![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mrieqvlemd | Structured version Visualization version GIF version |
Description: In a Moore system, if 𝑌 is a member of 𝑆, (𝑆 ∖ {𝑌}) and 𝑆 have the same closure if and only if 𝑌 is in the closure of (𝑆 ∖ {𝑌}). Used in the proof of mrieqvd 17683 and mrieqv2d 17684. Deduction form. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
mrieqvlemd.1 | ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
mrieqvlemd.2 | ⊢ 𝑁 = (mrCls‘𝐴) |
mrieqvlemd.3 | ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
mrieqvlemd.4 | ⊢ (𝜑 → 𝑌 ∈ 𝑆) |
Ref | Expression |
---|---|
mrieqvlemd | ⊢ (𝜑 → (𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌})) ↔ (𝑁‘(𝑆 ∖ {𝑌})) = (𝑁‘𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mrieqvlemd.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) | |
2 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → 𝐴 ∈ (Moore‘𝑋)) |
3 | mrieqvlemd.2 | . . . 4 ⊢ 𝑁 = (mrCls‘𝐴) | |
4 | undif1 4482 | . . . . . 6 ⊢ ((𝑆 ∖ {𝑌}) ∪ {𝑌}) = (𝑆 ∪ {𝑌}) | |
5 | mrieqvlemd.3 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) | |
6 | 5 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → 𝑆 ⊆ 𝑋) |
7 | 6 | ssdifssd 4157 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → (𝑆 ∖ {𝑌}) ⊆ 𝑋) |
8 | 2, 3, 7 | mrcssidd 17670 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → (𝑆 ∖ {𝑌}) ⊆ (𝑁‘(𝑆 ∖ {𝑌}))) |
9 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) | |
10 | 9 | snssd 4814 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → {𝑌} ⊆ (𝑁‘(𝑆 ∖ {𝑌}))) |
11 | 8, 10 | unssd 4202 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → ((𝑆 ∖ {𝑌}) ∪ {𝑌}) ⊆ (𝑁‘(𝑆 ∖ {𝑌}))) |
12 | 4, 11 | eqsstrrid 4045 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → (𝑆 ∪ {𝑌}) ⊆ (𝑁‘(𝑆 ∖ {𝑌}))) |
13 | 12 | unssad 4203 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → 𝑆 ⊆ (𝑁‘(𝑆 ∖ {𝑌}))) |
14 | difssd 4147 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → (𝑆 ∖ {𝑌}) ⊆ 𝑆) | |
15 | 2, 3, 13, 14 | mressmrcd 17672 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → (𝑁‘𝑆) = (𝑁‘(𝑆 ∖ {𝑌}))) |
16 | 15 | eqcomd 2741 | . 2 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → (𝑁‘(𝑆 ∖ {𝑌})) = (𝑁‘𝑆)) |
17 | 1, 3, 5 | mrcssidd 17670 | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ (𝑁‘𝑆)) |
18 | mrieqvlemd.4 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑆) | |
19 | 17, 18 | sseldd 3996 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (𝑁‘𝑆)) |
20 | 19 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘(𝑆 ∖ {𝑌})) = (𝑁‘𝑆)) → 𝑌 ∈ (𝑁‘𝑆)) |
21 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘(𝑆 ∖ {𝑌})) = (𝑁‘𝑆)) → (𝑁‘(𝑆 ∖ {𝑌})) = (𝑁‘𝑆)) | |
22 | 20, 21 | eleqtrrd 2842 | . 2 ⊢ ((𝜑 ∧ (𝑁‘(𝑆 ∖ {𝑌})) = (𝑁‘𝑆)) → 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) |
23 | 16, 22 | impbida 801 | 1 ⊢ (𝜑 → (𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌})) ↔ (𝑁‘(𝑆 ∖ {𝑌})) = (𝑁‘𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∖ cdif 3960 ∪ cun 3961 ⊆ wss 3963 {csn 4631 ‘cfv 6563 Moorecmre 17627 mrClscmrc 17628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-mre 17631 df-mrc 17632 |
This theorem is referenced by: mrieqvd 17683 mrieqv2d 17684 |
Copyright terms: Public domain | W3C validator |