| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mrcssd | Structured version Visualization version GIF version | ||
| Description: Moore closure preserves subset ordering. Deduction form of mrcss 17628. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| mrcssd.1 | ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
| mrcssd.2 | ⊢ 𝑁 = (mrCls‘𝐴) |
| mrcssd.3 | ⊢ (𝜑 → 𝑈 ⊆ 𝑉) |
| mrcssd.4 | ⊢ (𝜑 → 𝑉 ⊆ 𝑋) |
| Ref | Expression |
|---|---|
| mrcssd | ⊢ (𝜑 → (𝑁‘𝑈) ⊆ (𝑁‘𝑉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mrcssd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) | |
| 2 | mrcssd.3 | . 2 ⊢ (𝜑 → 𝑈 ⊆ 𝑉) | |
| 3 | mrcssd.4 | . 2 ⊢ (𝜑 → 𝑉 ⊆ 𝑋) | |
| 4 | mrcssd.2 | . . 3 ⊢ 𝑁 = (mrCls‘𝐴) | |
| 5 | 4 | mrcss 17628 | . 2 ⊢ ((𝐴 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ⊆ 𝑋) → (𝑁‘𝑈) ⊆ (𝑁‘𝑉)) |
| 6 | 1, 2, 3, 5 | syl3anc 1373 | 1 ⊢ (𝜑 → (𝑁‘𝑈) ⊆ (𝑁‘𝑉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 ‘cfv 6531 Moorecmre 17594 mrClscmrc 17595 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-mre 17598 df-mrc 17599 |
| This theorem is referenced by: mressmrcd 17639 mrieqv2d 17651 mrissmrid 17653 mreexexlem2d 17657 isacs3lem 18552 isacs4lem 18554 acsfiindd 18563 acsmapd 18564 acsmap2d 18565 dprdres 20011 dprdss 20012 dprd2dlem1 20024 dprd2da 20025 dmdprdsplit2lem 20028 |
| Copyright terms: Public domain | W3C validator |