![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isacs5 | Structured version Visualization version GIF version |
Description: A closure system is algebraic iff the closure of a generating set is the union of the closures of its finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
Ref | Expression |
---|---|
acsdrscl.f | ⊢ 𝐹 = (mrCls‘𝐶) |
Ref | Expression |
---|---|
isacs5 | ⊢ (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isacs3lem 17646 | . . 3 ⊢ (𝐶 ∈ (ACS‘𝑋) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠 ∈ 𝐶))) | |
2 | acsdrscl.f | . . . 4 ⊢ 𝐹 = (mrCls‘𝐶) | |
3 | 2 | isacs4lem 17648 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠 ∈ 𝐶)) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹‘∪ 𝑡) = ∪ (𝐹 “ 𝑡)))) |
4 | 2 | isacs5lem 17649 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹‘∪ 𝑡) = ∪ (𝐹 “ 𝑡))) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)))) |
5 | 1, 3, 4 | 3syl 18 | . 2 ⊢ (𝐶 ∈ (ACS‘𝑋) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)))) |
6 | simpl 475 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) → 𝐶 ∈ (Moore‘𝑋)) | |
7 | elpwi 4435 | . . . . . . . . 9 ⊢ (𝑠 ∈ 𝒫 𝑋 → 𝑠 ⊆ 𝑋) | |
8 | 2 | mrcidb2 16759 | . . . . . . . . 9 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ⊆ 𝑋) → (𝑠 ∈ 𝐶 ↔ (𝐹‘𝑠) ⊆ 𝑠)) |
9 | 7, 8 | sylan2 584 | . . . . . . . 8 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) → (𝑠 ∈ 𝐶 ↔ (𝐹‘𝑠) ⊆ 𝑠)) |
10 | 9 | adantr 473 | . . . . . . 7 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ (𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) → (𝑠 ∈ 𝐶 ↔ (𝐹‘𝑠) ⊆ 𝑠)) |
11 | simpr 477 | . . . . . . . . . 10 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ (𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) → (𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) | |
12 | 2 | mrcf 16750 | . . . . . . . . . . . 12 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐹:𝒫 𝑋⟶𝐶) |
13 | ffun 6352 | . . . . . . . . . . . 12 ⊢ (𝐹:𝒫 𝑋⟶𝐶 → Fun 𝐹) | |
14 | funiunfv 6838 | . . . . . . . . . . . 12 ⊢ (Fun 𝐹 → ∪ 𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) | |
15 | 12, 13, 14 | 3syl 18 | . . . . . . . . . . 11 ⊢ (𝐶 ∈ (Moore‘𝑋) → ∪ 𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) |
16 | 15 | ad2antrr 714 | . . . . . . . . . 10 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ (𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) → ∪ 𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) |
17 | 11, 16 | eqtr4d 2819 | . . . . . . . . 9 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ (𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) → (𝐹‘𝑠) = ∪ 𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡)) |
18 | 17 | sseq1d 3890 | . . . . . . . 8 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ (𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) → ((𝐹‘𝑠) ⊆ 𝑠 ↔ ∪ 𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡) ⊆ 𝑠)) |
19 | iunss 4840 | . . . . . . . 8 ⊢ (∪ 𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡) ⊆ 𝑠 ↔ ∀𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡) ⊆ 𝑠) | |
20 | 18, 19 | syl6bb 279 | . . . . . . 7 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ (𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) → ((𝐹‘𝑠) ⊆ 𝑠 ↔ ∀𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡) ⊆ 𝑠)) |
21 | 10, 20 | bitrd 271 | . . . . . 6 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) ∧ (𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) → (𝑠 ∈ 𝐶 ↔ ∀𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡) ⊆ 𝑠)) |
22 | 21 | ex 405 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) → ((𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) → (𝑠 ∈ 𝐶 ↔ ∀𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡) ⊆ 𝑠))) |
23 | 22 | ralimdva 3129 | . . . 4 ⊢ (𝐶 ∈ (Moore‘𝑋) → (∀𝑠 ∈ 𝒫 𝑋(𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) → ∀𝑠 ∈ 𝒫 𝑋(𝑠 ∈ 𝐶 ↔ ∀𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡) ⊆ 𝑠))) |
24 | 23 | imp 398 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) → ∀𝑠 ∈ 𝒫 𝑋(𝑠 ∈ 𝐶 ↔ ∀𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡) ⊆ 𝑠)) |
25 | 2 | isacs2 16794 | . . 3 ⊢ (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠 ∈ 𝐶 ↔ ∀𝑡 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑡) ⊆ 𝑠))) |
26 | 6, 24, 25 | sylanbrc 575 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) → 𝐶 ∈ (ACS‘𝑋)) |
27 | 5, 26 | impbii 201 | 1 ⊢ (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1508 ∈ wcel 2051 ∀wral 3090 ∩ cin 3830 ⊆ wss 3831 𝒫 cpw 4425 ∪ cuni 4717 ∪ ciun 4797 “ cima 5414 Fun wfun 6187 ⟶wf 6189 ‘cfv 6193 Fincfn 8312 Moorecmre 16723 mrClscmrc 16724 ACScacs 16726 Dirsetcdrs 17407 toInccipo 17631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2752 ax-sep 5064 ax-nul 5071 ax-pow 5123 ax-pr 5190 ax-un 7285 ax-cnex 10397 ax-resscn 10398 ax-1cn 10399 ax-icn 10400 ax-addcl 10401 ax-addrcl 10402 ax-mulcl 10403 ax-mulrcl 10404 ax-mulcom 10405 ax-addass 10406 ax-mulass 10407 ax-distr 10408 ax-i2m1 10409 ax-1ne0 10410 ax-1rid 10411 ax-rnegex 10412 ax-rrecex 10413 ax-cnre 10414 ax-pre-lttri 10415 ax-pre-lttrn 10416 ax-pre-ltadd 10417 ax-pre-mulgt0 10418 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2551 df-eu 2589 df-clab 2761 df-cleq 2773 df-clel 2848 df-nfc 2920 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3419 df-sbc 3684 df-csb 3789 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-pss 3847 df-nul 4182 df-if 4354 df-pw 4427 df-sn 4445 df-pr 4447 df-tp 4449 df-op 4451 df-uni 4718 df-int 4755 df-iun 4799 df-br 4935 df-opab 4997 df-mpt 5014 df-tr 5036 df-id 5316 df-eprel 5321 df-po 5330 df-so 5331 df-fr 5370 df-we 5372 df-xp 5417 df-rel 5418 df-cnv 5419 df-co 5420 df-dm 5421 df-rn 5422 df-res 5423 df-ima 5424 df-pred 5991 df-ord 6037 df-on 6038 df-lim 6039 df-suc 6040 df-iota 6157 df-fun 6195 df-fn 6196 df-f 6197 df-f1 6198 df-fo 6199 df-f1o 6200 df-fv 6201 df-riota 6943 df-ov 6985 df-oprab 6986 df-mpo 6987 df-om 7403 df-1st 7507 df-2nd 7508 df-wrecs 7756 df-recs 7818 df-rdg 7856 df-1o 7911 df-oadd 7915 df-er 8095 df-en 8313 df-dom 8314 df-sdom 8315 df-fin 8316 df-pnf 10482 df-mnf 10483 df-xr 10484 df-ltxr 10485 df-le 10486 df-sub 10678 df-neg 10679 df-nn 11446 df-2 11509 df-3 11510 df-4 11511 df-5 11512 df-6 11513 df-7 11514 df-8 11515 df-9 11516 df-n0 11714 df-z 11800 df-dec 11918 df-uz 12065 df-fz 12715 df-struct 16347 df-ndx 16348 df-slot 16349 df-base 16351 df-tset 16446 df-ple 16447 df-ocomp 16448 df-mre 16727 df-mrc 16728 df-acs 16730 df-proset 17408 df-drs 17409 df-poset 17426 df-ipo 17632 |
This theorem is referenced by: isacs4 17653 |
Copyright terms: Public domain | W3C validator |