![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mrcssd | Structured version Visualization version GIF version |
Description: Moore closure preserves subset ordering. Deduction form of mrcss 17561. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
mrcssd.1 | ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
mrcssd.2 | ⊢ 𝑁 = (mrCls‘𝐴) |
mrcssd.3 | ⊢ (𝜑 → 𝑈 ⊆ 𝑉) |
mrcssd.4 | ⊢ (𝜑 → 𝑉 ⊆ 𝑋) |
Ref | Expression |
---|---|
mrcssd | ⊢ (𝜑 → (𝑁‘𝑈) ⊆ (𝑁‘𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mrcssd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) | |
2 | mrcssd.3 | . 2 ⊢ (𝜑 → 𝑈 ⊆ 𝑉) | |
3 | mrcssd.4 | . 2 ⊢ (𝜑 → 𝑉 ⊆ 𝑋) | |
4 | mrcssd.2 | . . 3 ⊢ 𝑁 = (mrCls‘𝐴) | |
5 | 4 | mrcss 17561 | . 2 ⊢ ((𝐴 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ⊆ 𝑋) → (𝑁‘𝑈) ⊆ (𝑁‘𝑉)) |
6 | 1, 2, 3, 5 | syl3anc 1368 | 1 ⊢ (𝜑 → (𝑁‘𝑈) ⊆ (𝑁‘𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ⊆ wss 3941 ‘cfv 6534 Moorecmre 17527 mrClscmrc 17528 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-int 4942 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-fv 6542 df-mre 17531 df-mrc 17532 |
This theorem is referenced by: mressmrcd 17572 mrieqv2d 17584 mrissmrid 17586 mreexexlem2d 17590 isacs3lem 18499 isacs4lem 18501 acsfiindd 18510 acsmapd 18511 acsmap2d 18512 dprdres 19942 dprdss 19943 dprd2dlem1 19955 dprd2da 19956 dmdprdsplit2lem 19959 |
Copyright terms: Public domain | W3C validator |