Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mrcidb2 | Structured version Visualization version GIF version |
Description: A set is closed iff it contains its closure. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
Ref | Expression |
---|---|
mrcfval.f | ⊢ 𝐹 = (mrCls‘𝐶) |
Ref | Expression |
---|---|
mrcidb2 | ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → (𝑈 ∈ 𝐶 ↔ (𝐹‘𝑈) ⊆ 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mrcfval.f | . . . 4 ⊢ 𝐹 = (mrCls‘𝐶) | |
2 | 1 | mrcidb 16989 | . . 3 ⊢ (𝐶 ∈ (Moore‘𝑋) → (𝑈 ∈ 𝐶 ↔ (𝐹‘𝑈) = 𝑈)) |
3 | 2 | adantr 484 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → (𝑈 ∈ 𝐶 ↔ (𝐹‘𝑈) = 𝑈)) |
4 | eqss 3892 | . . 3 ⊢ ((𝐹‘𝑈) = 𝑈 ↔ ((𝐹‘𝑈) ⊆ 𝑈 ∧ 𝑈 ⊆ (𝐹‘𝑈))) | |
5 | 1 | mrcssid 16991 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → 𝑈 ⊆ (𝐹‘𝑈)) |
6 | 5 | biantrud 535 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → ((𝐹‘𝑈) ⊆ 𝑈 ↔ ((𝐹‘𝑈) ⊆ 𝑈 ∧ 𝑈 ⊆ (𝐹‘𝑈)))) |
7 | 4, 6 | bitr4id 293 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → ((𝐹‘𝑈) = 𝑈 ↔ (𝐹‘𝑈) ⊆ 𝑈)) |
8 | 3, 7 | bitrd 282 | 1 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → (𝑈 ∈ 𝐶 ↔ (𝐹‘𝑈) ⊆ 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ⊆ wss 3843 ‘cfv 6339 Moorecmre 16956 mrClscmrc 16957 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-int 4837 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5429 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-fv 6347 df-mre 16960 df-mrc 16961 |
This theorem is referenced by: isacs5 17898 |
Copyright terms: Public domain | W3C validator |