![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > acsinfdimd | Structured version Visualization version GIF version |
Description: In an algebraic closure system, if two independent sets have equal closure and one is infinite, then they are equinumerous. This is proven by using acsdomd 18512 twice with acsinfd 18511. See Section II.5 in [Cohn] p. 81 to 82. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
acsinfdimd.1 | β’ (π β π΄ β (ACSβπ)) |
acsinfdimd.2 | β’ π = (mrClsβπ΄) |
acsinfdimd.3 | β’ πΌ = (mrIndβπ΄) |
acsinfdimd.4 | β’ (π β π β πΌ) |
acsinfdimd.5 | β’ (π β π β πΌ) |
acsinfdimd.6 | β’ (π β (πβπ) = (πβπ)) |
acsinfdimd.7 | β’ (π β Β¬ π β Fin) |
Ref | Expression |
---|---|
acsinfdimd | β’ (π β π β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | acsinfdimd.1 | . . 3 β’ (π β π΄ β (ACSβπ)) | |
2 | acsinfdimd.2 | . . 3 β’ π = (mrClsβπ΄) | |
3 | acsinfdimd.3 | . . 3 β’ πΌ = (mrIndβπ΄) | |
4 | acsinfdimd.4 | . . 3 β’ (π β π β πΌ) | |
5 | 1 | acsmred 17599 | . . . 4 β’ (π β π΄ β (Mooreβπ)) |
6 | acsinfdimd.5 | . . . 4 β’ (π β π β πΌ) | |
7 | 3, 5, 6 | mrissd 17579 | . . 3 β’ (π β π β π) |
8 | acsinfdimd.6 | . . 3 β’ (π β (πβπ) = (πβπ)) | |
9 | acsinfdimd.7 | . . 3 β’ (π β Β¬ π β Fin) | |
10 | 1, 2, 3, 4, 7, 8, 9 | acsdomd 18512 | . 2 β’ (π β π βΌ π) |
11 | 3, 5, 4 | mrissd 17579 | . . 3 β’ (π β π β π) |
12 | 8 | eqcomd 2730 | . . 3 β’ (π β (πβπ) = (πβπ)) |
13 | 1, 2, 3, 4, 7, 8, 9 | acsinfd 18511 | . . 3 β’ (π β Β¬ π β Fin) |
14 | 1, 2, 3, 6, 11, 12, 13 | acsdomd 18512 | . 2 β’ (π β π βΌ π) |
15 | sbth 9089 | . 2 β’ ((π βΌ π β§ π βΌ π) β π β π) | |
16 | 10, 14, 15 | syl2anc 583 | 1 β’ (π β π β π) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 = wceq 1533 β wcel 2098 class class class wbr 5138 βcfv 6533 β cen 8932 βΌ cdom 8933 Fincfn 8935 mrClscmrc 17526 mrIndcmri 17527 ACScacs 17528 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-reg 9583 ax-inf2 9632 ax-ac2 10454 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-iin 4990 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-oi 9501 df-r1 9755 df-rank 9756 df-card 9930 df-acn 9933 df-ac 10107 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-nn 12210 df-2 12272 df-3 12273 df-4 12274 df-5 12275 df-6 12276 df-7 12277 df-8 12278 df-9 12279 df-n0 12470 df-z 12556 df-dec 12675 df-uz 12820 df-fz 13482 df-struct 17079 df-slot 17114 df-ndx 17126 df-base 17144 df-tset 17215 df-ple 17216 df-ocomp 17217 df-mre 17529 df-mrc 17530 df-mri 17531 df-acs 17532 df-proset 18250 df-drs 18251 df-poset 18268 df-ipo 18483 |
This theorem is referenced by: acsexdimd 18514 |
Copyright terms: Public domain | W3C validator |