MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrcssvd Structured version   Visualization version   GIF version

Theorem mrcssvd 17537
Description: The Moore closure of a set is a subset of the base. Deduction form of mrcssv 17528. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mrcssd.1 (𝜑𝐴 ∈ (Moore‘𝑋))
mrcssd.2 𝑁 = (mrCls‘𝐴)
Assertion
Ref Expression
mrcssvd (𝜑 → (𝑁𝐵) ⊆ 𝑋)

Proof of Theorem mrcssvd
StepHypRef Expression
1 mrcssd.1 . 2 (𝜑𝐴 ∈ (Moore‘𝑋))
2 mrcssd.2 . . 3 𝑁 = (mrCls‘𝐴)
32mrcssv 17528 . 2 (𝐴 ∈ (Moore‘𝑋) → (𝑁𝐵) ⊆ 𝑋)
41, 3syl 17 1 (𝜑 → (𝑁𝐵) ⊆ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  wss 3898  cfv 6489  Moorecmre 17492  mrClscmrc 17493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-fv 6497  df-mre 17496  df-mrc 17497
This theorem is referenced by:  mressmrcd  17541  mreexexlem2d  17559  mreacs  17572  acsmap2d  18469  gsumwspan  18762  cntzspan  19764  dprd2dlem1  19963  pgpfaclem2  20004  ismrcd2  42856
  Copyright terms: Public domain W3C validator