MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrcssd Structured version   Visualization version   GIF version

Theorem mrcssd 16596
Description: Moore closure preserves subset ordering. Deduction form of mrcss 16588. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mrcssd.1 (𝜑𝐴 ∈ (Moore‘𝑋))
mrcssd.2 𝑁 = (mrCls‘𝐴)
mrcssd.3 (𝜑𝑈𝑉)
mrcssd.4 (𝜑𝑉𝑋)
Assertion
Ref Expression
mrcssd (𝜑 → (𝑁𝑈) ⊆ (𝑁𝑉))

Proof of Theorem mrcssd
StepHypRef Expression
1 mrcssd.1 . 2 (𝜑𝐴 ∈ (Moore‘𝑋))
2 mrcssd.3 . 2 (𝜑𝑈𝑉)
3 mrcssd.4 . 2 (𝜑𝑉𝑋)
4 mrcssd.2 . . 3 𝑁 = (mrCls‘𝐴)
54mrcss 16588 . 2 ((𝐴 ∈ (Moore‘𝑋) ∧ 𝑈𝑉𝑉𝑋) → (𝑁𝑈) ⊆ (𝑁𝑉))
61, 2, 3, 5syl3anc 1491 1 (𝜑 → (𝑁𝑈) ⊆ (𝑁𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1653  wcel 2157  wss 3767  cfv 6099  Moorecmre 16554  mrClscmrc 16555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-ext 2775  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-ral 3092  df-rex 3093  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-op 4373  df-uni 4627  df-int 4666  df-br 4842  df-opab 4904  df-mpt 4921  df-id 5218  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-fv 6107  df-mre 16558  df-mrc 16559
This theorem is referenced by:  mressmrcd  16599  mrieqv2d  16611  mrissmrid  16613  mreexexlem2d  16617  isacs3lem  17478  isacs4lem  17480  acsfiindd  17489  acsmapd  17490  acsmap2d  17491  dprdres  18740  dprdss  18741  dprd2dlem1  18753  dprd2da  18754  dmdprdsplit2lem  18757
  Copyright terms: Public domain W3C validator