![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mrcidb | Structured version Visualization version GIF version |
Description: A set is closed iff it is equal to its closure. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
Ref | Expression |
---|---|
mrcfval.f | β’ πΉ = (mrClsβπΆ) |
Ref | Expression |
---|---|
mrcidb | β’ (πΆ β (Mooreβπ) β (π β πΆ β (πΉβπ) = π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mrcfval.f | . . 3 β’ πΉ = (mrClsβπΆ) | |
2 | 1 | mrcid 17561 | . 2 β’ ((πΆ β (Mooreβπ) β§ π β πΆ) β (πΉβπ) = π) |
3 | simpr 485 | . . 3 β’ ((πΆ β (Mooreβπ) β§ (πΉβπ) = π) β (πΉβπ) = π) | |
4 | 1 | mrcssv 17562 | . . . . . 6 β’ (πΆ β (Mooreβπ) β (πΉβπ) β π) |
5 | 4 | adantr 481 | . . . . 5 β’ ((πΆ β (Mooreβπ) β§ (πΉβπ) = π) β (πΉβπ) β π) |
6 | 3, 5 | eqsstrrd 4021 | . . . 4 β’ ((πΆ β (Mooreβπ) β§ (πΉβπ) = π) β π β π) |
7 | 1 | mrccl 17559 | . . . 4 β’ ((πΆ β (Mooreβπ) β§ π β π) β (πΉβπ) β πΆ) |
8 | 6, 7 | syldan 591 | . . 3 β’ ((πΆ β (Mooreβπ) β§ (πΉβπ) = π) β (πΉβπ) β πΆ) |
9 | 3, 8 | eqeltrrd 2834 | . 2 β’ ((πΆ β (Mooreβπ) β§ (πΉβπ) = π) β π β πΆ) |
10 | 2, 9 | impbida 799 | 1 β’ (πΆ β (Mooreβπ) β (π β πΆ β (πΉβπ) = π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 β wss 3948 βcfv 6543 Moorecmre 17530 mrClscmrc 17531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-mre 17534 df-mrc 17535 |
This theorem is referenced by: mrcidb2 17566 |
Copyright terms: Public domain | W3C validator |