MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrieqvlemd Structured version   Visualization version   GIF version

Theorem mrieqvlemd 17597
Description: In a Moore system, if 𝑌 is a member of 𝑆, (𝑆 ∖ {𝑌}) and 𝑆 have the same closure if and only if 𝑌 is in the closure of (𝑆 ∖ {𝑌}). Used in the proof of mrieqvd 17606 and mrieqv2d 17607. Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mrieqvlemd.1 (𝜑𝐴 ∈ (Moore‘𝑋))
mrieqvlemd.2 𝑁 = (mrCls‘𝐴)
mrieqvlemd.3 (𝜑𝑆𝑋)
mrieqvlemd.4 (𝜑𝑌𝑆)
Assertion
Ref Expression
mrieqvlemd (𝜑 → (𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌})) ↔ (𝑁‘(𝑆 ∖ {𝑌})) = (𝑁𝑆)))

Proof of Theorem mrieqvlemd
StepHypRef Expression
1 mrieqvlemd.1 . . . . 5 (𝜑𝐴 ∈ (Moore‘𝑋))
21adantr 480 . . . 4 ((𝜑𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → 𝐴 ∈ (Moore‘𝑋))
3 mrieqvlemd.2 . . . 4 𝑁 = (mrCls‘𝐴)
4 undif1 4442 . . . . . 6 ((𝑆 ∖ {𝑌}) ∪ {𝑌}) = (𝑆 ∪ {𝑌})
5 mrieqvlemd.3 . . . . . . . . . 10 (𝜑𝑆𝑋)
65adantr 480 . . . . . . . . 9 ((𝜑𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → 𝑆𝑋)
76ssdifssd 4113 . . . . . . . 8 ((𝜑𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → (𝑆 ∖ {𝑌}) ⊆ 𝑋)
82, 3, 7mrcssidd 17593 . . . . . . 7 ((𝜑𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → (𝑆 ∖ {𝑌}) ⊆ (𝑁‘(𝑆 ∖ {𝑌})))
9 simpr 484 . . . . . . . 8 ((𝜑𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌})))
109snssd 4776 . . . . . . 7 ((𝜑𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → {𝑌} ⊆ (𝑁‘(𝑆 ∖ {𝑌})))
118, 10unssd 4158 . . . . . 6 ((𝜑𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → ((𝑆 ∖ {𝑌}) ∪ {𝑌}) ⊆ (𝑁‘(𝑆 ∖ {𝑌})))
124, 11eqsstrrid 3989 . . . . 5 ((𝜑𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → (𝑆 ∪ {𝑌}) ⊆ (𝑁‘(𝑆 ∖ {𝑌})))
1312unssad 4159 . . . 4 ((𝜑𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → 𝑆 ⊆ (𝑁‘(𝑆 ∖ {𝑌})))
14 difssd 4103 . . . 4 ((𝜑𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → (𝑆 ∖ {𝑌}) ⊆ 𝑆)
152, 3, 13, 14mressmrcd 17595 . . 3 ((𝜑𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → (𝑁𝑆) = (𝑁‘(𝑆 ∖ {𝑌})))
1615eqcomd 2736 . 2 ((𝜑𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → (𝑁‘(𝑆 ∖ {𝑌})) = (𝑁𝑆))
171, 3, 5mrcssidd 17593 . . . . 5 (𝜑𝑆 ⊆ (𝑁𝑆))
18 mrieqvlemd.4 . . . . 5 (𝜑𝑌𝑆)
1917, 18sseldd 3950 . . . 4 (𝜑𝑌 ∈ (𝑁𝑆))
2019adantr 480 . . 3 ((𝜑 ∧ (𝑁‘(𝑆 ∖ {𝑌})) = (𝑁𝑆)) → 𝑌 ∈ (𝑁𝑆))
21 simpr 484 . . 3 ((𝜑 ∧ (𝑁‘(𝑆 ∖ {𝑌})) = (𝑁𝑆)) → (𝑁‘(𝑆 ∖ {𝑌})) = (𝑁𝑆))
2220, 21eleqtrrd 2832 . 2 ((𝜑 ∧ (𝑁‘(𝑆 ∖ {𝑌})) = (𝑁𝑆)) → 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌})))
2316, 22impbida 800 1 (𝜑 → (𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌})) ↔ (𝑁‘(𝑆 ∖ {𝑌})) = (𝑁𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cdif 3914  cun 3915  wss 3917  {csn 4592  cfv 6514  Moorecmre 17550  mrClscmrc 17551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-mre 17554  df-mrc 17555
This theorem is referenced by:  mrieqvd  17606  mrieqv2d  17607
  Copyright terms: Public domain W3C validator