MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrcssd Structured version   Visualization version   GIF version

Theorem mrcssd 17569
Description: Moore closure preserves subset ordering. Deduction form of mrcss 17561. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mrcssd.1 (𝜑𝐴 ∈ (Moore‘𝑋))
mrcssd.2 𝑁 = (mrCls‘𝐴)
mrcssd.3 (𝜑𝑈𝑉)
mrcssd.4 (𝜑𝑉𝑋)
Assertion
Ref Expression
mrcssd (𝜑 → (𝑁𝑈) ⊆ (𝑁𝑉))

Proof of Theorem mrcssd
StepHypRef Expression
1 mrcssd.1 . 2 (𝜑𝐴 ∈ (Moore‘𝑋))
2 mrcssd.3 . 2 (𝜑𝑈𝑉)
3 mrcssd.4 . 2 (𝜑𝑉𝑋)
4 mrcssd.2 . . 3 𝑁 = (mrCls‘𝐴)
54mrcss 17561 . 2 ((𝐴 ∈ (Moore‘𝑋) ∧ 𝑈𝑉𝑉𝑋) → (𝑁𝑈) ⊆ (𝑁𝑉))
61, 2, 3, 5syl3anc 1368 1 (𝜑 → (𝑁𝑈) ⊆ (𝑁𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  wss 3941  cfv 6534  Moorecmre 17527  mrClscmrc 17528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-int 4942  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-fv 6542  df-mre 17531  df-mrc 17532
This theorem is referenced by:  mressmrcd  17572  mrieqv2d  17584  mrissmrid  17586  mreexexlem2d  17590  isacs3lem  18499  isacs4lem  18501  acsfiindd  18510  acsmapd  18511  acsmap2d  18512  dprdres  19942  dprdss  19943  dprd2dlem1  19955  dprd2da  19956  dmdprdsplit2lem  19959
  Copyright terms: Public domain W3C validator