Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > acsinfdimd | Structured version Visualization version GIF version |
Description: In an algebraic closure system, if two independent sets have equal closure and one is infinite, then they are equinumerous. This is proven by using acsdomd 18285 twice with acsinfd 18284. See Section II.5 in [Cohn] p. 81 to 82. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
acsinfdimd.1 | ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) |
acsinfdimd.2 | ⊢ 𝑁 = (mrCls‘𝐴) |
acsinfdimd.3 | ⊢ 𝐼 = (mrInd‘𝐴) |
acsinfdimd.4 | ⊢ (𝜑 → 𝑆 ∈ 𝐼) |
acsinfdimd.5 | ⊢ (𝜑 → 𝑇 ∈ 𝐼) |
acsinfdimd.6 | ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) |
acsinfdimd.7 | ⊢ (𝜑 → ¬ 𝑆 ∈ Fin) |
Ref | Expression |
---|---|
acsinfdimd | ⊢ (𝜑 → 𝑆 ≈ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | acsinfdimd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) | |
2 | acsinfdimd.2 | . . 3 ⊢ 𝑁 = (mrCls‘𝐴) | |
3 | acsinfdimd.3 | . . 3 ⊢ 𝐼 = (mrInd‘𝐴) | |
4 | acsinfdimd.4 | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝐼) | |
5 | 1 | acsmred 17375 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
6 | acsinfdimd.5 | . . . 4 ⊢ (𝜑 → 𝑇 ∈ 𝐼) | |
7 | 3, 5, 6 | mrissd 17355 | . . 3 ⊢ (𝜑 → 𝑇 ⊆ 𝑋) |
8 | acsinfdimd.6 | . . 3 ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) | |
9 | acsinfdimd.7 | . . 3 ⊢ (𝜑 → ¬ 𝑆 ∈ Fin) | |
10 | 1, 2, 3, 4, 7, 8, 9 | acsdomd 18285 | . 2 ⊢ (𝜑 → 𝑆 ≼ 𝑇) |
11 | 3, 5, 4 | mrissd 17355 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
12 | 8 | eqcomd 2744 | . . 3 ⊢ (𝜑 → (𝑁‘𝑇) = (𝑁‘𝑆)) |
13 | 1, 2, 3, 4, 7, 8, 9 | acsinfd 18284 | . . 3 ⊢ (𝜑 → ¬ 𝑇 ∈ Fin) |
14 | 1, 2, 3, 6, 11, 12, 13 | acsdomd 18285 | . 2 ⊢ (𝜑 → 𝑇 ≼ 𝑆) |
15 | sbth 8867 | . 2 ⊢ ((𝑆 ≼ 𝑇 ∧ 𝑇 ≼ 𝑆) → 𝑆 ≈ 𝑇) | |
16 | 10, 14, 15 | syl2anc 584 | 1 ⊢ (𝜑 → 𝑆 ≈ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2106 class class class wbr 5073 ‘cfv 6426 ≈ cen 8717 ≼ cdom 8718 Fincfn 8720 mrClscmrc 17302 mrIndcmri 17303 ACScacs 17304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5208 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-reg 9338 ax-inf2 9386 ax-ac2 10229 ax-cnex 10937 ax-resscn 10938 ax-1cn 10939 ax-icn 10940 ax-addcl 10941 ax-addrcl 10942 ax-mulcl 10943 ax-mulrcl 10944 ax-mulcom 10945 ax-addass 10946 ax-mulass 10947 ax-distr 10948 ax-i2m1 10949 ax-1ne0 10950 ax-1rid 10951 ax-rnegex 10952 ax-rrecex 10953 ax-cnre 10954 ax-pre-lttri 10955 ax-pre-lttrn 10956 ax-pre-ltadd 10957 ax-pre-mulgt0 10958 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-pss 3905 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5074 df-opab 5136 df-mpt 5157 df-tr 5191 df-id 5484 df-eprel 5490 df-po 5498 df-so 5499 df-fr 5539 df-se 5540 df-we 5541 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-pred 6195 df-ord 6262 df-on 6263 df-lim 6264 df-suc 6265 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-isom 6435 df-riota 7224 df-ov 7270 df-oprab 7271 df-mpo 7272 df-om 7703 df-1st 7820 df-2nd 7821 df-frecs 8084 df-wrecs 8115 df-recs 8189 df-rdg 8228 df-1o 8284 df-er 8485 df-map 8604 df-en 8721 df-dom 8722 df-sdom 8723 df-fin 8724 df-oi 9256 df-r1 9532 df-rank 9533 df-card 9707 df-acn 9710 df-ac 9882 df-pnf 11021 df-mnf 11022 df-xr 11023 df-ltxr 11024 df-le 11025 df-sub 11217 df-neg 11218 df-nn 11984 df-2 12046 df-3 12047 df-4 12048 df-5 12049 df-6 12050 df-7 12051 df-8 12052 df-9 12053 df-n0 12244 df-z 12330 df-dec 12448 df-uz 12593 df-fz 13250 df-struct 16858 df-slot 16893 df-ndx 16905 df-base 16923 df-tset 16991 df-ple 16992 df-ocomp 16993 df-mre 17305 df-mrc 17306 df-mri 17307 df-acs 17308 df-proset 18023 df-drs 18024 df-poset 18041 df-ipo 18256 |
This theorem is referenced by: acsexdimd 18287 |
Copyright terms: Public domain | W3C validator |