![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mrcssd | Structured version Visualization version GIF version |
Description: Moore closure preserves subset ordering. Deduction form of mrcss 17564. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
mrcssd.1 | β’ (π β π΄ β (Mooreβπ)) |
mrcssd.2 | β’ π = (mrClsβπ΄) |
mrcssd.3 | β’ (π β π β π) |
mrcssd.4 | β’ (π β π β π) |
Ref | Expression |
---|---|
mrcssd | β’ (π β (πβπ) β (πβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mrcssd.1 | . 2 β’ (π β π΄ β (Mooreβπ)) | |
2 | mrcssd.3 | . 2 β’ (π β π β π) | |
3 | mrcssd.4 | . 2 β’ (π β π β π) | |
4 | mrcssd.2 | . . 3 β’ π = (mrClsβπ΄) | |
5 | 4 | mrcss 17564 | . 2 β’ ((π΄ β (Mooreβπ) β§ π β π β§ π β π) β (πβπ) β (πβπ)) |
6 | 1, 2, 3, 5 | syl3anc 1369 | 1 β’ (π β (πβπ) β (πβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1539 β wcel 2104 β wss 3947 βcfv 6542 Moorecmre 17530 mrClscmrc 17531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 df-mre 17534 df-mrc 17535 |
This theorem is referenced by: mressmrcd 17575 mrieqv2d 17587 mrissmrid 17589 mreexexlem2d 17593 isacs3lem 18499 isacs4lem 18501 acsfiindd 18510 acsmapd 18511 acsmap2d 18512 dprdres 19939 dprdss 19940 dprd2dlem1 19952 dprd2da 19953 dmdprdsplit2lem 19956 |
Copyright terms: Public domain | W3C validator |