![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mreexdomd | Structured version Visualization version GIF version |
Description: In a Moore system whose closure operator has the exchange property, if 𝑆 is independent and contained in the closure of 𝑇, and either 𝑆 or 𝑇 is finite, then 𝑇 dominates 𝑆. This is an immediate consequence of mreexexd 17706. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
mreexdomd.1 | ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
mreexdomd.2 | ⊢ 𝑁 = (mrCls‘𝐴) |
mreexdomd.3 | ⊢ 𝐼 = (mrInd‘𝐴) |
mreexdomd.4 | ⊢ (𝜑 → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) |
mreexdomd.5 | ⊢ (𝜑 → 𝑆 ⊆ (𝑁‘𝑇)) |
mreexdomd.6 | ⊢ (𝜑 → 𝑇 ⊆ 𝑋) |
mreexdomd.7 | ⊢ (𝜑 → (𝑆 ∈ Fin ∨ 𝑇 ∈ Fin)) |
mreexdomd.8 | ⊢ (𝜑 → 𝑆 ∈ 𝐼) |
Ref | Expression |
---|---|
mreexdomd | ⊢ (𝜑 → 𝑆 ≼ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mreexdomd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) | |
2 | mreexdomd.2 | . . 3 ⊢ 𝑁 = (mrCls‘𝐴) | |
3 | mreexdomd.3 | . . 3 ⊢ 𝐼 = (mrInd‘𝐴) | |
4 | mreexdomd.4 | . . 3 ⊢ (𝜑 → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) | |
5 | mreexdomd.8 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ 𝐼) | |
6 | 3, 1, 5 | mrissd 17694 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
7 | dif0 4400 | . . . 4 ⊢ (𝑋 ∖ ∅) = 𝑋 | |
8 | 6, 7 | sseqtrrdi 4060 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ (𝑋 ∖ ∅)) |
9 | mreexdomd.6 | . . . 4 ⊢ (𝜑 → 𝑇 ⊆ 𝑋) | |
10 | 9, 7 | sseqtrrdi 4060 | . . 3 ⊢ (𝜑 → 𝑇 ⊆ (𝑋 ∖ ∅)) |
11 | mreexdomd.5 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ (𝑁‘𝑇)) | |
12 | un0 4417 | . . . . 5 ⊢ (𝑇 ∪ ∅) = 𝑇 | |
13 | 12 | fveq2i 6923 | . . . 4 ⊢ (𝑁‘(𝑇 ∪ ∅)) = (𝑁‘𝑇) |
14 | 11, 13 | sseqtrrdi 4060 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ (𝑁‘(𝑇 ∪ ∅))) |
15 | un0 4417 | . . . 4 ⊢ (𝑆 ∪ ∅) = 𝑆 | |
16 | 15, 5 | eqeltrid 2848 | . . 3 ⊢ (𝜑 → (𝑆 ∪ ∅) ∈ 𝐼) |
17 | mreexdomd.7 | . . 3 ⊢ (𝜑 → (𝑆 ∈ Fin ∨ 𝑇 ∈ Fin)) | |
18 | 1, 2, 3, 4, 8, 10, 14, 16, 17 | mreexexd 17706 | . 2 ⊢ (𝜑 → ∃𝑖 ∈ 𝒫 𝑇(𝑆 ≈ 𝑖 ∧ (𝑖 ∪ ∅) ∈ 𝐼)) |
19 | simprrl 780 | . . 3 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝒫 𝑇 ∧ (𝑆 ≈ 𝑖 ∧ (𝑖 ∪ ∅) ∈ 𝐼))) → 𝑆 ≈ 𝑖) | |
20 | simprl 770 | . . . . 5 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝒫 𝑇 ∧ (𝑆 ≈ 𝑖 ∧ (𝑖 ∪ ∅) ∈ 𝐼))) → 𝑖 ∈ 𝒫 𝑇) | |
21 | 20 | elpwid 4631 | . . . 4 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝒫 𝑇 ∧ (𝑆 ≈ 𝑖 ∧ (𝑖 ∪ ∅) ∈ 𝐼))) → 𝑖 ⊆ 𝑇) |
22 | 1 | elfvexd 6959 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ V) |
23 | 22, 9 | ssexd 5342 | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ V) |
24 | ssdomg 9060 | . . . . . 6 ⊢ (𝑇 ∈ V → (𝑖 ⊆ 𝑇 → 𝑖 ≼ 𝑇)) | |
25 | 23, 24 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑖 ⊆ 𝑇 → 𝑖 ≼ 𝑇)) |
26 | 25 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝒫 𝑇 ∧ (𝑆 ≈ 𝑖 ∧ (𝑖 ∪ ∅) ∈ 𝐼))) → (𝑖 ⊆ 𝑇 → 𝑖 ≼ 𝑇)) |
27 | 21, 26 | mpd 15 | . . 3 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝒫 𝑇 ∧ (𝑆 ≈ 𝑖 ∧ (𝑖 ∪ ∅) ∈ 𝐼))) → 𝑖 ≼ 𝑇) |
28 | endomtr 9072 | . . 3 ⊢ ((𝑆 ≈ 𝑖 ∧ 𝑖 ≼ 𝑇) → 𝑆 ≼ 𝑇) | |
29 | 19, 27, 28 | syl2anc 583 | . 2 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝒫 𝑇 ∧ (𝑆 ≈ 𝑖 ∧ (𝑖 ∪ ∅) ∈ 𝐼))) → 𝑆 ≼ 𝑇) |
30 | 18, 29 | rexlimddv 3167 | 1 ⊢ (𝜑 → 𝑆 ≼ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 ∖ cdif 3973 ∪ cun 3974 ⊆ wss 3976 ∅c0 4352 𝒫 cpw 4622 {csn 4648 class class class wbr 5166 ‘cfv 6573 ≈ cen 9000 ≼ cdom 9001 Fincfn 9003 Moorecmre 17640 mrClscmrc 17641 mrIndcmri 17642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-om 7904 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-card 10008 df-mre 17644 df-mrc 17645 df-mri 17646 |
This theorem is referenced by: mreexfidimd 17708 |
Copyright terms: Public domain | W3C validator |