| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mrcssv | Structured version Visualization version GIF version | ||
| Description: The closure of a set is a subset of the base. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| mrcfval.f | ⊢ 𝐹 = (mrCls‘𝐶) |
| Ref | Expression |
|---|---|
| mrcssv | ⊢ (𝐶 ∈ (Moore‘𝑋) → (𝐹‘𝑈) ⊆ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvssunirn 6873 | . 2 ⊢ (𝐹‘𝑈) ⊆ ∪ ran 𝐹 | |
| 2 | mrcfval.f | . . . . 5 ⊢ 𝐹 = (mrCls‘𝐶) | |
| 3 | 2 | mrcf 17546 | . . . 4 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐹:𝒫 𝑋⟶𝐶) |
| 4 | frn 6677 | . . . 4 ⊢ (𝐹:𝒫 𝑋⟶𝐶 → ran 𝐹 ⊆ 𝐶) | |
| 5 | uniss 4875 | . . . 4 ⊢ (ran 𝐹 ⊆ 𝐶 → ∪ ran 𝐹 ⊆ ∪ 𝐶) | |
| 6 | 3, 4, 5 | 3syl 18 | . . 3 ⊢ (𝐶 ∈ (Moore‘𝑋) → ∪ ran 𝐹 ⊆ ∪ 𝐶) |
| 7 | mreuni 17537 | . . 3 ⊢ (𝐶 ∈ (Moore‘𝑋) → ∪ 𝐶 = 𝑋) | |
| 8 | 6, 7 | sseqtrd 3980 | . 2 ⊢ (𝐶 ∈ (Moore‘𝑋) → ∪ ran 𝐹 ⊆ 𝑋) |
| 9 | 1, 8 | sstrid 3955 | 1 ⊢ (𝐶 ∈ (Moore‘𝑋) → (𝐹‘𝑈) ⊆ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3911 𝒫 cpw 4559 ∪ cuni 4867 ran crn 5632 ⟶wf 6495 ‘cfv 6499 Moorecmre 17519 mrClscmrc 17520 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-mre 17523 df-mrc 17524 |
| This theorem is referenced by: mrcidb 17552 mrcuni 17558 mrcssvd 17560 mrefg2 42668 proot1hash 43157 |
| Copyright terms: Public domain | W3C validator |