Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sticksstones14 Structured version   Visualization version   GIF version

Theorem sticksstones14 40044
Description: Sticks and stones with definitions as hypotheses. (Contributed by metakunt, 7-Oct-2024.)
Hypotheses
Ref Expression
sticksstones14.1 (𝜑𝑁 ∈ ℕ0)
sticksstones14.2 (𝜑𝐾 ∈ ℕ0)
sticksstones14.3 𝐹 = (𝑎𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))))
sticksstones14.4 𝐺 = (𝑏𝐵 ↦ if(𝐾 = 0, {⟨1, 𝑁⟩}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1))))))
sticksstones14.5 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)}
sticksstones14.6 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))}
Assertion
Ref Expression
sticksstones14 (𝜑 → (♯‘𝐴) = ((𝑁 + 𝐾)C𝐾))
Distinct variable groups:   𝐴,𝑎,𝑖,𝑘,𝑙   𝐴,𝑏,𝑖,𝑘,𝑙   𝐴,𝑗,𝑥,𝑦,𝑎,𝑘,𝑙   𝐵,𝑎,𝑓,𝑗,𝑙   𝐵,𝑏,𝑓,𝑗   𝐵,𝑖,𝑘   𝐹,𝑏,𝑖,𝑘   𝐾,𝑎,𝑓,𝑗,𝑙,𝑥,𝑦   𝐾,𝑏,𝑥,𝑦   𝑔,𝐾,𝑖,𝑘,𝑎   𝑁,𝑎,𝑓,𝑗,𝑙,𝑥,𝑦   𝑁,𝑏,𝑔,𝑖,𝑘   𝜑,𝑎,𝑓,𝑗,𝑙,𝑥,𝑦   𝑔,𝑏,𝜑,𝑖,𝑘
Allowed substitution hints:   𝐴(𝑓,𝑔)   𝐵(𝑥,𝑦,𝑔)   𝐹(𝑥,𝑦,𝑓,𝑔,𝑗,𝑎,𝑙)   𝐺(𝑥,𝑦,𝑓,𝑔,𝑖,𝑗,𝑘,𝑎,𝑏,𝑙)

Proof of Theorem sticksstones14
StepHypRef Expression
1 sticksstones14.5 . . . . 5 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)}
21a1i 11 . . . 4 (𝜑𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)})
3 simpl 482 . . . . . . 7 ((𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁) → 𝑔:(1...(𝐾 + 1))⟶ℕ0)
43a1i 11 . . . . . 6 (𝜑 → ((𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁) → 𝑔:(1...(𝐾 + 1))⟶ℕ0))
54ss2abdv 3993 . . . . 5 (𝜑 → {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)} ⊆ {𝑔𝑔:(1...(𝐾 + 1))⟶ℕ0})
6 fzfid 13621 . . . . . 6 (𝜑 → (1...(𝐾 + 1)) ∈ Fin)
7 nn0ex 12169 . . . . . . 7 0 ∈ V
87a1i 11 . . . . . 6 (𝜑 → ℕ0 ∈ V)
9 mapex 8579 . . . . . 6 (((1...(𝐾 + 1)) ∈ Fin ∧ ℕ0 ∈ V) → {𝑔𝑔:(1...(𝐾 + 1))⟶ℕ0} ∈ V)
106, 8, 9syl2anc 583 . . . . 5 (𝜑 → {𝑔𝑔:(1...(𝐾 + 1))⟶ℕ0} ∈ V)
11 ssexg 5242 . . . . 5 (({𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)} ⊆ {𝑔𝑔:(1...(𝐾 + 1))⟶ℕ0} ∧ {𝑔𝑔:(1...(𝐾 + 1))⟶ℕ0} ∈ V) → {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)} ∈ V)
125, 10, 11syl2anc 583 . . . 4 (𝜑 → {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)} ∈ V)
132, 12eqeltrd 2839 . . 3 (𝜑𝐴 ∈ V)
14 sticksstones14.1 . . . 4 (𝜑𝑁 ∈ ℕ0)
15 sticksstones14.2 . . . 4 (𝜑𝐾 ∈ ℕ0)
16 sticksstones14.3 . . . 4 𝐹 = (𝑎𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))))
17 sticksstones14.4 . . . 4 𝐺 = (𝑏𝐵 ↦ if(𝐾 = 0, {⟨1, 𝑁⟩}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1))))))
18 sticksstones14.6 . . . 4 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))}
1914, 15, 16, 17, 1, 18sticksstones13 40043 . . 3 (𝜑𝐹:𝐴1-1-onto𝐵)
2013, 19hasheqf1od 13996 . 2 (𝜑 → (♯‘𝐴) = (♯‘𝐵))
2114, 15nn0addcld 12227 . . 3 (𝜑 → (𝑁 + 𝐾) ∈ ℕ0)
2221, 15, 18sticksstones5 40034 . 2 (𝜑 → (♯‘𝐵) = ((𝑁 + 𝐾)C𝐾))
2320, 22eqtrd 2778 1 (𝜑 → (♯‘𝐴) = ((𝑁 + 𝐾)C𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  {cab 2715  wral 3063  Vcvv 3422  wss 3883  ifcif 4456  {csn 4558  cop 4564   class class class wbr 5070  cmpt 5153  wf 6414  cfv 6418  (class class class)co 7255  Fincfn 8691  0cc0 10802  1c1 10803   + caddc 10805   < clt 10940  cmin 11135  0cn0 12163  ...cfz 13168  Ccbc 13944  chash 13972  Σcsu 15325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-ico 13014  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326
This theorem is referenced by:  sticksstones15  40045
  Copyright terms: Public domain W3C validator