MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrcssd Structured version   Visualization version   GIF version

Theorem mrcssd 17592
Description: Moore closure preserves subset ordering. Deduction form of mrcss 17584. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mrcssd.1 (𝜑𝐴 ∈ (Moore‘𝑋))
mrcssd.2 𝑁 = (mrCls‘𝐴)
mrcssd.3 (𝜑𝑈𝑉)
mrcssd.4 (𝜑𝑉𝑋)
Assertion
Ref Expression
mrcssd (𝜑 → (𝑁𝑈) ⊆ (𝑁𝑉))

Proof of Theorem mrcssd
StepHypRef Expression
1 mrcssd.1 . 2 (𝜑𝐴 ∈ (Moore‘𝑋))
2 mrcssd.3 . 2 (𝜑𝑈𝑉)
3 mrcssd.4 . 2 (𝜑𝑉𝑋)
4 mrcssd.2 . . 3 𝑁 = (mrCls‘𝐴)
54mrcss 17584 . 2 ((𝐴 ∈ (Moore‘𝑋) ∧ 𝑈𝑉𝑉𝑋) → (𝑁𝑈) ⊆ (𝑁𝑉))
61, 2, 3, 5syl3anc 1373 1 (𝜑 → (𝑁𝑈) ⊆ (𝑁𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3917  cfv 6514  Moorecmre 17550  mrClscmrc 17551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-mre 17554  df-mrc 17555
This theorem is referenced by:  mressmrcd  17595  mrieqv2d  17607  mrissmrid  17609  mreexexlem2d  17613  isacs3lem  18508  isacs4lem  18510  acsfiindd  18519  acsmapd  18520  acsmap2d  18521  dprdres  19967  dprdss  19968  dprd2dlem1  19980  dprd2da  19981  dmdprdsplit2lem  19984
  Copyright terms: Public domain W3C validator