MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrieqvlemd Structured version   Visualization version   GIF version

Theorem mrieqvlemd 17537
Description: In a Moore system, if 𝑌 is a member of 𝑆, (𝑆 ∖ {𝑌}) and 𝑆 have the same closure if and only if 𝑌 is in the closure of (𝑆 ∖ {𝑌}). Used in the proof of mrieqvd 17546 and mrieqv2d 17547. Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mrieqvlemd.1 (𝜑𝐴 ∈ (Moore‘𝑋))
mrieqvlemd.2 𝑁 = (mrCls‘𝐴)
mrieqvlemd.3 (𝜑𝑆𝑋)
mrieqvlemd.4 (𝜑𝑌𝑆)
Assertion
Ref Expression
mrieqvlemd (𝜑 → (𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌})) ↔ (𝑁‘(𝑆 ∖ {𝑌})) = (𝑁𝑆)))

Proof of Theorem mrieqvlemd
StepHypRef Expression
1 mrieqvlemd.1 . . . . 5 (𝜑𝐴 ∈ (Moore‘𝑋))
21adantr 480 . . . 4 ((𝜑𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → 𝐴 ∈ (Moore‘𝑋))
3 mrieqvlemd.2 . . . 4 𝑁 = (mrCls‘𝐴)
4 undif1 4425 . . . . . 6 ((𝑆 ∖ {𝑌}) ∪ {𝑌}) = (𝑆 ∪ {𝑌})
5 mrieqvlemd.3 . . . . . . . . . 10 (𝜑𝑆𝑋)
65adantr 480 . . . . . . . . 9 ((𝜑𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → 𝑆𝑋)
76ssdifssd 4096 . . . . . . . 8 ((𝜑𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → (𝑆 ∖ {𝑌}) ⊆ 𝑋)
82, 3, 7mrcssidd 17533 . . . . . . 7 ((𝜑𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → (𝑆 ∖ {𝑌}) ⊆ (𝑁‘(𝑆 ∖ {𝑌})))
9 simpr 484 . . . . . . . 8 ((𝜑𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌})))
109snssd 4760 . . . . . . 7 ((𝜑𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → {𝑌} ⊆ (𝑁‘(𝑆 ∖ {𝑌})))
118, 10unssd 4141 . . . . . 6 ((𝜑𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → ((𝑆 ∖ {𝑌}) ∪ {𝑌}) ⊆ (𝑁‘(𝑆 ∖ {𝑌})))
124, 11eqsstrrid 3970 . . . . 5 ((𝜑𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → (𝑆 ∪ {𝑌}) ⊆ (𝑁‘(𝑆 ∖ {𝑌})))
1312unssad 4142 . . . 4 ((𝜑𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → 𝑆 ⊆ (𝑁‘(𝑆 ∖ {𝑌})))
14 difssd 4086 . . . 4 ((𝜑𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → (𝑆 ∖ {𝑌}) ⊆ 𝑆)
152, 3, 13, 14mressmrcd 17535 . . 3 ((𝜑𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → (𝑁𝑆) = (𝑁‘(𝑆 ∖ {𝑌})))
1615eqcomd 2739 . 2 ((𝜑𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → (𝑁‘(𝑆 ∖ {𝑌})) = (𝑁𝑆))
171, 3, 5mrcssidd 17533 . . . . 5 (𝜑𝑆 ⊆ (𝑁𝑆))
18 mrieqvlemd.4 . . . . 5 (𝜑𝑌𝑆)
1917, 18sseldd 3931 . . . 4 (𝜑𝑌 ∈ (𝑁𝑆))
2019adantr 480 . . 3 ((𝜑 ∧ (𝑁‘(𝑆 ∖ {𝑌})) = (𝑁𝑆)) → 𝑌 ∈ (𝑁𝑆))
21 simpr 484 . . 3 ((𝜑 ∧ (𝑁‘(𝑆 ∖ {𝑌})) = (𝑁𝑆)) → (𝑁‘(𝑆 ∖ {𝑌})) = (𝑁𝑆))
2220, 21eleqtrrd 2836 . 2 ((𝜑 ∧ (𝑁‘(𝑆 ∖ {𝑌})) = (𝑁𝑆)) → 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌})))
2316, 22impbida 800 1 (𝜑 → (𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌})) ↔ (𝑁‘(𝑆 ∖ {𝑌})) = (𝑁𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  cdif 3895  cun 3896  wss 3898  {csn 4575  cfv 6486  Moorecmre 17486  mrClscmrc 17487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-mre 17490  df-mrc 17491
This theorem is referenced by:  mrieqvd  17546  mrieqv2d  17547
  Copyright terms: Public domain W3C validator