Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mrcssvd | Structured version Visualization version GIF version |
Description: The Moore closure of a set is a subset of the base. Deduction form of mrcssv 17323. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
mrcssd.1 | ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
mrcssd.2 | ⊢ 𝑁 = (mrCls‘𝐴) |
Ref | Expression |
---|---|
mrcssvd | ⊢ (𝜑 → (𝑁‘𝐵) ⊆ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mrcssd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) | |
2 | mrcssd.2 | . . 3 ⊢ 𝑁 = (mrCls‘𝐴) | |
3 | 2 | mrcssv 17323 | . 2 ⊢ (𝐴 ∈ (Moore‘𝑋) → (𝑁‘𝐵) ⊆ 𝑋) |
4 | 1, 3 | syl 17 | 1 ⊢ (𝜑 → (𝑁‘𝐵) ⊆ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 ‘cfv 6433 Moorecmre 17291 mrClscmrc 17292 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-mre 17295 df-mrc 17296 |
This theorem is referenced by: mressmrcd 17336 mreexexlem2d 17354 mreacs 17367 acsmap2d 18273 gsumwspan 18485 cntzspan 19445 dprd2dlem1 19644 pgpfaclem2 19685 ismrcd2 40521 |
Copyright terms: Public domain | W3C validator |