| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mreexfidimd | Structured version Visualization version GIF version | ||
| Description: In a Moore system whose closure operator has the exchange property, if two independent sets have equal closure and one is finite, then they are equinumerous. Proven by using mreexdomd 17555 twice. This implies a special case of Theorem 4.2.2 in [FaureFrolicher] p. 87. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| mreexfidimd.1 | ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
| mreexfidimd.2 | ⊢ 𝑁 = (mrCls‘𝐴) |
| mreexfidimd.3 | ⊢ 𝐼 = (mrInd‘𝐴) |
| mreexfidimd.4 | ⊢ (𝜑 → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) |
| mreexfidimd.5 | ⊢ (𝜑 → 𝑆 ∈ 𝐼) |
| mreexfidimd.6 | ⊢ (𝜑 → 𝑇 ∈ 𝐼) |
| mreexfidimd.7 | ⊢ (𝜑 → 𝑆 ∈ Fin) |
| mreexfidimd.8 | ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) |
| Ref | Expression |
|---|---|
| mreexfidimd | ⊢ (𝜑 → 𝑆 ≈ 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mreexfidimd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) | |
| 2 | mreexfidimd.2 | . . 3 ⊢ 𝑁 = (mrCls‘𝐴) | |
| 3 | mreexfidimd.3 | . . 3 ⊢ 𝐼 = (mrInd‘𝐴) | |
| 4 | mreexfidimd.4 | . . 3 ⊢ (𝜑 → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) | |
| 5 | mreexfidimd.5 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ 𝐼) | |
| 6 | 3, 1, 5 | mrissd 17542 | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
| 7 | 1, 2, 6 | mrcssidd 17531 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ (𝑁‘𝑆)) |
| 8 | mreexfidimd.8 | . . . 4 ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) | |
| 9 | 7, 8 | sseqtrd 3972 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ (𝑁‘𝑇)) |
| 10 | mreexfidimd.6 | . . . 4 ⊢ (𝜑 → 𝑇 ∈ 𝐼) | |
| 11 | 3, 1, 10 | mrissd 17542 | . . 3 ⊢ (𝜑 → 𝑇 ⊆ 𝑋) |
| 12 | mreexfidimd.7 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ Fin) | |
| 13 | 12 | orcd 873 | . . 3 ⊢ (𝜑 → (𝑆 ∈ Fin ∨ 𝑇 ∈ Fin)) |
| 14 | 1, 2, 3, 4, 9, 11, 13, 5 | mreexdomd 17555 | . 2 ⊢ (𝜑 → 𝑆 ≼ 𝑇) |
| 15 | 1, 2, 11 | mrcssidd 17531 | . . . 4 ⊢ (𝜑 → 𝑇 ⊆ (𝑁‘𝑇)) |
| 16 | 15, 8 | sseqtrrd 3973 | . . 3 ⊢ (𝜑 → 𝑇 ⊆ (𝑁‘𝑆)) |
| 17 | 12 | olcd 874 | . . 3 ⊢ (𝜑 → (𝑇 ∈ Fin ∨ 𝑆 ∈ Fin)) |
| 18 | 1, 2, 3, 4, 16, 6, 17, 10 | mreexdomd 17555 | . 2 ⊢ (𝜑 → 𝑇 ≼ 𝑆) |
| 19 | sbth 9014 | . 2 ⊢ ((𝑆 ≼ 𝑇 ∧ 𝑇 ≼ 𝑆) → 𝑆 ≈ 𝑇) | |
| 20 | 14, 18, 19 | syl2anc 584 | 1 ⊢ (𝜑 → 𝑆 ≈ 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∖ cdif 3900 ∪ cun 3901 𝒫 cpw 4551 {csn 4577 class class class wbr 5092 ‘cfv 6482 ≈ cen 8869 ≼ cdom 8870 Fincfn 8872 Moorecmre 17484 mrClscmrc 17485 mrIndcmri 17486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-om 7800 df-1o 8388 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-card 9835 df-mre 17488 df-mrc 17489 df-mri 17490 |
| This theorem is referenced by: acsexdimd 18465 lvecdimfi 33568 |
| Copyright terms: Public domain | W3C validator |