MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreexfidimd Structured version   Visualization version   GIF version

Theorem mreexfidimd 17667
Description: In a Moore system whose closure operator has the exchange property, if two independent sets have equal closure and one is finite, then they are equinumerous. Proven by using mreexdomd 17666 twice. This implies a special case of Theorem 4.2.2 in [FaureFrolicher] p. 87. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mreexfidimd.1 (𝜑𝐴 ∈ (Moore‘𝑋))
mreexfidimd.2 𝑁 = (mrCls‘𝐴)
mreexfidimd.3 𝐼 = (mrInd‘𝐴)
mreexfidimd.4 (𝜑 → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
mreexfidimd.5 (𝜑𝑆𝐼)
mreexfidimd.6 (𝜑𝑇𝐼)
mreexfidimd.7 (𝜑𝑆 ∈ Fin)
mreexfidimd.8 (𝜑 → (𝑁𝑆) = (𝑁𝑇))
Assertion
Ref Expression
mreexfidimd (𝜑𝑆𝑇)
Distinct variable groups:   𝑋,𝑠,𝑦,𝑧   𝜑,𝑠,𝑦,𝑧   𝐼,𝑠,𝑦,𝑧   𝑁,𝑠,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑦,𝑧,𝑠)   𝑆(𝑦,𝑧,𝑠)   𝑇(𝑦,𝑧,𝑠)

Proof of Theorem mreexfidimd
StepHypRef Expression
1 mreexfidimd.1 . . 3 (𝜑𝐴 ∈ (Moore‘𝑋))
2 mreexfidimd.2 . . 3 𝑁 = (mrCls‘𝐴)
3 mreexfidimd.3 . . 3 𝐼 = (mrInd‘𝐴)
4 mreexfidimd.4 . . 3 (𝜑 → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
5 mreexfidimd.5 . . . . . 6 (𝜑𝑆𝐼)
63, 1, 5mrissd 17653 . . . . 5 (𝜑𝑆𝑋)
71, 2, 6mrcssidd 17642 . . . 4 (𝜑𝑆 ⊆ (𝑁𝑆))
8 mreexfidimd.8 . . . 4 (𝜑 → (𝑁𝑆) = (𝑁𝑇))
97, 8sseqtrd 4000 . . 3 (𝜑𝑆 ⊆ (𝑁𝑇))
10 mreexfidimd.6 . . . 4 (𝜑𝑇𝐼)
113, 1, 10mrissd 17653 . . 3 (𝜑𝑇𝑋)
12 mreexfidimd.7 . . . 4 (𝜑𝑆 ∈ Fin)
1312orcd 873 . . 3 (𝜑 → (𝑆 ∈ Fin ∨ 𝑇 ∈ Fin))
141, 2, 3, 4, 9, 11, 13, 5mreexdomd 17666 . 2 (𝜑𝑆𝑇)
151, 2, 11mrcssidd 17642 . . . 4 (𝜑𝑇 ⊆ (𝑁𝑇))
1615, 8sseqtrrd 4001 . . 3 (𝜑𝑇 ⊆ (𝑁𝑆))
1712olcd 874 . . 3 (𝜑 → (𝑇 ∈ Fin ∨ 𝑆 ∈ Fin))
181, 2, 3, 4, 16, 6, 17, 10mreexdomd 17666 . 2 (𝜑𝑇𝑆)
19 sbth 9112 . 2 ((𝑆𝑇𝑇𝑆) → 𝑆𝑇)
2014, 18, 19syl2anc 584 1 (𝜑𝑆𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wral 3052  cdif 3928  cun 3929  𝒫 cpw 4580  {csn 4606   class class class wbr 5124  cfv 6536  cen 8961  cdom 8962  Fincfn 8964  Moorecmre 17599  mrClscmrc 17600  mrIndcmri 17601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-om 7867  df-1o 8485  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-card 9958  df-mre 17603  df-mrc 17604  df-mri 17605
This theorem is referenced by:  acsexdimd  18574  lvecdimfi  33640
  Copyright terms: Public domain W3C validator