MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrcidb Structured version   Visualization version   GIF version

Theorem mrcidb 17576
Description: A set is closed iff it is equal to its closure. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Hypothesis
Ref Expression
mrcfval.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
mrcidb (𝐶 ∈ (Moore‘𝑋) → (𝑈𝐶 ↔ (𝐹𝑈) = 𝑈))

Proof of Theorem mrcidb
StepHypRef Expression
1 mrcfval.f . . 3 𝐹 = (mrCls‘𝐶)
21mrcid 17574 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) → (𝐹𝑈) = 𝑈)
3 simpr 484 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ (𝐹𝑈) = 𝑈) → (𝐹𝑈) = 𝑈)
41mrcssv 17575 . . . . . 6 (𝐶 ∈ (Moore‘𝑋) → (𝐹𝑈) ⊆ 𝑋)
54adantr 480 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ (𝐹𝑈) = 𝑈) → (𝐹𝑈) ⊆ 𝑋)
63, 5eqsstrrd 3982 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ (𝐹𝑈) = 𝑈) → 𝑈𝑋)
71mrccl 17572 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → (𝐹𝑈) ∈ 𝐶)
86, 7syldan 591 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ (𝐹𝑈) = 𝑈) → (𝐹𝑈) ∈ 𝐶)
93, 8eqeltrrd 2829 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ (𝐹𝑈) = 𝑈) → 𝑈𝐶)
102, 9impbida 800 1 (𝐶 ∈ (Moore‘𝑋) → (𝑈𝐶 ↔ (𝐹𝑈) = 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wss 3914  cfv 6511  Moorecmre 17543  mrClscmrc 17544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-mre 17547  df-mrc 17548
This theorem is referenced by:  mrcidb2  17579
  Copyright terms: Public domain W3C validator