![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mrcidb | Structured version Visualization version GIF version |
Description: A set is closed iff it is equal to its closure. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
Ref | Expression |
---|---|
mrcfval.f | ⊢ 𝐹 = (mrCls‘𝐶) |
Ref | Expression |
---|---|
mrcidb | ⊢ (𝐶 ∈ (Moore‘𝑋) → (𝑈 ∈ 𝐶 ↔ (𝐹‘𝑈) = 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mrcfval.f | . . 3 ⊢ 𝐹 = (mrCls‘𝐶) | |
2 | 1 | mrcid 16713 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ∈ 𝐶) → (𝐹‘𝑈) = 𝑈) |
3 | simpr 485 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ (𝐹‘𝑈) = 𝑈) → (𝐹‘𝑈) = 𝑈) | |
4 | 1 | mrcssv 16714 | . . . . . 6 ⊢ (𝐶 ∈ (Moore‘𝑋) → (𝐹‘𝑈) ⊆ 𝑋) |
5 | 4 | adantr 481 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ (𝐹‘𝑈) = 𝑈) → (𝐹‘𝑈) ⊆ 𝑋) |
6 | 3, 5 | eqsstrrd 3927 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ (𝐹‘𝑈) = 𝑈) → 𝑈 ⊆ 𝑋) |
7 | 1 | mrccl 16711 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → (𝐹‘𝑈) ∈ 𝐶) |
8 | 6, 7 | syldan 591 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ (𝐹‘𝑈) = 𝑈) → (𝐹‘𝑈) ∈ 𝐶) |
9 | 3, 8 | eqeltrrd 2884 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ (𝐹‘𝑈) = 𝑈) → 𝑈 ∈ 𝐶) |
10 | 2, 9 | impbida 797 | 1 ⊢ (𝐶 ∈ (Moore‘𝑋) → (𝑈 ∈ 𝐶 ↔ (𝐹‘𝑈) = 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 = wceq 1522 ∈ wcel 2081 ⊆ wss 3859 ‘cfv 6225 Moorecmre 16682 mrClscmrc 16683 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-ral 3110 df-rex 3111 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-op 4479 df-uni 4746 df-int 4783 df-br 4963 df-opab 5025 df-mpt 5042 df-id 5348 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-fv 6233 df-mre 16686 df-mrc 16687 |
This theorem is referenced by: mrcidb2 16718 |
Copyright terms: Public domain | W3C validator |