![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mreexfidimd | Structured version Visualization version GIF version |
Description: In a Moore system whose closure operator has the exchange property, if two independent sets have equal closure and one is finite, then they are equinumerous. Proven by using mreexdomd 17707 twice. This implies a special case of Theorem 4.2.2 in [FaureFrolicher] p. 87. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
mreexfidimd.1 | ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
mreexfidimd.2 | ⊢ 𝑁 = (mrCls‘𝐴) |
mreexfidimd.3 | ⊢ 𝐼 = (mrInd‘𝐴) |
mreexfidimd.4 | ⊢ (𝜑 → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) |
mreexfidimd.5 | ⊢ (𝜑 → 𝑆 ∈ 𝐼) |
mreexfidimd.6 | ⊢ (𝜑 → 𝑇 ∈ 𝐼) |
mreexfidimd.7 | ⊢ (𝜑 → 𝑆 ∈ Fin) |
mreexfidimd.8 | ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) |
Ref | Expression |
---|---|
mreexfidimd | ⊢ (𝜑 → 𝑆 ≈ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mreexfidimd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) | |
2 | mreexfidimd.2 | . . 3 ⊢ 𝑁 = (mrCls‘𝐴) | |
3 | mreexfidimd.3 | . . 3 ⊢ 𝐼 = (mrInd‘𝐴) | |
4 | mreexfidimd.4 | . . 3 ⊢ (𝜑 → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) | |
5 | mreexfidimd.5 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ 𝐼) | |
6 | 3, 1, 5 | mrissd 17694 | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
7 | 1, 2, 6 | mrcssidd 17683 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ (𝑁‘𝑆)) |
8 | mreexfidimd.8 | . . . 4 ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) | |
9 | 7, 8 | sseqtrd 4049 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ (𝑁‘𝑇)) |
10 | mreexfidimd.6 | . . . 4 ⊢ (𝜑 → 𝑇 ∈ 𝐼) | |
11 | 3, 1, 10 | mrissd 17694 | . . 3 ⊢ (𝜑 → 𝑇 ⊆ 𝑋) |
12 | mreexfidimd.7 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ Fin) | |
13 | 12 | orcd 872 | . . 3 ⊢ (𝜑 → (𝑆 ∈ Fin ∨ 𝑇 ∈ Fin)) |
14 | 1, 2, 3, 4, 9, 11, 13, 5 | mreexdomd 17707 | . 2 ⊢ (𝜑 → 𝑆 ≼ 𝑇) |
15 | 1, 2, 11 | mrcssidd 17683 | . . . 4 ⊢ (𝜑 → 𝑇 ⊆ (𝑁‘𝑇)) |
16 | 15, 8 | sseqtrrd 4050 | . . 3 ⊢ (𝜑 → 𝑇 ⊆ (𝑁‘𝑆)) |
17 | 12 | olcd 873 | . . 3 ⊢ (𝜑 → (𝑇 ∈ Fin ∨ 𝑆 ∈ Fin)) |
18 | 1, 2, 3, 4, 16, 6, 17, 10 | mreexdomd 17707 | . 2 ⊢ (𝜑 → 𝑇 ≼ 𝑆) |
19 | sbth 9159 | . 2 ⊢ ((𝑆 ≼ 𝑇 ∧ 𝑇 ≼ 𝑆) → 𝑆 ≈ 𝑇) | |
20 | 14, 18, 19 | syl2anc 583 | 1 ⊢ (𝜑 → 𝑆 ≈ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∖ cdif 3973 ∪ cun 3974 𝒫 cpw 4622 {csn 4648 class class class wbr 5166 ‘cfv 6573 ≈ cen 9000 ≼ cdom 9001 Fincfn 9003 Moorecmre 17640 mrClscmrc 17641 mrIndcmri 17642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-om 7904 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-card 10008 df-mre 17644 df-mrc 17645 df-mri 17646 |
This theorem is referenced by: acsexdimd 18629 lvecdimfi 33610 |
Copyright terms: Public domain | W3C validator |