| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mreexfidimd | Structured version Visualization version GIF version | ||
| Description: In a Moore system whose closure operator has the exchange property, if two independent sets have equal closure and one is finite, then they are equinumerous. Proven by using mreexdomd 17617 twice. This implies a special case of Theorem 4.2.2 in [FaureFrolicher] p. 87. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| mreexfidimd.1 | ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
| mreexfidimd.2 | ⊢ 𝑁 = (mrCls‘𝐴) |
| mreexfidimd.3 | ⊢ 𝐼 = (mrInd‘𝐴) |
| mreexfidimd.4 | ⊢ (𝜑 → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) |
| mreexfidimd.5 | ⊢ (𝜑 → 𝑆 ∈ 𝐼) |
| mreexfidimd.6 | ⊢ (𝜑 → 𝑇 ∈ 𝐼) |
| mreexfidimd.7 | ⊢ (𝜑 → 𝑆 ∈ Fin) |
| mreexfidimd.8 | ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) |
| Ref | Expression |
|---|---|
| mreexfidimd | ⊢ (𝜑 → 𝑆 ≈ 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mreexfidimd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) | |
| 2 | mreexfidimd.2 | . . 3 ⊢ 𝑁 = (mrCls‘𝐴) | |
| 3 | mreexfidimd.3 | . . 3 ⊢ 𝐼 = (mrInd‘𝐴) | |
| 4 | mreexfidimd.4 | . . 3 ⊢ (𝜑 → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) | |
| 5 | mreexfidimd.5 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ 𝐼) | |
| 6 | 3, 1, 5 | mrissd 17604 | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
| 7 | 1, 2, 6 | mrcssidd 17593 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ (𝑁‘𝑆)) |
| 8 | mreexfidimd.8 | . . . 4 ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) | |
| 9 | 7, 8 | sseqtrd 3986 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ (𝑁‘𝑇)) |
| 10 | mreexfidimd.6 | . . . 4 ⊢ (𝜑 → 𝑇 ∈ 𝐼) | |
| 11 | 3, 1, 10 | mrissd 17604 | . . 3 ⊢ (𝜑 → 𝑇 ⊆ 𝑋) |
| 12 | mreexfidimd.7 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ Fin) | |
| 13 | 12 | orcd 873 | . . 3 ⊢ (𝜑 → (𝑆 ∈ Fin ∨ 𝑇 ∈ Fin)) |
| 14 | 1, 2, 3, 4, 9, 11, 13, 5 | mreexdomd 17617 | . 2 ⊢ (𝜑 → 𝑆 ≼ 𝑇) |
| 15 | 1, 2, 11 | mrcssidd 17593 | . . . 4 ⊢ (𝜑 → 𝑇 ⊆ (𝑁‘𝑇)) |
| 16 | 15, 8 | sseqtrrd 3987 | . . 3 ⊢ (𝜑 → 𝑇 ⊆ (𝑁‘𝑆)) |
| 17 | 12 | olcd 874 | . . 3 ⊢ (𝜑 → (𝑇 ∈ Fin ∨ 𝑆 ∈ Fin)) |
| 18 | 1, 2, 3, 4, 16, 6, 17, 10 | mreexdomd 17617 | . 2 ⊢ (𝜑 → 𝑇 ≼ 𝑆) |
| 19 | sbth 9067 | . 2 ⊢ ((𝑆 ≼ 𝑇 ∧ 𝑇 ≼ 𝑆) → 𝑆 ≈ 𝑇) | |
| 20 | 14, 18, 19 | syl2anc 584 | 1 ⊢ (𝜑 → 𝑆 ≈ 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∖ cdif 3914 ∪ cun 3915 𝒫 cpw 4566 {csn 4592 class class class wbr 5110 ‘cfv 6514 ≈ cen 8918 ≼ cdom 8919 Fincfn 8921 Moorecmre 17550 mrClscmrc 17551 mrIndcmri 17552 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-om 7846 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-card 9899 df-mre 17554 df-mrc 17555 df-mri 17556 |
| This theorem is referenced by: acsexdimd 18525 lvecdimfi 33598 |
| Copyright terms: Public domain | W3C validator |