| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mreexfidimd | Structured version Visualization version GIF version | ||
| Description: In a Moore system whose closure operator has the exchange property, if two independent sets have equal closure and one is finite, then they are equinumerous. Proven by using mreexdomd 17590 twice. This implies a special case of Theorem 4.2.2 in [FaureFrolicher] p. 87. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| mreexfidimd.1 | ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
| mreexfidimd.2 | ⊢ 𝑁 = (mrCls‘𝐴) |
| mreexfidimd.3 | ⊢ 𝐼 = (mrInd‘𝐴) |
| mreexfidimd.4 | ⊢ (𝜑 → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) |
| mreexfidimd.5 | ⊢ (𝜑 → 𝑆 ∈ 𝐼) |
| mreexfidimd.6 | ⊢ (𝜑 → 𝑇 ∈ 𝐼) |
| mreexfidimd.7 | ⊢ (𝜑 → 𝑆 ∈ Fin) |
| mreexfidimd.8 | ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) |
| Ref | Expression |
|---|---|
| mreexfidimd | ⊢ (𝜑 → 𝑆 ≈ 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mreexfidimd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) | |
| 2 | mreexfidimd.2 | . . 3 ⊢ 𝑁 = (mrCls‘𝐴) | |
| 3 | mreexfidimd.3 | . . 3 ⊢ 𝐼 = (mrInd‘𝐴) | |
| 4 | mreexfidimd.4 | . . 3 ⊢ (𝜑 → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) | |
| 5 | mreexfidimd.5 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ 𝐼) | |
| 6 | 3, 1, 5 | mrissd 17577 | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
| 7 | 1, 2, 6 | mrcssidd 17566 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ (𝑁‘𝑆)) |
| 8 | mreexfidimd.8 | . . . 4 ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) | |
| 9 | 7, 8 | sseqtrd 3980 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ (𝑁‘𝑇)) |
| 10 | mreexfidimd.6 | . . . 4 ⊢ (𝜑 → 𝑇 ∈ 𝐼) | |
| 11 | 3, 1, 10 | mrissd 17577 | . . 3 ⊢ (𝜑 → 𝑇 ⊆ 𝑋) |
| 12 | mreexfidimd.7 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ Fin) | |
| 13 | 12 | orcd 873 | . . 3 ⊢ (𝜑 → (𝑆 ∈ Fin ∨ 𝑇 ∈ Fin)) |
| 14 | 1, 2, 3, 4, 9, 11, 13, 5 | mreexdomd 17590 | . 2 ⊢ (𝜑 → 𝑆 ≼ 𝑇) |
| 15 | 1, 2, 11 | mrcssidd 17566 | . . . 4 ⊢ (𝜑 → 𝑇 ⊆ (𝑁‘𝑇)) |
| 16 | 15, 8 | sseqtrrd 3981 | . . 3 ⊢ (𝜑 → 𝑇 ⊆ (𝑁‘𝑆)) |
| 17 | 12 | olcd 874 | . . 3 ⊢ (𝜑 → (𝑇 ∈ Fin ∨ 𝑆 ∈ Fin)) |
| 18 | 1, 2, 3, 4, 16, 6, 17, 10 | mreexdomd 17590 | . 2 ⊢ (𝜑 → 𝑇 ≼ 𝑆) |
| 19 | sbth 9038 | . 2 ⊢ ((𝑆 ≼ 𝑇 ∧ 𝑇 ≼ 𝑆) → 𝑆 ≈ 𝑇) | |
| 20 | 14, 18, 19 | syl2anc 584 | 1 ⊢ (𝜑 → 𝑆 ≈ 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∖ cdif 3908 ∪ cun 3909 𝒫 cpw 4559 {csn 4585 class class class wbr 5102 ‘cfv 6499 ≈ cen 8892 ≼ cdom 8893 Fincfn 8895 Moorecmre 17519 mrClscmrc 17520 mrIndcmri 17521 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-om 7823 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-card 9868 df-mre 17523 df-mrc 17524 df-mri 17525 |
| This theorem is referenced by: acsexdimd 18500 lvecdimfi 33584 |
| Copyright terms: Public domain | W3C validator |