MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreexfidimd Structured version   Visualization version   GIF version

Theorem mreexfidimd 17695
Description: In a Moore system whose closure operator has the exchange property, if two independent sets have equal closure and one is finite, then they are equinumerous. Proven by using mreexdomd 17694 twice. This implies a special case of Theorem 4.2.2 in [FaureFrolicher] p. 87. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mreexfidimd.1 (𝜑𝐴 ∈ (Moore‘𝑋))
mreexfidimd.2 𝑁 = (mrCls‘𝐴)
mreexfidimd.3 𝐼 = (mrInd‘𝐴)
mreexfidimd.4 (𝜑 → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
mreexfidimd.5 (𝜑𝑆𝐼)
mreexfidimd.6 (𝜑𝑇𝐼)
mreexfidimd.7 (𝜑𝑆 ∈ Fin)
mreexfidimd.8 (𝜑 → (𝑁𝑆) = (𝑁𝑇))
Assertion
Ref Expression
mreexfidimd (𝜑𝑆𝑇)
Distinct variable groups:   𝑋,𝑠,𝑦,𝑧   𝜑,𝑠,𝑦,𝑧   𝐼,𝑠,𝑦,𝑧   𝑁,𝑠,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑦,𝑧,𝑠)   𝑆(𝑦,𝑧,𝑠)   𝑇(𝑦,𝑧,𝑠)

Proof of Theorem mreexfidimd
StepHypRef Expression
1 mreexfidimd.1 . . 3 (𝜑𝐴 ∈ (Moore‘𝑋))
2 mreexfidimd.2 . . 3 𝑁 = (mrCls‘𝐴)
3 mreexfidimd.3 . . 3 𝐼 = (mrInd‘𝐴)
4 mreexfidimd.4 . . 3 (𝜑 → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
5 mreexfidimd.5 . . . . . 6 (𝜑𝑆𝐼)
63, 1, 5mrissd 17681 . . . . 5 (𝜑𝑆𝑋)
71, 2, 6mrcssidd 17670 . . . 4 (𝜑𝑆 ⊆ (𝑁𝑆))
8 mreexfidimd.8 . . . 4 (𝜑 → (𝑁𝑆) = (𝑁𝑇))
97, 8sseqtrd 4036 . . 3 (𝜑𝑆 ⊆ (𝑁𝑇))
10 mreexfidimd.6 . . . 4 (𝜑𝑇𝐼)
113, 1, 10mrissd 17681 . . 3 (𝜑𝑇𝑋)
12 mreexfidimd.7 . . . 4 (𝜑𝑆 ∈ Fin)
1312orcd 873 . . 3 (𝜑 → (𝑆 ∈ Fin ∨ 𝑇 ∈ Fin))
141, 2, 3, 4, 9, 11, 13, 5mreexdomd 17694 . 2 (𝜑𝑆𝑇)
151, 2, 11mrcssidd 17670 . . . 4 (𝜑𝑇 ⊆ (𝑁𝑇))
1615, 8sseqtrrd 4037 . . 3 (𝜑𝑇 ⊆ (𝑁𝑆))
1712olcd 874 . . 3 (𝜑 → (𝑇 ∈ Fin ∨ 𝑆 ∈ Fin))
181, 2, 3, 4, 16, 6, 17, 10mreexdomd 17694 . 2 (𝜑𝑇𝑆)
19 sbth 9132 . 2 ((𝑆𝑇𝑇𝑆) → 𝑆𝑇)
2014, 18, 19syl2anc 584 1 (𝜑𝑆𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  wral 3059  cdif 3960  cun 3961  𝒫 cpw 4605  {csn 4631   class class class wbr 5148  cfv 6563  cen 8981  cdom 8982  Fincfn 8984  Moorecmre 17627  mrClscmrc 17628  mrIndcmri 17629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-om 7888  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-card 9977  df-mre 17631  df-mrc 17632  df-mri 17633
This theorem is referenced by:  acsexdimd  18617  lvecdimfi  33625
  Copyright terms: Public domain W3C validator