MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrcssv Structured version   Visualization version   GIF version

Theorem mrcssv 17551
Description: The closure of a set is a subset of the base. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Hypothesis
Ref Expression
mrcfval.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
mrcssv (𝐶 ∈ (Moore‘𝑋) → (𝐹𝑈) ⊆ 𝑋)

Proof of Theorem mrcssv
StepHypRef Expression
1 fvssunirn 6873 . 2 (𝐹𝑈) ⊆ ran 𝐹
2 mrcfval.f . . . . 5 𝐹 = (mrCls‘𝐶)
32mrcf 17546 . . . 4 (𝐶 ∈ (Moore‘𝑋) → 𝐹:𝒫 𝑋𝐶)
4 frn 6677 . . . 4 (𝐹:𝒫 𝑋𝐶 → ran 𝐹𝐶)
5 uniss 4875 . . . 4 (ran 𝐹𝐶 ran 𝐹 𝐶)
63, 4, 53syl 18 . . 3 (𝐶 ∈ (Moore‘𝑋) → ran 𝐹 𝐶)
7 mreuni 17537 . . 3 (𝐶 ∈ (Moore‘𝑋) → 𝐶 = 𝑋)
86, 7sseqtrd 3980 . 2 (𝐶 ∈ (Moore‘𝑋) → ran 𝐹𝑋)
91, 8sstrid 3955 1 (𝐶 ∈ (Moore‘𝑋) → (𝐹𝑈) ⊆ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3911  𝒫 cpw 4559   cuni 4867  ran crn 5632  wf 6495  cfv 6499  Moorecmre 17519  mrClscmrc 17520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-mre 17523  df-mrc 17524
This theorem is referenced by:  mrcidb  17552  mrcuni  17558  mrcssvd  17560  mrefg2  42668  proot1hash  43157
  Copyright terms: Public domain W3C validator