![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mreexfidimd | Structured version Visualization version GIF version |
Description: In a Moore system whose closure operator has the exchange property, if two independent sets have equal closure and one is finite, then they are equinumerous. Proven by using mreexdomd 17580 twice. This implies a special case of Theorem 4.2.2 in [FaureFrolicher] p. 87. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
mreexfidimd.1 | ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
mreexfidimd.2 | ⊢ 𝑁 = (mrCls‘𝐴) |
mreexfidimd.3 | ⊢ 𝐼 = (mrInd‘𝐴) |
mreexfidimd.4 | ⊢ (𝜑 → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) |
mreexfidimd.5 | ⊢ (𝜑 → 𝑆 ∈ 𝐼) |
mreexfidimd.6 | ⊢ (𝜑 → 𝑇 ∈ 𝐼) |
mreexfidimd.7 | ⊢ (𝜑 → 𝑆 ∈ Fin) |
mreexfidimd.8 | ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) |
Ref | Expression |
---|---|
mreexfidimd | ⊢ (𝜑 → 𝑆 ≈ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mreexfidimd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) | |
2 | mreexfidimd.2 | . . 3 ⊢ 𝑁 = (mrCls‘𝐴) | |
3 | mreexfidimd.3 | . . 3 ⊢ 𝐼 = (mrInd‘𝐴) | |
4 | mreexfidimd.4 | . . 3 ⊢ (𝜑 → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) | |
5 | mreexfidimd.5 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ 𝐼) | |
6 | 3, 1, 5 | mrissd 17567 | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
7 | 1, 2, 6 | mrcssidd 17556 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ (𝑁‘𝑆)) |
8 | mreexfidimd.8 | . . . 4 ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) | |
9 | 7, 8 | sseqtrd 4020 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ (𝑁‘𝑇)) |
10 | mreexfidimd.6 | . . . 4 ⊢ (𝜑 → 𝑇 ∈ 𝐼) | |
11 | 3, 1, 10 | mrissd 17567 | . . 3 ⊢ (𝜑 → 𝑇 ⊆ 𝑋) |
12 | mreexfidimd.7 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ Fin) | |
13 | 12 | orcd 872 | . . 3 ⊢ (𝜑 → (𝑆 ∈ Fin ∨ 𝑇 ∈ Fin)) |
14 | 1, 2, 3, 4, 9, 11, 13, 5 | mreexdomd 17580 | . 2 ⊢ (𝜑 → 𝑆 ≼ 𝑇) |
15 | 1, 2, 11 | mrcssidd 17556 | . . . 4 ⊢ (𝜑 → 𝑇 ⊆ (𝑁‘𝑇)) |
16 | 15, 8 | sseqtrrd 4021 | . . 3 ⊢ (𝜑 → 𝑇 ⊆ (𝑁‘𝑆)) |
17 | 12 | olcd 873 | . . 3 ⊢ (𝜑 → (𝑇 ∈ Fin ∨ 𝑆 ∈ Fin)) |
18 | 1, 2, 3, 4, 16, 6, 17, 10 | mreexdomd 17580 | . 2 ⊢ (𝜑 → 𝑇 ≼ 𝑆) |
19 | sbth 9081 | . 2 ⊢ ((𝑆 ≼ 𝑇 ∧ 𝑇 ≼ 𝑆) → 𝑆 ≈ 𝑇) | |
20 | 14, 18, 19 | syl2anc 585 | 1 ⊢ (𝜑 → 𝑆 ≈ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 ∀wral 3062 ∖ cdif 3943 ∪ cun 3944 𝒫 cpw 4598 {csn 4624 class class class wbr 5144 ‘cfv 6535 ≈ cen 8924 ≼ cdom 8925 Fincfn 8927 Moorecmre 17513 mrClscmrc 17514 mrIndcmri 17515 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5295 ax-nul 5302 ax-pow 5359 ax-pr 5423 ax-un 7712 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3965 df-nul 4321 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4905 df-int 4947 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-ord 6359 df-on 6360 df-lim 6361 df-suc 6362 df-iota 6487 df-fun 6537 df-fn 6538 df-f 6539 df-f1 6540 df-fo 6541 df-f1o 6542 df-fv 6543 df-om 7843 df-1o 8453 df-er 8691 df-en 8928 df-dom 8929 df-sdom 8930 df-fin 8931 df-card 9921 df-mre 17517 df-mrc 17518 df-mri 17519 |
This theorem is referenced by: acsexdimd 18499 lvecdimfi 32622 |
Copyright terms: Public domain | W3C validator |