![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mrieqvlemd | Structured version Visualization version GIF version |
Description: In a Moore system, if 𝑌 is a member of 𝑆, (𝑆 ∖ {𝑌}) and 𝑆 have the same closure if and only if 𝑌 is in the closure of (𝑆 ∖ {𝑌}). Used in the proof of mrieqvd 17696 and mrieqv2d 17697. Deduction form. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
mrieqvlemd.1 | ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
mrieqvlemd.2 | ⊢ 𝑁 = (mrCls‘𝐴) |
mrieqvlemd.3 | ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
mrieqvlemd.4 | ⊢ (𝜑 → 𝑌 ∈ 𝑆) |
Ref | Expression |
---|---|
mrieqvlemd | ⊢ (𝜑 → (𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌})) ↔ (𝑁‘(𝑆 ∖ {𝑌})) = (𝑁‘𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mrieqvlemd.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) | |
2 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → 𝐴 ∈ (Moore‘𝑋)) |
3 | mrieqvlemd.2 | . . . 4 ⊢ 𝑁 = (mrCls‘𝐴) | |
4 | undif1 4499 | . . . . . 6 ⊢ ((𝑆 ∖ {𝑌}) ∪ {𝑌}) = (𝑆 ∪ {𝑌}) | |
5 | mrieqvlemd.3 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) | |
6 | 5 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → 𝑆 ⊆ 𝑋) |
7 | 6 | ssdifssd 4170 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → (𝑆 ∖ {𝑌}) ⊆ 𝑋) |
8 | 2, 3, 7 | mrcssidd 17683 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → (𝑆 ∖ {𝑌}) ⊆ (𝑁‘(𝑆 ∖ {𝑌}))) |
9 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) | |
10 | 9 | snssd 4834 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → {𝑌} ⊆ (𝑁‘(𝑆 ∖ {𝑌}))) |
11 | 8, 10 | unssd 4215 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → ((𝑆 ∖ {𝑌}) ∪ {𝑌}) ⊆ (𝑁‘(𝑆 ∖ {𝑌}))) |
12 | 4, 11 | eqsstrrid 4058 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → (𝑆 ∪ {𝑌}) ⊆ (𝑁‘(𝑆 ∖ {𝑌}))) |
13 | 12 | unssad 4216 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → 𝑆 ⊆ (𝑁‘(𝑆 ∖ {𝑌}))) |
14 | difssd 4160 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → (𝑆 ∖ {𝑌}) ⊆ 𝑆) | |
15 | 2, 3, 13, 14 | mressmrcd 17685 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → (𝑁‘𝑆) = (𝑁‘(𝑆 ∖ {𝑌}))) |
16 | 15 | eqcomd 2746 | . 2 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) → (𝑁‘(𝑆 ∖ {𝑌})) = (𝑁‘𝑆)) |
17 | 1, 3, 5 | mrcssidd 17683 | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ (𝑁‘𝑆)) |
18 | mrieqvlemd.4 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑆) | |
19 | 17, 18 | sseldd 4009 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (𝑁‘𝑆)) |
20 | 19 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘(𝑆 ∖ {𝑌})) = (𝑁‘𝑆)) → 𝑌 ∈ (𝑁‘𝑆)) |
21 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘(𝑆 ∖ {𝑌})) = (𝑁‘𝑆)) → (𝑁‘(𝑆 ∖ {𝑌})) = (𝑁‘𝑆)) | |
22 | 20, 21 | eleqtrrd 2847 | . 2 ⊢ ((𝜑 ∧ (𝑁‘(𝑆 ∖ {𝑌})) = (𝑁‘𝑆)) → 𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌}))) |
23 | 16, 22 | impbida 800 | 1 ⊢ (𝜑 → (𝑌 ∈ (𝑁‘(𝑆 ∖ {𝑌})) ↔ (𝑁‘(𝑆 ∖ {𝑌})) = (𝑁‘𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∖ cdif 3973 ∪ cun 3974 ⊆ wss 3976 {csn 4648 ‘cfv 6573 Moorecmre 17640 mrClscmrc 17641 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-mre 17644 df-mrc 17645 |
This theorem is referenced by: mrieqvd 17696 mrieqv2d 17697 |
Copyright terms: Public domain | W3C validator |