| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mrieqvlemd | Structured version Visualization version GIF version | ||
| Description: In a Moore system, if 𝑌 is a member of 𝑆, (𝑆 ∖ {𝑌}) and 𝑆 have the same closure if and only if 𝑌 is in the closure of (𝑆 ∖ {𝑌}). Used in the proof of mrieqvd 17605 and mrieqv2d 17606. Deduction form. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| mrieqvlemd.1 | ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
| mrieqvlemd.2 | ⊢ 𝑁 = (mrCls‘𝐴) |
| mrieqvlemd.3 | ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
| mrieqvlemd.4 | ⊢ (𝜑 → 𝑌 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| mrieqvlemd | ⊢ (𝜑 → (𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌})) ↔ (𝑁‘(𝑆 ∖ {𝑌})) = (𝑁‘𝑆))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mrieqvlemd.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) | |
| 2 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → 𝐴 ∈ (Moore‘𝑋)) |
| 3 | mrieqvlemd.2 | . . . 4 ⊢ 𝑁 = (mrCls‘𝐴) | |
| 4 | undif1 4447 | . . . . . 6 ⊢ ((𝑆 ∖ {𝑌}) ∪ {𝑌}) = (𝑆 ∪ {𝑌}) | |
| 5 | mrieqvlemd.3 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) | |
| 6 | 5 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → 𝑆 ⊆ 𝑋) |
| 7 | 6 | ssdifssd 4118 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → (𝑆 ∖ {𝑌}) ⊆ 𝑋) |
| 8 | 2, 3, 7 | mrcssidd 17592 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → (𝑆 ∖ {𝑌}) ⊆ (𝑁‘(𝑆 ∖ {𝑌}))) |
| 9 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) | |
| 10 | 9 | snssd 4781 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → {𝑌} ⊆ (𝑁‘(𝑆 ∖ {𝑌}))) |
| 11 | 8, 10 | unssd 4163 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → ((𝑆 ∖ {𝑌}) ∪ {𝑌}) ⊆ (𝑁‘(𝑆 ∖ {𝑌}))) |
| 12 | 4, 11 | eqsstrrid 3994 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → (𝑆 ∪ {𝑌}) ⊆ (𝑁‘(𝑆 ∖ {𝑌}))) |
| 13 | 12 | unssad 4164 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → 𝑆 ⊆ (𝑁‘(𝑆 ∖ {𝑌}))) |
| 14 | difssd 4108 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → (𝑆 ∖ {𝑌}) ⊆ 𝑆) | |
| 15 | 2, 3, 13, 14 | mressmrcd 17594 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → (𝑁‘𝑆) = (𝑁‘(𝑆 ∖ {𝑌}))) |
| 16 | 15 | eqcomd 2736 | . 2 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → (𝑁‘(𝑆 ∖ {𝑌})) = (𝑁‘𝑆)) |
| 17 | 1, 3, 5 | mrcssidd 17592 | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ (𝑁‘𝑆)) |
| 18 | mrieqvlemd.4 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑆) | |
| 19 | 17, 18 | sseldd 3955 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (𝑁‘𝑆)) |
| 20 | 19 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘(𝑆 ∖ {𝑌})) = (𝑁‘𝑆)) → 𝑌 ∈ (𝑁‘𝑆)) |
| 21 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘(𝑆 ∖ {𝑌})) = (𝑁‘𝑆)) → (𝑁‘(𝑆 ∖ {𝑌})) = (𝑁‘𝑆)) | |
| 22 | 20, 21 | eleqtrrd 2832 | . 2 ⊢ ((𝜑 ∧ (𝑁‘(𝑆 ∖ {𝑌})) = (𝑁‘𝑆)) → 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) |
| 23 | 16, 22 | impbida 800 | 1 ⊢ (𝜑 → (𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌})) ↔ (𝑁‘(𝑆 ∖ {𝑌})) = (𝑁‘𝑆))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3919 ∪ cun 3920 ⊆ wss 3922 {csn 4597 ‘cfv 6519 Moorecmre 17549 mrClscmrc 17550 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-int 4919 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-fv 6527 df-mre 17553 df-mrc 17554 |
| This theorem is referenced by: mrieqvd 17605 mrieqv2d 17606 |
| Copyright terms: Public domain | W3C validator |