MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrcssvd Structured version   Visualization version   GIF version

Theorem mrcssvd 17635
Description: The Moore closure of a set is a subset of the base. Deduction form of mrcssv 17626. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mrcssd.1 (𝜑𝐴 ∈ (Moore‘𝑋))
mrcssd.2 𝑁 = (mrCls‘𝐴)
Assertion
Ref Expression
mrcssvd (𝜑 → (𝑁𝐵) ⊆ 𝑋)

Proof of Theorem mrcssvd
StepHypRef Expression
1 mrcssd.1 . 2 (𝜑𝐴 ∈ (Moore‘𝑋))
2 mrcssd.2 . . 3 𝑁 = (mrCls‘𝐴)
32mrcssv 17626 . 2 (𝐴 ∈ (Moore‘𝑋) → (𝑁𝐵) ⊆ 𝑋)
41, 3syl 17 1 (𝜑 → (𝑁𝐵) ⊆ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  wss 3926  cfv 6531  Moorecmre 17594  mrClscmrc 17595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fv 6539  df-mre 17598  df-mrc 17599
This theorem is referenced by:  mressmrcd  17639  mreexexlem2d  17657  mreacs  17670  acsmap2d  18565  gsumwspan  18824  cntzspan  19825  dprd2dlem1  20024  pgpfaclem2  20065  ismrcd2  42722
  Copyright terms: Public domain W3C validator