MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrcssv Structured version   Visualization version   GIF version

Theorem mrcssv 17240
Description: The closure of a set is a subset of the base. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Hypothesis
Ref Expression
mrcfval.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
mrcssv (𝐶 ∈ (Moore‘𝑋) → (𝐹𝑈) ⊆ 𝑋)

Proof of Theorem mrcssv
StepHypRef Expression
1 fvssunirn 6785 . 2 (𝐹𝑈) ⊆ ran 𝐹
2 mrcfval.f . . . . 5 𝐹 = (mrCls‘𝐶)
32mrcf 17235 . . . 4 (𝐶 ∈ (Moore‘𝑋) → 𝐹:𝒫 𝑋𝐶)
4 frn 6591 . . . 4 (𝐹:𝒫 𝑋𝐶 → ran 𝐹𝐶)
5 uniss 4844 . . . 4 (ran 𝐹𝐶 ran 𝐹 𝐶)
63, 4, 53syl 18 . . 3 (𝐶 ∈ (Moore‘𝑋) → ran 𝐹 𝐶)
7 mreuni 17226 . . 3 (𝐶 ∈ (Moore‘𝑋) → 𝐶 = 𝑋)
86, 7sseqtrd 3957 . 2 (𝐶 ∈ (Moore‘𝑋) → ran 𝐹𝑋)
91, 8sstrid 3928 1 (𝐶 ∈ (Moore‘𝑋) → (𝐹𝑈) ⊆ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wss 3883  𝒫 cpw 4530   cuni 4836  ran crn 5581  wf 6414  cfv 6418  Moorecmre 17208  mrClscmrc 17209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-mre 17212  df-mrc 17213
This theorem is referenced by:  mrcidb  17241  mrcuni  17247  mrcssvd  17249  mrefg2  40445  proot1hash  40941
  Copyright terms: Public domain W3C validator