Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mreexdomd | Structured version Visualization version GIF version |
Description: In a Moore system whose closure operator has the exchange property, if 𝑆 is independent and contained in the closure of 𝑇, and either 𝑆 or 𝑇 is finite, then 𝑇 dominates 𝑆. This is an immediate consequence of mreexexd 17274. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
mreexdomd.1 | ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
mreexdomd.2 | ⊢ 𝑁 = (mrCls‘𝐴) |
mreexdomd.3 | ⊢ 𝐼 = (mrInd‘𝐴) |
mreexdomd.4 | ⊢ (𝜑 → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) |
mreexdomd.5 | ⊢ (𝜑 → 𝑆 ⊆ (𝑁‘𝑇)) |
mreexdomd.6 | ⊢ (𝜑 → 𝑇 ⊆ 𝑋) |
mreexdomd.7 | ⊢ (𝜑 → (𝑆 ∈ Fin ∨ 𝑇 ∈ Fin)) |
mreexdomd.8 | ⊢ (𝜑 → 𝑆 ∈ 𝐼) |
Ref | Expression |
---|---|
mreexdomd | ⊢ (𝜑 → 𝑆 ≼ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mreexdomd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) | |
2 | mreexdomd.2 | . . 3 ⊢ 𝑁 = (mrCls‘𝐴) | |
3 | mreexdomd.3 | . . 3 ⊢ 𝐼 = (mrInd‘𝐴) | |
4 | mreexdomd.4 | . . 3 ⊢ (𝜑 → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) | |
5 | mreexdomd.8 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ 𝐼) | |
6 | 3, 1, 5 | mrissd 17262 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
7 | dif0 4303 | . . . 4 ⊢ (𝑋 ∖ ∅) = 𝑋 | |
8 | 6, 7 | sseqtrrdi 3968 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ (𝑋 ∖ ∅)) |
9 | mreexdomd.6 | . . . 4 ⊢ (𝜑 → 𝑇 ⊆ 𝑋) | |
10 | 9, 7 | sseqtrrdi 3968 | . . 3 ⊢ (𝜑 → 𝑇 ⊆ (𝑋 ∖ ∅)) |
11 | mreexdomd.5 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ (𝑁‘𝑇)) | |
12 | un0 4321 | . . . . 5 ⊢ (𝑇 ∪ ∅) = 𝑇 | |
13 | 12 | fveq2i 6759 | . . . 4 ⊢ (𝑁‘(𝑇 ∪ ∅)) = (𝑁‘𝑇) |
14 | 11, 13 | sseqtrrdi 3968 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ (𝑁‘(𝑇 ∪ ∅))) |
15 | un0 4321 | . . . 4 ⊢ (𝑆 ∪ ∅) = 𝑆 | |
16 | 15, 5 | eqeltrid 2843 | . . 3 ⊢ (𝜑 → (𝑆 ∪ ∅) ∈ 𝐼) |
17 | mreexdomd.7 | . . 3 ⊢ (𝜑 → (𝑆 ∈ Fin ∨ 𝑇 ∈ Fin)) | |
18 | 1, 2, 3, 4, 8, 10, 14, 16, 17 | mreexexd 17274 | . 2 ⊢ (𝜑 → ∃𝑖 ∈ 𝒫 𝑇(𝑆 ≈ 𝑖 ∧ (𝑖 ∪ ∅) ∈ 𝐼)) |
19 | simprrl 777 | . . 3 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝒫 𝑇 ∧ (𝑆 ≈ 𝑖 ∧ (𝑖 ∪ ∅) ∈ 𝐼))) → 𝑆 ≈ 𝑖) | |
20 | simprl 767 | . . . . 5 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝒫 𝑇 ∧ (𝑆 ≈ 𝑖 ∧ (𝑖 ∪ ∅) ∈ 𝐼))) → 𝑖 ∈ 𝒫 𝑇) | |
21 | 20 | elpwid 4541 | . . . 4 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝒫 𝑇 ∧ (𝑆 ≈ 𝑖 ∧ (𝑖 ∪ ∅) ∈ 𝐼))) → 𝑖 ⊆ 𝑇) |
22 | 1 | elfvexd 6790 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ V) |
23 | 22, 9 | ssexd 5243 | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ V) |
24 | ssdomg 8741 | . . . . . 6 ⊢ (𝑇 ∈ V → (𝑖 ⊆ 𝑇 → 𝑖 ≼ 𝑇)) | |
25 | 23, 24 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑖 ⊆ 𝑇 → 𝑖 ≼ 𝑇)) |
26 | 25 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝒫 𝑇 ∧ (𝑆 ≈ 𝑖 ∧ (𝑖 ∪ ∅) ∈ 𝐼))) → (𝑖 ⊆ 𝑇 → 𝑖 ≼ 𝑇)) |
27 | 21, 26 | mpd 15 | . . 3 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝒫 𝑇 ∧ (𝑆 ≈ 𝑖 ∧ (𝑖 ∪ ∅) ∈ 𝐼))) → 𝑖 ≼ 𝑇) |
28 | endomtr 8753 | . . 3 ⊢ ((𝑆 ≈ 𝑖 ∧ 𝑖 ≼ 𝑇) → 𝑆 ≼ 𝑇) | |
29 | 19, 27, 28 | syl2anc 583 | . 2 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝒫 𝑇 ∧ (𝑆 ≈ 𝑖 ∧ (𝑖 ∪ ∅) ∈ 𝐼))) → 𝑆 ≼ 𝑇) |
30 | 18, 29 | rexlimddv 3219 | 1 ⊢ (𝜑 → 𝑆 ≼ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ∖ cdif 3880 ∪ cun 3881 ⊆ wss 3883 ∅c0 4253 𝒫 cpw 4530 {csn 4558 class class class wbr 5070 ‘cfv 6418 ≈ cen 8688 ≼ cdom 8689 Fincfn 8691 Moorecmre 17208 mrClscmrc 17209 mrIndcmri 17210 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-om 7688 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 df-mre 17212 df-mrc 17213 df-mri 17214 |
This theorem is referenced by: mreexfidimd 17276 |
Copyright terms: Public domain | W3C validator |