![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mreexfidimd | Structured version Visualization version GIF version |
Description: In a Moore system whose closure operator has the exchange property, if two independent sets have equal closure and one is finite, then they are equinumerous. Proven by using mreexdomd 17626 twice. This implies a special case of Theorem 4.2.2 in [FaureFrolicher] p. 87. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
mreexfidimd.1 | β’ (π β π΄ β (Mooreβπ)) |
mreexfidimd.2 | β’ π = (mrClsβπ΄) |
mreexfidimd.3 | β’ πΌ = (mrIndβπ΄) |
mreexfidimd.4 | β’ (π β βπ β π« πβπ¦ β π βπ§ β ((πβ(π βͺ {π¦})) β (πβπ ))π¦ β (πβ(π βͺ {π§}))) |
mreexfidimd.5 | β’ (π β π β πΌ) |
mreexfidimd.6 | β’ (π β π β πΌ) |
mreexfidimd.7 | β’ (π β π β Fin) |
mreexfidimd.8 | β’ (π β (πβπ) = (πβπ)) |
Ref | Expression |
---|---|
mreexfidimd | β’ (π β π β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mreexfidimd.1 | . . 3 β’ (π β π΄ β (Mooreβπ)) | |
2 | mreexfidimd.2 | . . 3 β’ π = (mrClsβπ΄) | |
3 | mreexfidimd.3 | . . 3 β’ πΌ = (mrIndβπ΄) | |
4 | mreexfidimd.4 | . . 3 β’ (π β βπ β π« πβπ¦ β π βπ§ β ((πβ(π βͺ {π¦})) β (πβπ ))π¦ β (πβ(π βͺ {π§}))) | |
5 | mreexfidimd.5 | . . . . . 6 β’ (π β π β πΌ) | |
6 | 3, 1, 5 | mrissd 17613 | . . . . 5 β’ (π β π β π) |
7 | 1, 2, 6 | mrcssidd 17602 | . . . 4 β’ (π β π β (πβπ)) |
8 | mreexfidimd.8 | . . . 4 β’ (π β (πβπ) = (πβπ)) | |
9 | 7, 8 | sseqtrd 4013 | . . 3 β’ (π β π β (πβπ)) |
10 | mreexfidimd.6 | . . . 4 β’ (π β π β πΌ) | |
11 | 3, 1, 10 | mrissd 17613 | . . 3 β’ (π β π β π) |
12 | mreexfidimd.7 | . . . 4 β’ (π β π β Fin) | |
13 | 12 | orcd 871 | . . 3 β’ (π β (π β Fin β¨ π β Fin)) |
14 | 1, 2, 3, 4, 9, 11, 13, 5 | mreexdomd 17626 | . 2 β’ (π β π βΌ π) |
15 | 1, 2, 11 | mrcssidd 17602 | . . . 4 β’ (π β π β (πβπ)) |
16 | 15, 8 | sseqtrrd 4014 | . . 3 β’ (π β π β (πβπ)) |
17 | 12 | olcd 872 | . . 3 β’ (π β (π β Fin β¨ π β Fin)) |
18 | 1, 2, 3, 4, 16, 6, 17, 10 | mreexdomd 17626 | . 2 β’ (π β π βΌ π) |
19 | sbth 9114 | . 2 β’ ((π βΌ π β§ π βΌ π) β π β π) | |
20 | 14, 18, 19 | syl2anc 582 | 1 β’ (π β π β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 βwral 3051 β cdif 3937 βͺ cun 3938 π« cpw 4598 {csn 4624 class class class wbr 5143 βcfv 6542 β cen 8957 βΌ cdom 8958 Fincfn 8960 Moorecmre 17559 mrClscmrc 17560 mrIndcmri 17561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-om 7868 df-1o 8483 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 df-card 9960 df-mre 17563 df-mrc 17564 df-mri 17565 |
This theorem is referenced by: acsexdimd 18548 lvecdimfi 33351 |
Copyright terms: Public domain | W3C validator |