| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mrcssd | Structured version Visualization version GIF version | ||
| Description: Moore closure preserves subset ordering. Deduction form of mrcss 17522. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| mrcssd.1 | ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
| mrcssd.2 | ⊢ 𝑁 = (mrCls‘𝐴) |
| mrcssd.3 | ⊢ (𝜑 → 𝑈 ⊆ 𝑉) |
| mrcssd.4 | ⊢ (𝜑 → 𝑉 ⊆ 𝑋) |
| Ref | Expression |
|---|---|
| mrcssd | ⊢ (𝜑 → (𝑁‘𝑈) ⊆ (𝑁‘𝑉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mrcssd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) | |
| 2 | mrcssd.3 | . 2 ⊢ (𝜑 → 𝑈 ⊆ 𝑉) | |
| 3 | mrcssd.4 | . 2 ⊢ (𝜑 → 𝑉 ⊆ 𝑋) | |
| 4 | mrcssd.2 | . . 3 ⊢ 𝑁 = (mrCls‘𝐴) | |
| 5 | 4 | mrcss 17522 | . 2 ⊢ ((𝐴 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ⊆ 𝑋) → (𝑁‘𝑈) ⊆ (𝑁‘𝑉)) |
| 6 | 1, 2, 3, 5 | syl3anc 1373 | 1 ⊢ (𝜑 → (𝑁‘𝑈) ⊆ (𝑁‘𝑉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3903 ‘cfv 6482 Moorecmre 17484 mrClscmrc 17485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-mre 17488 df-mrc 17489 |
| This theorem is referenced by: mressmrcd 17533 mrieqv2d 17545 mrissmrid 17547 mreexexlem2d 17551 isacs3lem 18448 isacs4lem 18450 acsfiindd 18459 acsmapd 18460 acsmap2d 18461 dprdres 19909 dprdss 19910 dprd2dlem1 19922 dprd2da 19923 dmdprdsplit2lem 19926 |
| Copyright terms: Public domain | W3C validator |