Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isacs5 | Structured version Visualization version GIF version |
Description: A closure system is algebraic iff the closure of a generating set is the union of the closures of its finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
Ref | Expression |
---|---|
acsdrscl.f | ⊢ 𝐹 = (mrCls‘𝐶) |
Ref | Expression |
---|---|
isacs5 | ⊢ (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isacs3lem 18048 | . . 3 ⊢ (𝐶 ∈ (ACS‘𝑋) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠 ∈ 𝐶))) | |
2 | acsdrscl.f | . . . 4 ⊢ 𝐹 = (mrCls‘𝐶) | |
3 | 2 | isacs4lem 18050 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠 ∈ 𝐶)) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹‘∪ 𝑡) = ∪ (𝐹 “ 𝑡)))) |
4 | 2 | isacs5lem 18051 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹‘∪ 𝑡) = ∪ (𝐹 “ 𝑡))) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)))) |
5 | 1, 3, 4 | 3syl 18 | . 2 ⊢ (𝐶 ∈ (ACS‘𝑋) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)))) |
6 | simpl 486 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) → 𝐶 ∈ (Moore‘𝑋)) | |
7 | elpwi 4522 | . . . . . . . . 9 ⊢ (𝑠 ∈ 𝒫 𝑋 → 𝑠 ⊆ 𝑋) | |
8 | 2 | mrcidb2 17121 | . . . . . . . . 9 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ⊆ 𝑋) → (𝑠 ∈ 𝐶 ↔ (𝐹‘𝑠) ⊆ 𝑠)) |
9 | 7, 8 | sylan2 596 | . . . . . . . 8 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) → (𝑠 ∈ 𝐶 ↔ (𝐹‘𝑠) ⊆ 𝑠)) |
10 | 9 | adantr 484 | . . . . . . 7 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ (𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) → (𝑠 ∈ 𝐶 ↔ (𝐹‘𝑠) ⊆ 𝑠)) |
11 | simpr 488 | . . . . . . . . . 10 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ (𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) → (𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) | |
12 | 2 | mrcf 17112 | . . . . . . . . . . . 12 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐹:𝒫 𝑋⟶𝐶) |
13 | ffun 6548 | . . . . . . . . . . . 12 ⊢ (𝐹:𝒫 𝑋⟶𝐶 → Fun 𝐹) | |
14 | funiunfv 7061 | . . . . . . . . . . . 12 ⊢ (Fun 𝐹 → ∪ 𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) | |
15 | 12, 13, 14 | 3syl 18 | . . . . . . . . . . 11 ⊢ (𝐶 ∈ (Moore‘𝑋) → ∪ 𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) |
16 | 15 | ad2antrr 726 | . . . . . . . . . 10 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ (𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) → ∪ 𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) |
17 | 11, 16 | eqtr4d 2780 | . . . . . . . . 9 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ (𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) → (𝐹‘𝑠) = ∪ 𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡)) |
18 | 17 | sseq1d 3932 | . . . . . . . 8 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ (𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) → ((𝐹‘𝑠) ⊆ 𝑠 ↔ ∪ 𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡) ⊆ 𝑠)) |
19 | iunss 4954 | . . . . . . . 8 ⊢ (∪ 𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡) ⊆ 𝑠 ↔ ∀𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡) ⊆ 𝑠) | |
20 | 18, 19 | bitrdi 290 | . . . . . . 7 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ (𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) → ((𝐹‘𝑠) ⊆ 𝑠 ↔ ∀𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡) ⊆ 𝑠)) |
21 | 10, 20 | bitrd 282 | . . . . . 6 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ (𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) → (𝑠 ∈ 𝐶 ↔ ∀𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡) ⊆ 𝑠)) |
22 | 21 | ex 416 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) → ((𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) → (𝑠 ∈ 𝐶 ↔ ∀𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡) ⊆ 𝑠))) |
23 | 22 | ralimdva 3100 | . . . 4 ⊢ (𝐶 ∈ (Moore‘𝑋) → (∀𝑠 ∈ 𝒫 𝑋(𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) → ∀𝑠 ∈ 𝒫 𝑋(𝑠 ∈ 𝐶 ↔ ∀𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡) ⊆ 𝑠))) |
24 | 23 | imp 410 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) → ∀𝑠 ∈ 𝒫 𝑋(𝑠 ∈ 𝐶 ↔ ∀𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡) ⊆ 𝑠)) |
25 | 2 | isacs2 17156 | . . 3 ⊢ (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠 ∈ 𝐶 ↔ ∀𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡) ⊆ 𝑠))) |
26 | 6, 24, 25 | sylanbrc 586 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) → 𝐶 ∈ (ACS‘𝑋)) |
27 | 5, 26 | impbii 212 | 1 ⊢ (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∀wral 3061 ∩ cin 3865 ⊆ wss 3866 𝒫 cpw 4513 ∪ cuni 4819 ∪ ciun 4904 “ cima 5554 Fun wfun 6374 ⟶wf 6376 ‘cfv 6380 Fincfn 8626 Moorecmre 17085 mrClscmrc 17086 ACScacs 17088 Dirsetcdrs 17801 toInccipo 18033 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-7 11898 df-8 11899 df-9 11900 df-n0 12091 df-z 12177 df-dec 12294 df-uz 12439 df-fz 13096 df-struct 16700 df-slot 16735 df-ndx 16745 df-base 16761 df-tset 16821 df-ple 16822 df-ocomp 16823 df-mre 17089 df-mrc 17090 df-acs 17092 df-proset 17802 df-drs 17803 df-poset 17820 df-ipo 18034 |
This theorem is referenced by: isacs4 18055 |
Copyright terms: Public domain | W3C validator |