| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mrcidb | Structured version Visualization version GIF version | ||
| Description: A set is closed iff it is equal to its closure. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| mrcfval.f | ⊢ 𝐹 = (mrCls‘𝐶) |
| Ref | Expression |
|---|---|
| mrcidb | ⊢ (𝐶 ∈ (Moore‘𝑋) → (𝑈 ∈ 𝐶 ↔ (𝐹‘𝑈) = 𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mrcfval.f | . . 3 ⊢ 𝐹 = (mrCls‘𝐶) | |
| 2 | 1 | mrcid 17519 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ∈ 𝐶) → (𝐹‘𝑈) = 𝑈) |
| 3 | simpr 484 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ (𝐹‘𝑈) = 𝑈) → (𝐹‘𝑈) = 𝑈) | |
| 4 | 1 | mrcssv 17520 | . . . . . 6 ⊢ (𝐶 ∈ (Moore‘𝑋) → (𝐹‘𝑈) ⊆ 𝑋) |
| 5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ (𝐹‘𝑈) = 𝑈) → (𝐹‘𝑈) ⊆ 𝑋) |
| 6 | 3, 5 | eqsstrrd 3970 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ (𝐹‘𝑈) = 𝑈) → 𝑈 ⊆ 𝑋) |
| 7 | 1 | mrccl 17517 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → (𝐹‘𝑈) ∈ 𝐶) |
| 8 | 6, 7 | syldan 591 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ (𝐹‘𝑈) = 𝑈) → (𝐹‘𝑈) ∈ 𝐶) |
| 9 | 3, 8 | eqeltrrd 2832 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ (𝐹‘𝑈) = 𝑈) → 𝑈 ∈ 𝐶) |
| 10 | 2, 9 | impbida 800 | 1 ⊢ (𝐶 ∈ (Moore‘𝑋) → (𝑈 ∈ 𝐶 ↔ (𝐹‘𝑈) = 𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⊆ wss 3902 ‘cfv 6481 Moorecmre 17484 mrClscmrc 17485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-mre 17488 df-mrc 17489 |
| This theorem is referenced by: mrcidb2 17524 |
| Copyright terms: Public domain | W3C validator |