MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreexfidimd Structured version   Visualization version   GIF version

Theorem mreexfidimd 17618
Description: In a Moore system whose closure operator has the exchange property, if two independent sets have equal closure and one is finite, then they are equinumerous. Proven by using mreexdomd 17617 twice. This implies a special case of Theorem 4.2.2 in [FaureFrolicher] p. 87. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mreexfidimd.1 (𝜑𝐴 ∈ (Moore‘𝑋))
mreexfidimd.2 𝑁 = (mrCls‘𝐴)
mreexfidimd.3 𝐼 = (mrInd‘𝐴)
mreexfidimd.4 (𝜑 → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
mreexfidimd.5 (𝜑𝑆𝐼)
mreexfidimd.6 (𝜑𝑇𝐼)
mreexfidimd.7 (𝜑𝑆 ∈ Fin)
mreexfidimd.8 (𝜑 → (𝑁𝑆) = (𝑁𝑇))
Assertion
Ref Expression
mreexfidimd (𝜑𝑆𝑇)
Distinct variable groups:   𝑋,𝑠,𝑦,𝑧   𝜑,𝑠,𝑦,𝑧   𝐼,𝑠,𝑦,𝑧   𝑁,𝑠,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑦,𝑧,𝑠)   𝑆(𝑦,𝑧,𝑠)   𝑇(𝑦,𝑧,𝑠)

Proof of Theorem mreexfidimd
StepHypRef Expression
1 mreexfidimd.1 . . 3 (𝜑𝐴 ∈ (Moore‘𝑋))
2 mreexfidimd.2 . . 3 𝑁 = (mrCls‘𝐴)
3 mreexfidimd.3 . . 3 𝐼 = (mrInd‘𝐴)
4 mreexfidimd.4 . . 3 (𝜑 → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
5 mreexfidimd.5 . . . . . 6 (𝜑𝑆𝐼)
63, 1, 5mrissd 17604 . . . . 5 (𝜑𝑆𝑋)
71, 2, 6mrcssidd 17593 . . . 4 (𝜑𝑆 ⊆ (𝑁𝑆))
8 mreexfidimd.8 . . . 4 (𝜑 → (𝑁𝑆) = (𝑁𝑇))
97, 8sseqtrd 3986 . . 3 (𝜑𝑆 ⊆ (𝑁𝑇))
10 mreexfidimd.6 . . . 4 (𝜑𝑇𝐼)
113, 1, 10mrissd 17604 . . 3 (𝜑𝑇𝑋)
12 mreexfidimd.7 . . . 4 (𝜑𝑆 ∈ Fin)
1312orcd 873 . . 3 (𝜑 → (𝑆 ∈ Fin ∨ 𝑇 ∈ Fin))
141, 2, 3, 4, 9, 11, 13, 5mreexdomd 17617 . 2 (𝜑𝑆𝑇)
151, 2, 11mrcssidd 17593 . . . 4 (𝜑𝑇 ⊆ (𝑁𝑇))
1615, 8sseqtrrd 3987 . . 3 (𝜑𝑇 ⊆ (𝑁𝑆))
1712olcd 874 . . 3 (𝜑 → (𝑇 ∈ Fin ∨ 𝑆 ∈ Fin))
181, 2, 3, 4, 16, 6, 17, 10mreexdomd 17617 . 2 (𝜑𝑇𝑆)
19 sbth 9067 . 2 ((𝑆𝑇𝑇𝑆) → 𝑆𝑇)
2014, 18, 19syl2anc 584 1 (𝜑𝑆𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wral 3045  cdif 3914  cun 3915  𝒫 cpw 4566  {csn 4592   class class class wbr 5110  cfv 6514  cen 8918  cdom 8919  Fincfn 8921  Moorecmre 17550  mrClscmrc 17551  mrIndcmri 17552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-om 7846  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-mre 17554  df-mrc 17555  df-mri 17556
This theorem is referenced by:  acsexdimd  18525  lvecdimfi  33598
  Copyright terms: Public domain W3C validator