Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isacs5 | Structured version Visualization version GIF version |
Description: A closure system is algebraic iff the closure of a generating set is the union of the closures of its finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
Ref | Expression |
---|---|
acsdrscl.f | ⊢ 𝐹 = (mrCls‘𝐶) |
Ref | Expression |
---|---|
isacs5 | ⊢ (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isacs3lem 18175 | . . 3 ⊢ (𝐶 ∈ (ACS‘𝑋) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠 ∈ 𝐶))) | |
2 | acsdrscl.f | . . . 4 ⊢ 𝐹 = (mrCls‘𝐶) | |
3 | 2 | isacs4lem 18177 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠 ∈ 𝐶)) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹‘∪ 𝑡) = ∪ (𝐹 “ 𝑡)))) |
4 | 2 | isacs5lem 18178 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹‘∪ 𝑡) = ∪ (𝐹 “ 𝑡))) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)))) |
5 | 1, 3, 4 | 3syl 18 | . 2 ⊢ (𝐶 ∈ (ACS‘𝑋) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)))) |
6 | simpl 482 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) → 𝐶 ∈ (Moore‘𝑋)) | |
7 | elpwi 4539 | . . . . . . . . 9 ⊢ (𝑠 ∈ 𝒫 𝑋 → 𝑠 ⊆ 𝑋) | |
8 | 2 | mrcidb2 17244 | . . . . . . . . 9 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ⊆ 𝑋) → (𝑠 ∈ 𝐶 ↔ (𝐹‘𝑠) ⊆ 𝑠)) |
9 | 7, 8 | sylan2 592 | . . . . . . . 8 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) → (𝑠 ∈ 𝐶 ↔ (𝐹‘𝑠) ⊆ 𝑠)) |
10 | 9 | adantr 480 | . . . . . . 7 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ (𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) → (𝑠 ∈ 𝐶 ↔ (𝐹‘𝑠) ⊆ 𝑠)) |
11 | simpr 484 | . . . . . . . . . 10 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ (𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) → (𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) | |
12 | 2 | mrcf 17235 | . . . . . . . . . . . 12 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐹:𝒫 𝑋⟶𝐶) |
13 | ffun 6587 | . . . . . . . . . . . 12 ⊢ (𝐹:𝒫 𝑋⟶𝐶 → Fun 𝐹) | |
14 | funiunfv 7103 | . . . . . . . . . . . 12 ⊢ (Fun 𝐹 → ∪ 𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) | |
15 | 12, 13, 14 | 3syl 18 | . . . . . . . . . . 11 ⊢ (𝐶 ∈ (Moore‘𝑋) → ∪ 𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) |
16 | 15 | ad2antrr 722 | . . . . . . . . . 10 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ (𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) → ∪ 𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) |
17 | 11, 16 | eqtr4d 2781 | . . . . . . . . 9 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ (𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) → (𝐹‘𝑠) = ∪ 𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡)) |
18 | 17 | sseq1d 3948 | . . . . . . . 8 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ (𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) → ((𝐹‘𝑠) ⊆ 𝑠 ↔ ∪ 𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡) ⊆ 𝑠)) |
19 | iunss 4971 | . . . . . . . 8 ⊢ (∪ 𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡) ⊆ 𝑠 ↔ ∀𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡) ⊆ 𝑠) | |
20 | 18, 19 | bitrdi 286 | . . . . . . 7 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ (𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) → ((𝐹‘𝑠) ⊆ 𝑠 ↔ ∀𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡) ⊆ 𝑠)) |
21 | 10, 20 | bitrd 278 | . . . . . 6 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ (𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) → (𝑠 ∈ 𝐶 ↔ ∀𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡) ⊆ 𝑠)) |
22 | 21 | ex 412 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) → ((𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) → (𝑠 ∈ 𝐶 ↔ ∀𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡) ⊆ 𝑠))) |
23 | 22 | ralimdva 3102 | . . . 4 ⊢ (𝐶 ∈ (Moore‘𝑋) → (∀𝑠 ∈ 𝒫 𝑋(𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) → ∀𝑠 ∈ 𝒫 𝑋(𝑠 ∈ 𝐶 ↔ ∀𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡) ⊆ 𝑠))) |
24 | 23 | imp 406 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) → ∀𝑠 ∈ 𝒫 𝑋(𝑠 ∈ 𝐶 ↔ ∀𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡) ⊆ 𝑠)) |
25 | 2 | isacs2 17279 | . . 3 ⊢ (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠 ∈ 𝐶 ↔ ∀𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡) ⊆ 𝑠))) |
26 | 6, 24, 25 | sylanbrc 582 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) → 𝐶 ∈ (ACS‘𝑋)) |
27 | 5, 26 | impbii 208 | 1 ⊢ (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∩ cin 3882 ⊆ wss 3883 𝒫 cpw 4530 ∪ cuni 4836 ∪ ciun 4921 “ cima 5583 Fun wfun 6412 ⟶wf 6414 ‘cfv 6418 Fincfn 8691 Moorecmre 17208 mrClscmrc 17209 ACScacs 17211 Dirsetcdrs 17927 toInccipo 18160 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-struct 16776 df-slot 16811 df-ndx 16823 df-base 16841 df-tset 16907 df-ple 16908 df-ocomp 16909 df-mre 17212 df-mrc 17213 df-acs 17215 df-proset 17928 df-drs 17929 df-poset 17946 df-ipo 18161 |
This theorem is referenced by: isacs4 18182 |
Copyright terms: Public domain | W3C validator |