MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrcssv Structured version   Visualization version   GIF version

Theorem mrcssv 16756
Description: The closure of a set is a subset of the base. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Hypothesis
Ref Expression
mrcfval.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
mrcssv (𝐶 ∈ (Moore‘𝑋) → (𝐹𝑈) ⊆ 𝑋)

Proof of Theorem mrcssv
StepHypRef Expression
1 fvssunirn 6526 . 2 (𝐹𝑈) ⊆ ran 𝐹
2 mrcfval.f . . . . 5 𝐹 = (mrCls‘𝐶)
32mrcf 16751 . . . 4 (𝐶 ∈ (Moore‘𝑋) → 𝐹:𝒫 𝑋𝐶)
4 frn 6348 . . . 4 (𝐹:𝒫 𝑋𝐶 → ran 𝐹𝐶)
5 uniss 4730 . . . 4 (ran 𝐹𝐶 ran 𝐹 𝐶)
63, 4, 53syl 18 . . 3 (𝐶 ∈ (Moore‘𝑋) → ran 𝐹 𝐶)
7 mreuni 16742 . . 3 (𝐶 ∈ (Moore‘𝑋) → 𝐶 = 𝑋)
86, 7sseqtrd 3892 . 2 (𝐶 ∈ (Moore‘𝑋) → ran 𝐹𝑋)
91, 8syl5ss 3864 1 (𝐶 ∈ (Moore‘𝑋) → (𝐹𝑈) ⊆ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1508  wcel 2051  wss 3824  𝒫 cpw 4417   cuni 4709  ran crn 5405  wf 6182  cfv 6186  Moorecmre 16724  mrClscmrc 16725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2745  ax-sep 5057  ax-nul 5064  ax-pow 5116  ax-pr 5183  ax-un 7278
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2754  df-cleq 2766  df-clel 2841  df-nfc 2913  df-ne 2963  df-ral 3088  df-rex 3089  df-rab 3092  df-v 3412  df-sbc 3677  df-dif 3827  df-un 3829  df-in 3831  df-ss 3838  df-nul 4174  df-if 4346  df-pw 4419  df-sn 4437  df-pr 4439  df-op 4443  df-uni 4710  df-int 4747  df-br 4927  df-opab 4989  df-mpt 5006  df-id 5309  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-rn 5415  df-res 5416  df-ima 5417  df-iota 6150  df-fun 6188  df-fn 6189  df-f 6190  df-fv 6194  df-mre 16728  df-mrc 16729
This theorem is referenced by:  mrcidb  16757  mrcuni  16763  mrcssvd  16765  mrefg2  38733  proot1hash  39230
  Copyright terms: Public domain W3C validator