MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreexfidimd Structured version   Visualization version   GIF version

Theorem mreexfidimd 16913
Description: In a Moore system whose closure operator has the exchange property, if two independent sets have equal closure and one is finite, then they are equinumerous. Proven by using mreexdomd 16912 twice. This implies a special case of Theorem 4.2.2 in [FaureFrolicher] p. 87. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mreexfidimd.1 (𝜑𝐴 ∈ (Moore‘𝑋))
mreexfidimd.2 𝑁 = (mrCls‘𝐴)
mreexfidimd.3 𝐼 = (mrInd‘𝐴)
mreexfidimd.4 (𝜑 → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
mreexfidimd.5 (𝜑𝑆𝐼)
mreexfidimd.6 (𝜑𝑇𝐼)
mreexfidimd.7 (𝜑𝑆 ∈ Fin)
mreexfidimd.8 (𝜑 → (𝑁𝑆) = (𝑁𝑇))
Assertion
Ref Expression
mreexfidimd (𝜑𝑆𝑇)
Distinct variable groups:   𝑋,𝑠,𝑦,𝑧   𝜑,𝑠,𝑦,𝑧   𝐼,𝑠,𝑦,𝑧   𝑁,𝑠,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑦,𝑧,𝑠)   𝑆(𝑦,𝑧,𝑠)   𝑇(𝑦,𝑧,𝑠)

Proof of Theorem mreexfidimd
StepHypRef Expression
1 mreexfidimd.1 . . 3 (𝜑𝐴 ∈ (Moore‘𝑋))
2 mreexfidimd.2 . . 3 𝑁 = (mrCls‘𝐴)
3 mreexfidimd.3 . . 3 𝐼 = (mrInd‘𝐴)
4 mreexfidimd.4 . . 3 (𝜑 → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
5 mreexfidimd.5 . . . . . 6 (𝜑𝑆𝐼)
63, 1, 5mrissd 16899 . . . . 5 (𝜑𝑆𝑋)
71, 2, 6mrcssidd 16888 . . . 4 (𝜑𝑆 ⊆ (𝑁𝑆))
8 mreexfidimd.8 . . . 4 (𝜑 → (𝑁𝑆) = (𝑁𝑇))
97, 8sseqtrd 3955 . . 3 (𝜑𝑆 ⊆ (𝑁𝑇))
10 mreexfidimd.6 . . . 4 (𝜑𝑇𝐼)
113, 1, 10mrissd 16899 . . 3 (𝜑𝑇𝑋)
12 mreexfidimd.7 . . . 4 (𝜑𝑆 ∈ Fin)
1312orcd 870 . . 3 (𝜑 → (𝑆 ∈ Fin ∨ 𝑇 ∈ Fin))
141, 2, 3, 4, 9, 11, 13, 5mreexdomd 16912 . 2 (𝜑𝑆𝑇)
151, 2, 11mrcssidd 16888 . . . 4 (𝜑𝑇 ⊆ (𝑁𝑇))
1615, 8sseqtrrd 3956 . . 3 (𝜑𝑇 ⊆ (𝑁𝑆))
1712olcd 871 . . 3 (𝜑 → (𝑇 ∈ Fin ∨ 𝑆 ∈ Fin))
181, 2, 3, 4, 16, 6, 17, 10mreexdomd 16912 . 2 (𝜑𝑇𝑆)
19 sbth 8621 . 2 ((𝑆𝑇𝑇𝑆) → 𝑆𝑇)
2014, 18, 19syl2anc 587 1 (𝜑𝑆𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2111  wral 3106  cdif 3878  cun 3879  𝒫 cpw 4497  {csn 4525   class class class wbr 5030  cfv 6324  cen 8489  cdom 8490  Fincfn 8492  Moorecmre 16845  mrClscmrc 16846  mrIndcmri 16847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-om 7561  df-1o 8085  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352  df-mre 16849  df-mrc 16850  df-mri 16851
This theorem is referenced by:  acsexdimd  17785  lvecdimfi  31086
  Copyright terms: Public domain W3C validator