Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mreexfidimd | Structured version Visualization version GIF version |
Description: In a Moore system whose closure operator has the exchange property, if two independent sets have equal closure and one is finite, then they are equinumerous. Proven by using mreexdomd 17358 twice. This implies a special case of Theorem 4.2.2 in [FaureFrolicher] p. 87. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
mreexfidimd.1 | ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
mreexfidimd.2 | ⊢ 𝑁 = (mrCls‘𝐴) |
mreexfidimd.3 | ⊢ 𝐼 = (mrInd‘𝐴) |
mreexfidimd.4 | ⊢ (𝜑 → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) |
mreexfidimd.5 | ⊢ (𝜑 → 𝑆 ∈ 𝐼) |
mreexfidimd.6 | ⊢ (𝜑 → 𝑇 ∈ 𝐼) |
mreexfidimd.7 | ⊢ (𝜑 → 𝑆 ∈ Fin) |
mreexfidimd.8 | ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) |
Ref | Expression |
---|---|
mreexfidimd | ⊢ (𝜑 → 𝑆 ≈ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mreexfidimd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) | |
2 | mreexfidimd.2 | . . 3 ⊢ 𝑁 = (mrCls‘𝐴) | |
3 | mreexfidimd.3 | . . 3 ⊢ 𝐼 = (mrInd‘𝐴) | |
4 | mreexfidimd.4 | . . 3 ⊢ (𝜑 → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) | |
5 | mreexfidimd.5 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ 𝐼) | |
6 | 3, 1, 5 | mrissd 17345 | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
7 | 1, 2, 6 | mrcssidd 17334 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ (𝑁‘𝑆)) |
8 | mreexfidimd.8 | . . . 4 ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) | |
9 | 7, 8 | sseqtrd 3961 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ (𝑁‘𝑇)) |
10 | mreexfidimd.6 | . . . 4 ⊢ (𝜑 → 𝑇 ∈ 𝐼) | |
11 | 3, 1, 10 | mrissd 17345 | . . 3 ⊢ (𝜑 → 𝑇 ⊆ 𝑋) |
12 | mreexfidimd.7 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ Fin) | |
13 | 12 | orcd 870 | . . 3 ⊢ (𝜑 → (𝑆 ∈ Fin ∨ 𝑇 ∈ Fin)) |
14 | 1, 2, 3, 4, 9, 11, 13, 5 | mreexdomd 17358 | . 2 ⊢ (𝜑 → 𝑆 ≼ 𝑇) |
15 | 1, 2, 11 | mrcssidd 17334 | . . . 4 ⊢ (𝜑 → 𝑇 ⊆ (𝑁‘𝑇)) |
16 | 15, 8 | sseqtrrd 3962 | . . 3 ⊢ (𝜑 → 𝑇 ⊆ (𝑁‘𝑆)) |
17 | 12 | olcd 871 | . . 3 ⊢ (𝜑 → (𝑇 ∈ Fin ∨ 𝑆 ∈ Fin)) |
18 | 1, 2, 3, 4, 16, 6, 17, 10 | mreexdomd 17358 | . 2 ⊢ (𝜑 → 𝑇 ≼ 𝑆) |
19 | sbth 8880 | . 2 ⊢ ((𝑆 ≼ 𝑇 ∧ 𝑇 ≼ 𝑆) → 𝑆 ≈ 𝑇) | |
20 | 14, 18, 19 | syl2anc 584 | 1 ⊢ (𝜑 → 𝑆 ≈ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∖ cdif 3884 ∪ cun 3885 𝒫 cpw 4533 {csn 4561 class class class wbr 5074 ‘cfv 6433 ≈ cen 8730 ≼ cdom 8731 Fincfn 8733 Moorecmre 17291 mrClscmrc 17292 mrIndcmri 17293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-om 7713 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-card 9697 df-mre 17295 df-mrc 17296 df-mri 17297 |
This theorem is referenced by: acsexdimd 18277 lvecdimfi 31683 |
Copyright terms: Public domain | W3C validator |