![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mrcssvd | Structured version Visualization version GIF version |
Description: The Moore closure of a set is a subset of the base. Deduction form of mrcssv 16714. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
mrcssd.1 | ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
mrcssd.2 | ⊢ 𝑁 = (mrCls‘𝐴) |
Ref | Expression |
---|---|
mrcssvd | ⊢ (𝜑 → (𝑁‘𝐵) ⊆ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mrcssd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) | |
2 | mrcssd.2 | . . 3 ⊢ 𝑁 = (mrCls‘𝐴) | |
3 | 2 | mrcssv 16714 | . 2 ⊢ (𝐴 ∈ (Moore‘𝑋) → (𝑁‘𝐵) ⊆ 𝑋) |
4 | 1, 3 | syl 17 | 1 ⊢ (𝜑 → (𝑁‘𝐵) ⊆ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1522 ∈ wcel 2081 ⊆ wss 3859 ‘cfv 6225 Moorecmre 16682 mrClscmrc 16683 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-ral 3110 df-rex 3111 df-rab 3114 df-v 3439 df-sbc 3707 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-op 4479 df-uni 4746 df-int 4783 df-br 4963 df-opab 5025 df-mpt 5042 df-id 5348 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-fv 6233 df-mre 16686 df-mrc 16687 |
This theorem is referenced by: mressmrcd 16727 mreexexlem2d 16745 mreacs 16758 acsmap2d 17618 gsumwspan 17822 cntzspan 18687 dprd2dlem1 18880 pgpfaclem2 18921 ismrcd2 38781 |
Copyright terms: Public domain | W3C validator |