
13 | 2, 12 | eqeltrd 2839 | . . 3 ⊢ (𝜑 → 𝐴 ∈ V) |
14 | sticksstones14.1 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
15 | sticksstones14.2 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℕ0) | |
16 | sticksstones14.3 | . . . 4 ⊢ 𝐹 = (𝑎 ∈ 𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)))) | |
17 | sticksstones14.4 | . . . 4 ⊢ 𝐺 = (𝑏 ∈ 𝐵 ↦ if(𝐾 = 0, {〈1, 𝑁〉}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏‘𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) − 1)))))) | |
18 | sticksstones14.6 | . . . 4 ⊢ 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} | |
19 | 14, 15, 16, 17, 1, 18 | sticksstones13 40123 | . . 3 ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) |
20 | 13, 19 | hasheqf1od 14078 | . 2 ⊢ (𝜑 → (♯‘𝐴) = (♯‘𝐵)) |
21 | 14, 15 | nn0addcld 12307 | . . 3 ⊢ (𝜑 → (𝑁 + 𝐾) ∈ ℕ0) |
22 | 21, 15, 18 | sticksstones5 40114 | . 2 ⊢ (𝜑 → (♯‘𝐵) = ((𝑁 + 𝐾)C𝐾)) |
23 | 20, 22 | eqtrd 2778 | 1 ⊢ (𝜑 → (♯‘𝐴) = ((𝑁 + 𝐾)C𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {cab 2715 ∀wral 3064 Vcvv 3429 ⊆ wss 3886 ifcif 4459 {csn 4561 〈cop 4567 class class class wbr 5073 ↦ cmpt 5156 ⟶wf 6422 ‘cfv 6426 (class class class)co 7267 Fincfn 8720 0cc0 10881 1c1 10882 + caddc 10884 < clt 11019 − cmin 11215 ℕ0cn0 12243 ...cfz 13249 Ccbc 14026 ♯chash 14054 Σcsu 15407 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5208 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-inf2 9386 ax-cnex 10937 ax-resscn 10938 ax-1cn 10939 ax-icn 10940 ax-addcl 10941 ax-addrcl 10942 ax-mulcl 10943 ax-mulrcl 10944 ax-mulcom 10945 ax-addass 10946 ax-mulass 10947 ax-distr 10948 ax-i2m1 10949 ax-1ne0 10950 ax-1rid 10951 ax-rnegex 10952 ax-rrecex 10953 ax-cnre 10954 ax-pre-lttri 10955 ax-pre-lttrn 10956 ax-pre-ltadd 10957 ax-pre-mulgt0 10958 ax-pre-sup 10959 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-pss 3905 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-tr 5191 df-id 5484 df-eprel 5490 df-po 5498 df-so 5499 df-fr 5539 df-se 5540 df-we 5541 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-pred 6195 df-ord 6262 df-on 6263 df-lim 6264 df-suc 6265 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-isom 6435 df-riota 7224 df-ov 7270 df-oprab 7271 df-mpo 7272 df-om 7703 df-1st 7820 df-2nd 7821 df-frecs 8084 df-wrecs 8115 df-recs 8189 df-rdg 8228 df-1o 8284 df-oadd 8288 df-er 8485 df-en 8721 df-dom 8722 df-sdom 8723 df-fin 8724 df-sup 9188 df-inf 9189 df-oi 9256 df-dju 9669 df-card 9707 df-pnf 11021 df-mnf 11022 df-xr 11023 df-ltxr 11024 df-le 11025 df-sub 11217 df-neg 11218 df-div 11643 df-nn 11984 df-2 12046 df-3 12047 df-n0 12244 df-z 12330 df-uz 12593 df-rp 12741 df-ico 13095 df-fz 13250 df-fzo 13393 df-seq 13732 df-exp 13793 df-fac 13998 df-bc 14027 df-hash 14055 df-cj 14820 df-re 14821 df-im 14822 df-sqrt 14956 df-abs 14957 df-clim 15207 df-sum 15408 |
This theorem is referenced by: sticksstones15 40125 |
Copyright terms: Public domain | W3C validator |