| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mrieqvlemd | Structured version Visualization version GIF version | ||
| Description: In a Moore system, if 𝑌 is a member of 𝑆, (𝑆 ∖ {𝑌}) and 𝑆 have the same closure if and only if 𝑌 is in the closure of (𝑆 ∖ {𝑌}). Used in the proof of mrieqvd 17546 and mrieqv2d 17547. Deduction form. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| mrieqvlemd.1 | ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
| mrieqvlemd.2 | ⊢ 𝑁 = (mrCls‘𝐴) |
| mrieqvlemd.3 | ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
| mrieqvlemd.4 | ⊢ (𝜑 → 𝑌 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| mrieqvlemd | ⊢ (𝜑 → (𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌})) ↔ (𝑁‘(𝑆 ∖ {𝑌})) = (𝑁‘𝑆))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mrieqvlemd.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) | |
| 2 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → 𝐴 ∈ (Moore‘𝑋)) |
| 3 | mrieqvlemd.2 | . . . 4 ⊢ 𝑁 = (mrCls‘𝐴) | |
| 4 | undif1 4425 | . . . . . 6 ⊢ ((𝑆 ∖ {𝑌}) ∪ {𝑌}) = (𝑆 ∪ {𝑌}) | |
| 5 | mrieqvlemd.3 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) | |
| 6 | 5 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → 𝑆 ⊆ 𝑋) |
| 7 | 6 | ssdifssd 4096 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → (𝑆 ∖ {𝑌}) ⊆ 𝑋) |
| 8 | 2, 3, 7 | mrcssidd 17533 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → (𝑆 ∖ {𝑌}) ⊆ (𝑁‘(𝑆 ∖ {𝑌}))) |
| 9 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) | |
| 10 | 9 | snssd 4760 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → {𝑌} ⊆ (𝑁‘(𝑆 ∖ {𝑌}))) |
| 11 | 8, 10 | unssd 4141 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → ((𝑆 ∖ {𝑌}) ∪ {𝑌}) ⊆ (𝑁‘(𝑆 ∖ {𝑌}))) |
| 12 | 4, 11 | eqsstrrid 3970 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → (𝑆 ∪ {𝑌}) ⊆ (𝑁‘(𝑆 ∖ {𝑌}))) |
| 13 | 12 | unssad 4142 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → 𝑆 ⊆ (𝑁‘(𝑆 ∖ {𝑌}))) |
| 14 | difssd 4086 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → (𝑆 ∖ {𝑌}) ⊆ 𝑆) | |
| 15 | 2, 3, 13, 14 | mressmrcd 17535 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → (𝑁‘𝑆) = (𝑁‘(𝑆 ∖ {𝑌}))) |
| 16 | 15 | eqcomd 2739 | . 2 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → (𝑁‘(𝑆 ∖ {𝑌})) = (𝑁‘𝑆)) |
| 17 | 1, 3, 5 | mrcssidd 17533 | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ (𝑁‘𝑆)) |
| 18 | mrieqvlemd.4 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑆) | |
| 19 | 17, 18 | sseldd 3931 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (𝑁‘𝑆)) |
| 20 | 19 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘(𝑆 ∖ {𝑌})) = (𝑁‘𝑆)) → 𝑌 ∈ (𝑁‘𝑆)) |
| 21 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘(𝑆 ∖ {𝑌})) = (𝑁‘𝑆)) → (𝑁‘(𝑆 ∖ {𝑌})) = (𝑁‘𝑆)) | |
| 22 | 20, 21 | eleqtrrd 2836 | . 2 ⊢ ((𝜑 ∧ (𝑁‘(𝑆 ∖ {𝑌})) = (𝑁‘𝑆)) → 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) |
| 23 | 16, 22 | impbida 800 | 1 ⊢ (𝜑 → (𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌})) ↔ (𝑁‘(𝑆 ∖ {𝑌})) = (𝑁‘𝑆))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∖ cdif 3895 ∪ cun 3896 ⊆ wss 3898 {csn 4575 ‘cfv 6486 Moorecmre 17486 mrClscmrc 17487 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-mre 17490 df-mrc 17491 |
| This theorem is referenced by: mrieqvd 17546 mrieqv2d 17547 |
| Copyright terms: Public domain | W3C validator |