| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isacs5 | Structured version Visualization version GIF version | ||
| Description: A closure system is algebraic iff the closure of a generating set is the union of the closures of its finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
| Ref | Expression |
|---|---|
| acsdrscl.f | ⊢ 𝐹 = (mrCls‘𝐶) |
| Ref | Expression |
|---|---|
| isacs5 | ⊢ (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isacs3lem 18552 | . . 3 ⊢ (𝐶 ∈ (ACS‘𝑋) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠 ∈ 𝐶))) | |
| 2 | acsdrscl.f | . . . 4 ⊢ 𝐹 = (mrCls‘𝐶) | |
| 3 | 2 | isacs4lem 18554 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠 ∈ 𝐶)) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹‘∪ 𝑡) = ∪ (𝐹 “ 𝑡)))) |
| 4 | 2 | isacs5lem 18555 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹‘∪ 𝑡) = ∪ (𝐹 “ 𝑡))) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)))) |
| 5 | 1, 3, 4 | 3syl 18 | . 2 ⊢ (𝐶 ∈ (ACS‘𝑋) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)))) |
| 6 | simpl 482 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) → 𝐶 ∈ (Moore‘𝑋)) | |
| 7 | elpwi 4582 | . . . . . . . . 9 ⊢ (𝑠 ∈ 𝒫 𝑋 → 𝑠 ⊆ 𝑋) | |
| 8 | 2 | mrcidb2 17630 | . . . . . . . . 9 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ⊆ 𝑋) → (𝑠 ∈ 𝐶 ↔ (𝐹‘𝑠) ⊆ 𝑠)) |
| 9 | 7, 8 | sylan2 593 | . . . . . . . 8 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) → (𝑠 ∈ 𝐶 ↔ (𝐹‘𝑠) ⊆ 𝑠)) |
| 10 | 9 | adantr 480 | . . . . . . 7 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ (𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) → (𝑠 ∈ 𝐶 ↔ (𝐹‘𝑠) ⊆ 𝑠)) |
| 11 | simpr 484 | . . . . . . . . . 10 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ (𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) → (𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) | |
| 12 | 2 | mrcf 17621 | . . . . . . . . . . . 12 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐹:𝒫 𝑋⟶𝐶) |
| 13 | ffun 6709 | . . . . . . . . . . . 12 ⊢ (𝐹:𝒫 𝑋⟶𝐶 → Fun 𝐹) | |
| 14 | funiunfv 7240 | . . . . . . . . . . . 12 ⊢ (Fun 𝐹 → ∪ 𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) | |
| 15 | 12, 13, 14 | 3syl 18 | . . . . . . . . . . 11 ⊢ (𝐶 ∈ (Moore‘𝑋) → ∪ 𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) |
| 16 | 15 | ad2antrr 726 | . . . . . . . . . 10 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ (𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) → ∪ 𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) |
| 17 | 11, 16 | eqtr4d 2773 | . . . . . . . . 9 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ (𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) → (𝐹‘𝑠) = ∪ 𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡)) |
| 18 | 17 | sseq1d 3990 | . . . . . . . 8 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ (𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) → ((𝐹‘𝑠) ⊆ 𝑠 ↔ ∪ 𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡) ⊆ 𝑠)) |
| 19 | iunss 5021 | . . . . . . . 8 ⊢ (∪ 𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡) ⊆ 𝑠 ↔ ∀𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡) ⊆ 𝑠) | |
| 20 | 18, 19 | bitrdi 287 | . . . . . . 7 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ (𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) → ((𝐹‘𝑠) ⊆ 𝑠 ↔ ∀𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡) ⊆ 𝑠)) |
| 21 | 10, 20 | bitrd 279 | . . . . . 6 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ (𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) → (𝑠 ∈ 𝐶 ↔ ∀𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡) ⊆ 𝑠)) |
| 22 | 21 | ex 412 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) → ((𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) → (𝑠 ∈ 𝐶 ↔ ∀𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡) ⊆ 𝑠))) |
| 23 | 22 | ralimdva 3152 | . . . 4 ⊢ (𝐶 ∈ (Moore‘𝑋) → (∀𝑠 ∈ 𝒫 𝑋(𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) → ∀𝑠 ∈ 𝒫 𝑋(𝑠 ∈ 𝐶 ↔ ∀𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡) ⊆ 𝑠))) |
| 24 | 23 | imp 406 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) → ∀𝑠 ∈ 𝒫 𝑋(𝑠 ∈ 𝐶 ↔ ∀𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡) ⊆ 𝑠)) |
| 25 | 2 | isacs2 17665 | . . 3 ⊢ (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠 ∈ 𝐶 ↔ ∀𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡) ⊆ 𝑠))) |
| 26 | 6, 24, 25 | sylanbrc 583 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) → 𝐶 ∈ (ACS‘𝑋)) |
| 27 | 5, 26 | impbii 209 | 1 ⊢ (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∩ cin 3925 ⊆ wss 3926 𝒫 cpw 4575 ∪ cuni 4883 ∪ ciun 4967 “ cima 5657 Fun wfun 6525 ⟶wf 6527 ‘cfv 6531 Fincfn 8959 Moorecmre 17594 mrClscmrc 17595 ACScacs 17597 Dirsetcdrs 18305 toInccipo 18537 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-fz 13525 df-struct 17166 df-slot 17201 df-ndx 17213 df-base 17229 df-tset 17290 df-ple 17291 df-ocomp 17292 df-mre 17598 df-mrc 17599 df-acs 17601 df-proset 18306 df-drs 18307 df-poset 18325 df-ipo 18538 |
| This theorem is referenced by: isacs4 18559 |
| Copyright terms: Public domain | W3C validator |