Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isacs5 | Structured version Visualization version GIF version |
Description: A closure system is algebraic iff the closure of a generating set is the union of the closures of its finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
Ref | Expression |
---|---|
acsdrscl.f | ⊢ 𝐹 = (mrCls‘𝐶) |
Ref | Expression |
---|---|
isacs5 | ⊢ (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isacs3lem 18349 | . . 3 ⊢ (𝐶 ∈ (ACS‘𝑋) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠 ∈ 𝐶))) | |
2 | acsdrscl.f | . . . 4 ⊢ 𝐹 = (mrCls‘𝐶) | |
3 | 2 | isacs4lem 18351 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠 ∈ 𝐶)) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹‘∪ 𝑡) = ∪ (𝐹 “ 𝑡)))) |
4 | 2 | isacs5lem 18352 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹‘∪ 𝑡) = ∪ (𝐹 “ 𝑡))) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)))) |
5 | 1, 3, 4 | 3syl 18 | . 2 ⊢ (𝐶 ∈ (ACS‘𝑋) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)))) |
6 | simpl 483 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) → 𝐶 ∈ (Moore‘𝑋)) | |
7 | elpwi 4553 | . . . . . . . . 9 ⊢ (𝑠 ∈ 𝒫 𝑋 → 𝑠 ⊆ 𝑋) | |
8 | 2 | mrcidb2 17416 | . . . . . . . . 9 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ⊆ 𝑋) → (𝑠 ∈ 𝐶 ↔ (𝐹‘𝑠) ⊆ 𝑠)) |
9 | 7, 8 | sylan2 593 | . . . . . . . 8 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) → (𝑠 ∈ 𝐶 ↔ (𝐹‘𝑠) ⊆ 𝑠)) |
10 | 9 | adantr 481 | . . . . . . 7 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ (𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) → (𝑠 ∈ 𝐶 ↔ (𝐹‘𝑠) ⊆ 𝑠)) |
11 | simpr 485 | . . . . . . . . . 10 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ (𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) → (𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) | |
12 | 2 | mrcf 17407 | . . . . . . . . . . . 12 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐹:𝒫 𝑋⟶𝐶) |
13 | ffun 6648 | . . . . . . . . . . . 12 ⊢ (𝐹:𝒫 𝑋⟶𝐶 → Fun 𝐹) | |
14 | funiunfv 7171 | . . . . . . . . . . . 12 ⊢ (Fun 𝐹 → ∪ 𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) | |
15 | 12, 13, 14 | 3syl 18 | . . . . . . . . . . 11 ⊢ (𝐶 ∈ (Moore‘𝑋) → ∪ 𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) |
16 | 15 | ad2antrr 723 | . . . . . . . . . 10 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ (𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) → ∪ 𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) |
17 | 11, 16 | eqtr4d 2779 | . . . . . . . . 9 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ (𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) → (𝐹‘𝑠) = ∪ 𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡)) |
18 | 17 | sseq1d 3962 | . . . . . . . 8 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ (𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) → ((𝐹‘𝑠) ⊆ 𝑠 ↔ ∪ 𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡) ⊆ 𝑠)) |
19 | iunss 4989 | . . . . . . . 8 ⊢ (∪ 𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡) ⊆ 𝑠 ↔ ∀𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡) ⊆ 𝑠) | |
20 | 18, 19 | bitrdi 286 | . . . . . . 7 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ (𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) → ((𝐹‘𝑠) ⊆ 𝑠 ↔ ∀𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡) ⊆ 𝑠)) |
21 | 10, 20 | bitrd 278 | . . . . . 6 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ (𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) → (𝑠 ∈ 𝐶 ↔ ∀𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡) ⊆ 𝑠)) |
22 | 21 | ex 413 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) → ((𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) → (𝑠 ∈ 𝐶 ↔ ∀𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡) ⊆ 𝑠))) |
23 | 22 | ralimdva 3160 | . . . 4 ⊢ (𝐶 ∈ (Moore‘𝑋) → (∀𝑠 ∈ 𝒫 𝑋(𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) → ∀𝑠 ∈ 𝒫 𝑋(𝑠 ∈ 𝐶 ↔ ∀𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡) ⊆ 𝑠))) |
24 | 23 | imp 407 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) → ∀𝑠 ∈ 𝒫 𝑋(𝑠 ∈ 𝐶 ↔ ∀𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡) ⊆ 𝑠)) |
25 | 2 | isacs2 17451 | . . 3 ⊢ (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠 ∈ 𝐶 ↔ ∀𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡) ⊆ 𝑠))) |
26 | 6, 24, 25 | sylanbrc 583 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) → 𝐶 ∈ (ACS‘𝑋)) |
27 | 5, 26 | impbii 208 | 1 ⊢ (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∀wral 3061 ∩ cin 3896 ⊆ wss 3897 𝒫 cpw 4546 ∪ cuni 4851 ∪ ciun 4938 “ cima 5617 Fun wfun 6467 ⟶wf 6469 ‘cfv 6473 Fincfn 8796 Moorecmre 17380 mrClscmrc 17381 ACScacs 17383 Dirsetcdrs 18101 toInccipo 18334 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-int 4894 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-om 7773 df-1st 7891 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-1o 8359 df-er 8561 df-en 8797 df-dom 8798 df-sdom 8799 df-fin 8800 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-nn 12067 df-2 12129 df-3 12130 df-4 12131 df-5 12132 df-6 12133 df-7 12134 df-8 12135 df-9 12136 df-n0 12327 df-z 12413 df-dec 12531 df-uz 12676 df-fz 13333 df-struct 16937 df-slot 16972 df-ndx 16984 df-base 17002 df-tset 17070 df-ple 17071 df-ocomp 17072 df-mre 17384 df-mrc 17385 df-acs 17387 df-proset 18102 df-drs 18103 df-poset 18120 df-ipo 18335 |
This theorem is referenced by: isacs4 18356 |
Copyright terms: Public domain | W3C validator |