MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrcssv Structured version   Visualization version   GIF version

Theorem mrcssv 17659
Description: The closure of a set is a subset of the base. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Hypothesis
Ref Expression
mrcfval.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
mrcssv (𝐶 ∈ (Moore‘𝑋) → (𝐹𝑈) ⊆ 𝑋)

Proof of Theorem mrcssv
StepHypRef Expression
1 fvssunirn 6940 . 2 (𝐹𝑈) ⊆ ran 𝐹
2 mrcfval.f . . . . 5 𝐹 = (mrCls‘𝐶)
32mrcf 17654 . . . 4 (𝐶 ∈ (Moore‘𝑋) → 𝐹:𝒫 𝑋𝐶)
4 frn 6744 . . . 4 (𝐹:𝒫 𝑋𝐶 → ran 𝐹𝐶)
5 uniss 4920 . . . 4 (ran 𝐹𝐶 ran 𝐹 𝐶)
63, 4, 53syl 18 . . 3 (𝐶 ∈ (Moore‘𝑋) → ran 𝐹 𝐶)
7 mreuni 17645 . . 3 (𝐶 ∈ (Moore‘𝑋) → 𝐶 = 𝑋)
86, 7sseqtrd 4036 . 2 (𝐶 ∈ (Moore‘𝑋) → ran 𝐹𝑋)
91, 8sstrid 4007 1 (𝐶 ∈ (Moore‘𝑋) → (𝐹𝑈) ⊆ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  wss 3963  𝒫 cpw 4605   cuni 4912  ran crn 5690  wf 6559  cfv 6563  Moorecmre 17627  mrClscmrc 17628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-mre 17631  df-mrc 17632
This theorem is referenced by:  mrcidb  17660  mrcuni  17666  mrcssvd  17668  mrefg2  42695  proot1hash  43184
  Copyright terms: Public domain W3C validator