MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrcidb2 Structured version   Visualization version   GIF version

Theorem mrcidb2 17586
Description: A set is closed iff it contains its closure. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Hypothesis
Ref Expression
mrcfval.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
mrcidb2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → (𝑈𝐶 ↔ (𝐹𝑈) ⊆ 𝑈))

Proof of Theorem mrcidb2
StepHypRef Expression
1 mrcfval.f . . . 4 𝐹 = (mrCls‘𝐶)
21mrcidb 17583 . . 3 (𝐶 ∈ (Moore‘𝑋) → (𝑈𝐶 ↔ (𝐹𝑈) = 𝑈))
32adantr 480 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → (𝑈𝐶 ↔ (𝐹𝑈) = 𝑈))
4 eqss 3965 . . 3 ((𝐹𝑈) = 𝑈 ↔ ((𝐹𝑈) ⊆ 𝑈𝑈 ⊆ (𝐹𝑈)))
51mrcssid 17585 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → 𝑈 ⊆ (𝐹𝑈))
65biantrud 531 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → ((𝐹𝑈) ⊆ 𝑈 ↔ ((𝐹𝑈) ⊆ 𝑈𝑈 ⊆ (𝐹𝑈))))
74, 6bitr4id 290 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → ((𝐹𝑈) = 𝑈 ↔ (𝐹𝑈) ⊆ 𝑈))
83, 7bitrd 279 1 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → (𝑈𝐶 ↔ (𝐹𝑈) ⊆ 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wss 3917  cfv 6514  Moorecmre 17550  mrClscmrc 17551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-mre 17554  df-mrc 17555
This theorem is referenced by:  isacs5  18514
  Copyright terms: Public domain W3C validator