MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreexdomd Structured version   Visualization version   GIF version

Theorem mreexdomd 17617
Description: In a Moore system whose closure operator has the exchange property, if 𝑆 is independent and contained in the closure of 𝑇, and either 𝑆 or 𝑇 is finite, then 𝑇 dominates 𝑆. This is an immediate consequence of mreexexd 17616. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mreexdomd.1 (𝜑𝐴 ∈ (Moore‘𝑋))
mreexdomd.2 𝑁 = (mrCls‘𝐴)
mreexdomd.3 𝐼 = (mrInd‘𝐴)
mreexdomd.4 (𝜑 → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
mreexdomd.5 (𝜑𝑆 ⊆ (𝑁𝑇))
mreexdomd.6 (𝜑𝑇𝑋)
mreexdomd.7 (𝜑 → (𝑆 ∈ Fin ∨ 𝑇 ∈ Fin))
mreexdomd.8 (𝜑𝑆𝐼)
Assertion
Ref Expression
mreexdomd (𝜑𝑆𝑇)
Distinct variable groups:   𝑋,𝑠,𝑦,𝑧   𝜑,𝑠,𝑦,𝑧   𝐼,𝑠,𝑦,𝑧   𝑁,𝑠,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑦,𝑧,𝑠)   𝑆(𝑦,𝑧,𝑠)   𝑇(𝑦,𝑧,𝑠)

Proof of Theorem mreexdomd
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 mreexdomd.1 . . 3 (𝜑𝐴 ∈ (Moore‘𝑋))
2 mreexdomd.2 . . 3 𝑁 = (mrCls‘𝐴)
3 mreexdomd.3 . . 3 𝐼 = (mrInd‘𝐴)
4 mreexdomd.4 . . 3 (𝜑 → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
5 mreexdomd.8 . . . . 5 (𝜑𝑆𝐼)
63, 1, 5mrissd 17604 . . . 4 (𝜑𝑆𝑋)
7 dif0 4344 . . . 4 (𝑋 ∖ ∅) = 𝑋
86, 7sseqtrrdi 3991 . . 3 (𝜑𝑆 ⊆ (𝑋 ∖ ∅))
9 mreexdomd.6 . . . 4 (𝜑𝑇𝑋)
109, 7sseqtrrdi 3991 . . 3 (𝜑𝑇 ⊆ (𝑋 ∖ ∅))
11 mreexdomd.5 . . . 4 (𝜑𝑆 ⊆ (𝑁𝑇))
12 un0 4360 . . . . 5 (𝑇 ∪ ∅) = 𝑇
1312fveq2i 6864 . . . 4 (𝑁‘(𝑇 ∪ ∅)) = (𝑁𝑇)
1411, 13sseqtrrdi 3991 . . 3 (𝜑𝑆 ⊆ (𝑁‘(𝑇 ∪ ∅)))
15 un0 4360 . . . 4 (𝑆 ∪ ∅) = 𝑆
1615, 5eqeltrid 2833 . . 3 (𝜑 → (𝑆 ∪ ∅) ∈ 𝐼)
17 mreexdomd.7 . . 3 (𝜑 → (𝑆 ∈ Fin ∨ 𝑇 ∈ Fin))
181, 2, 3, 4, 8, 10, 14, 16, 17mreexexd 17616 . 2 (𝜑 → ∃𝑖 ∈ 𝒫 𝑇(𝑆𝑖 ∧ (𝑖 ∪ ∅) ∈ 𝐼))
19 simprrl 780 . . 3 ((𝜑 ∧ (𝑖 ∈ 𝒫 𝑇 ∧ (𝑆𝑖 ∧ (𝑖 ∪ ∅) ∈ 𝐼))) → 𝑆𝑖)
20 simprl 770 . . . . 5 ((𝜑 ∧ (𝑖 ∈ 𝒫 𝑇 ∧ (𝑆𝑖 ∧ (𝑖 ∪ ∅) ∈ 𝐼))) → 𝑖 ∈ 𝒫 𝑇)
2120elpwid 4575 . . . 4 ((𝜑 ∧ (𝑖 ∈ 𝒫 𝑇 ∧ (𝑆𝑖 ∧ (𝑖 ∪ ∅) ∈ 𝐼))) → 𝑖𝑇)
221elfvexd 6900 . . . . . . 7 (𝜑𝑋 ∈ V)
2322, 9ssexd 5282 . . . . . 6 (𝜑𝑇 ∈ V)
24 ssdomg 8974 . . . . . 6 (𝑇 ∈ V → (𝑖𝑇𝑖𝑇))
2523, 24syl 17 . . . . 5 (𝜑 → (𝑖𝑇𝑖𝑇))
2625adantr 480 . . . 4 ((𝜑 ∧ (𝑖 ∈ 𝒫 𝑇 ∧ (𝑆𝑖 ∧ (𝑖 ∪ ∅) ∈ 𝐼))) → (𝑖𝑇𝑖𝑇))
2721, 26mpd 15 . . 3 ((𝜑 ∧ (𝑖 ∈ 𝒫 𝑇 ∧ (𝑆𝑖 ∧ (𝑖 ∪ ∅) ∈ 𝐼))) → 𝑖𝑇)
28 endomtr 8986 . . 3 ((𝑆𝑖𝑖𝑇) → 𝑆𝑇)
2919, 27, 28syl2anc 584 . 2 ((𝜑 ∧ (𝑖 ∈ 𝒫 𝑇 ∧ (𝑆𝑖 ∧ (𝑖 ∪ ∅) ∈ 𝐼))) → 𝑆𝑇)
3018, 29rexlimddv 3141 1 (𝜑𝑆𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450  cdif 3914  cun 3915  wss 3917  c0 4299  𝒫 cpw 4566  {csn 4592   class class class wbr 5110  cfv 6514  cen 8918  cdom 8919  Fincfn 8921  Moorecmre 17550  mrClscmrc 17551  mrIndcmri 17552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-om 7846  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-mre 17554  df-mrc 17555  df-mri 17556
This theorem is referenced by:  mreexfidimd  17618
  Copyright terms: Public domain W3C validator