MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreexfidimd Structured version   Visualization version   GIF version

Theorem mreexfidimd 17276
Description: In a Moore system whose closure operator has the exchange property, if two independent sets have equal closure and one is finite, then they are equinumerous. Proven by using mreexdomd 17275 twice. This implies a special case of Theorem 4.2.2 in [FaureFrolicher] p. 87. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mreexfidimd.1 (𝜑𝐴 ∈ (Moore‘𝑋))
mreexfidimd.2 𝑁 = (mrCls‘𝐴)
mreexfidimd.3 𝐼 = (mrInd‘𝐴)
mreexfidimd.4 (𝜑 → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
mreexfidimd.5 (𝜑𝑆𝐼)
mreexfidimd.6 (𝜑𝑇𝐼)
mreexfidimd.7 (𝜑𝑆 ∈ Fin)
mreexfidimd.8 (𝜑 → (𝑁𝑆) = (𝑁𝑇))
Assertion
Ref Expression
mreexfidimd (𝜑𝑆𝑇)
Distinct variable groups:   𝑋,𝑠,𝑦,𝑧   𝜑,𝑠,𝑦,𝑧   𝐼,𝑠,𝑦,𝑧   𝑁,𝑠,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑦,𝑧,𝑠)   𝑆(𝑦,𝑧,𝑠)   𝑇(𝑦,𝑧,𝑠)

Proof of Theorem mreexfidimd
StepHypRef Expression
1 mreexfidimd.1 . . 3 (𝜑𝐴 ∈ (Moore‘𝑋))
2 mreexfidimd.2 . . 3 𝑁 = (mrCls‘𝐴)
3 mreexfidimd.3 . . 3 𝐼 = (mrInd‘𝐴)
4 mreexfidimd.4 . . 3 (𝜑 → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
5 mreexfidimd.5 . . . . . 6 (𝜑𝑆𝐼)
63, 1, 5mrissd 17262 . . . . 5 (𝜑𝑆𝑋)
71, 2, 6mrcssidd 17251 . . . 4 (𝜑𝑆 ⊆ (𝑁𝑆))
8 mreexfidimd.8 . . . 4 (𝜑 → (𝑁𝑆) = (𝑁𝑇))
97, 8sseqtrd 3957 . . 3 (𝜑𝑆 ⊆ (𝑁𝑇))
10 mreexfidimd.6 . . . 4 (𝜑𝑇𝐼)
113, 1, 10mrissd 17262 . . 3 (𝜑𝑇𝑋)
12 mreexfidimd.7 . . . 4 (𝜑𝑆 ∈ Fin)
1312orcd 869 . . 3 (𝜑 → (𝑆 ∈ Fin ∨ 𝑇 ∈ Fin))
141, 2, 3, 4, 9, 11, 13, 5mreexdomd 17275 . 2 (𝜑𝑆𝑇)
151, 2, 11mrcssidd 17251 . . . 4 (𝜑𝑇 ⊆ (𝑁𝑇))
1615, 8sseqtrrd 3958 . . 3 (𝜑𝑇 ⊆ (𝑁𝑆))
1712olcd 870 . . 3 (𝜑 → (𝑇 ∈ Fin ∨ 𝑆 ∈ Fin))
181, 2, 3, 4, 16, 6, 17, 10mreexdomd 17275 . 2 (𝜑𝑇𝑆)
19 sbth 8833 . 2 ((𝑆𝑇𝑇𝑆) → 𝑆𝑇)
2014, 18, 19syl2anc 583 1 (𝜑𝑆𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wral 3063  cdif 3880  cun 3881  𝒫 cpw 4530  {csn 4558   class class class wbr 5070  cfv 6418  cen 8688  cdom 8689  Fincfn 8691  Moorecmre 17208  mrClscmrc 17209  mrIndcmri 17210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-mre 17212  df-mrc 17213  df-mri 17214
This theorem is referenced by:  acsexdimd  18192  lvecdimfi  31585
  Copyright terms: Public domain W3C validator