| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mrcidb | Structured version Visualization version GIF version | ||
| Description: A set is closed iff it is equal to its closure. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| mrcfval.f | ⊢ 𝐹 = (mrCls‘𝐶) |
| Ref | Expression |
|---|---|
| mrcidb | ⊢ (𝐶 ∈ (Moore‘𝑋) → (𝑈 ∈ 𝐶 ↔ (𝐹‘𝑈) = 𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mrcfval.f | . . 3 ⊢ 𝐹 = (mrCls‘𝐶) | |
| 2 | 1 | mrcid 17523 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ∈ 𝐶) → (𝐹‘𝑈) = 𝑈) |
| 3 | simpr 484 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ (𝐹‘𝑈) = 𝑈) → (𝐹‘𝑈) = 𝑈) | |
| 4 | 1 | mrcssv 17524 | . . . . . 6 ⊢ (𝐶 ∈ (Moore‘𝑋) → (𝐹‘𝑈) ⊆ 𝑋) |
| 5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ (𝐹‘𝑈) = 𝑈) → (𝐹‘𝑈) ⊆ 𝑋) |
| 6 | 3, 5 | eqsstrrd 3966 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ (𝐹‘𝑈) = 𝑈) → 𝑈 ⊆ 𝑋) |
| 7 | 1 | mrccl 17521 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → (𝐹‘𝑈) ∈ 𝐶) |
| 8 | 6, 7 | syldan 591 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ (𝐹‘𝑈) = 𝑈) → (𝐹‘𝑈) ∈ 𝐶) |
| 9 | 3, 8 | eqeltrrd 2834 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ (𝐹‘𝑈) = 𝑈) → 𝑈 ∈ 𝐶) |
| 10 | 2, 9 | impbida 800 | 1 ⊢ (𝐶 ∈ (Moore‘𝑋) → (𝑈 ∈ 𝐶 ↔ (𝐹‘𝑈) = 𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ⊆ wss 3898 ‘cfv 6488 Moorecmre 17488 mrClscmrc 17489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-fv 6496 df-mre 17492 df-mrc 17493 |
| This theorem is referenced by: mrcidb2 17528 |
| Copyright terms: Public domain | W3C validator |