![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mrcssv | Structured version Visualization version GIF version |
Description: The closure of a set is a subset of the base. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
Ref | Expression |
---|---|
mrcfval.f | β’ πΉ = (mrClsβπΆ) |
Ref | Expression |
---|---|
mrcssv | β’ (πΆ β (Mooreβπ) β (πΉβπ) β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvssunirn 6925 | . 2 β’ (πΉβπ) β βͺ ran πΉ | |
2 | mrcfval.f | . . . . 5 β’ πΉ = (mrClsβπΆ) | |
3 | 2 | mrcf 17559 | . . . 4 β’ (πΆ β (Mooreβπ) β πΉ:π« πβΆπΆ) |
4 | frn 6725 | . . . 4 β’ (πΉ:π« πβΆπΆ β ran πΉ β πΆ) | |
5 | uniss 4917 | . . . 4 β’ (ran πΉ β πΆ β βͺ ran πΉ β βͺ πΆ) | |
6 | 3, 4, 5 | 3syl 18 | . . 3 β’ (πΆ β (Mooreβπ) β βͺ ran πΉ β βͺ πΆ) |
7 | mreuni 17550 | . . 3 β’ (πΆ β (Mooreβπ) β βͺ πΆ = π) | |
8 | 6, 7 | sseqtrd 4023 | . 2 β’ (πΆ β (Mooreβπ) β βͺ ran πΉ β π) |
9 | 1, 8 | sstrid 3994 | 1 β’ (πΆ β (Mooreβπ) β (πΉβπ) β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1539 β wcel 2104 β wss 3949 π« cpw 4603 βͺ cuni 4909 ran crn 5678 βΆwf 6540 βcfv 6544 Moorecmre 17532 mrClscmrc 17533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fv 6552 df-mre 17536 df-mrc 17537 |
This theorem is referenced by: mrcidb 17565 mrcuni 17571 mrcssvd 17573 mrefg2 41749 proot1hash 42246 |
Copyright terms: Public domain | W3C validator |