| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mrcssd | Structured version Visualization version GIF version | ||
| Description: Moore closure preserves subset ordering. Deduction form of mrcss 17522. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| mrcssd.1 | ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
| mrcssd.2 | ⊢ 𝑁 = (mrCls‘𝐴) |
| mrcssd.3 | ⊢ (𝜑 → 𝑈 ⊆ 𝑉) |
| mrcssd.4 | ⊢ (𝜑 → 𝑉 ⊆ 𝑋) |
| Ref | Expression |
|---|---|
| mrcssd | ⊢ (𝜑 → (𝑁‘𝑈) ⊆ (𝑁‘𝑉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mrcssd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) | |
| 2 | mrcssd.3 | . 2 ⊢ (𝜑 → 𝑈 ⊆ 𝑉) | |
| 3 | mrcssd.4 | . 2 ⊢ (𝜑 → 𝑉 ⊆ 𝑋) | |
| 4 | mrcssd.2 | . . 3 ⊢ 𝑁 = (mrCls‘𝐴) | |
| 5 | 4 | mrcss 17522 | . 2 ⊢ ((𝐴 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ⊆ 𝑋) → (𝑁‘𝑈) ⊆ (𝑁‘𝑉)) |
| 6 | 1, 2, 3, 5 | syl3anc 1373 | 1 ⊢ (𝜑 → (𝑁‘𝑈) ⊆ (𝑁‘𝑉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 ‘cfv 6481 Moorecmre 17484 mrClscmrc 17485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-mre 17488 df-mrc 17489 |
| This theorem is referenced by: mressmrcd 17533 mrieqv2d 17545 mrissmrid 17547 mreexexlem2d 17551 isacs3lem 18448 isacs4lem 18450 acsfiindd 18459 acsmapd 18460 acsmap2d 18461 dprdres 19942 dprdss 19943 dprd2dlem1 19955 dprd2da 19956 dmdprdsplit2lem 19959 |
| Copyright terms: Public domain | W3C validator |