MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreexdomd Structured version   Visualization version   GIF version

Theorem mreexdomd 16754
Description: In a Moore system whose closure operator has the exchange property, if 𝑆 is independent and contained in the closure of 𝑇, and either 𝑆 or 𝑇 is finite, then 𝑇 dominates 𝑆. This is an immediate consequence of mreexexd 16753. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mreexdomd.1 (𝜑𝐴 ∈ (Moore‘𝑋))
mreexdomd.2 𝑁 = (mrCls‘𝐴)
mreexdomd.3 𝐼 = (mrInd‘𝐴)
mreexdomd.4 (𝜑 → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
mreexdomd.5 (𝜑𝑆 ⊆ (𝑁𝑇))
mreexdomd.6 (𝜑𝑇𝑋)
mreexdomd.7 (𝜑 → (𝑆 ∈ Fin ∨ 𝑇 ∈ Fin))
mreexdomd.8 (𝜑𝑆𝐼)
Assertion
Ref Expression
mreexdomd (𝜑𝑆𝑇)
Distinct variable groups:   𝑋,𝑠,𝑦,𝑧   𝜑,𝑠,𝑦,𝑧   𝐼,𝑠,𝑦,𝑧   𝑁,𝑠,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑦,𝑧,𝑠)   𝑆(𝑦,𝑧,𝑠)   𝑇(𝑦,𝑧,𝑠)

Proof of Theorem mreexdomd
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 mreexdomd.1 . . 3 (𝜑𝐴 ∈ (Moore‘𝑋))
2 mreexdomd.2 . . 3 𝑁 = (mrCls‘𝐴)
3 mreexdomd.3 . . 3 𝐼 = (mrInd‘𝐴)
4 mreexdomd.4 . . 3 (𝜑 → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
5 mreexdomd.8 . . . . 5 (𝜑𝑆𝐼)
63, 1, 5mrissd 16741 . . . 4 (𝜑𝑆𝑋)
7 dif0 4256 . . . 4 (𝑋 ∖ ∅) = 𝑋
86, 7syl6sseqr 3943 . . 3 (𝜑𝑆 ⊆ (𝑋 ∖ ∅))
9 mreexdomd.6 . . . 4 (𝜑𝑇𝑋)
109, 7syl6sseqr 3943 . . 3 (𝜑𝑇 ⊆ (𝑋 ∖ ∅))
11 mreexdomd.5 . . . 4 (𝜑𝑆 ⊆ (𝑁𝑇))
12 un0 4268 . . . . 5 (𝑇 ∪ ∅) = 𝑇
1312fveq2i 6546 . . . 4 (𝑁‘(𝑇 ∪ ∅)) = (𝑁𝑇)
1411, 13syl6sseqr 3943 . . 3 (𝜑𝑆 ⊆ (𝑁‘(𝑇 ∪ ∅)))
15 un0 4268 . . . 4 (𝑆 ∪ ∅) = 𝑆
1615, 5syl5eqel 2887 . . 3 (𝜑 → (𝑆 ∪ ∅) ∈ 𝐼)
17 mreexdomd.7 . . 3 (𝜑 → (𝑆 ∈ Fin ∨ 𝑇 ∈ Fin))
181, 2, 3, 4, 8, 10, 14, 16, 17mreexexd 16753 . 2 (𝜑 → ∃𝑖 ∈ 𝒫 𝑇(𝑆𝑖 ∧ (𝑖 ∪ ∅) ∈ 𝐼))
19 simprrl 777 . . 3 ((𝜑 ∧ (𝑖 ∈ 𝒫 𝑇 ∧ (𝑆𝑖 ∧ (𝑖 ∪ ∅) ∈ 𝐼))) → 𝑆𝑖)
20 simprl 767 . . . . 5 ((𝜑 ∧ (𝑖 ∈ 𝒫 𝑇 ∧ (𝑆𝑖 ∧ (𝑖 ∪ ∅) ∈ 𝐼))) → 𝑖 ∈ 𝒫 𝑇)
2120elpwid 4469 . . . 4 ((𝜑 ∧ (𝑖 ∈ 𝒫 𝑇 ∧ (𝑆𝑖 ∧ (𝑖 ∪ ∅) ∈ 𝐼))) → 𝑖𝑇)
221elfvexd 6577 . . . . . . 7 (𝜑𝑋 ∈ V)
2322, 9ssexd 5124 . . . . . 6 (𝜑𝑇 ∈ V)
24 ssdomg 8408 . . . . . 6 (𝑇 ∈ V → (𝑖𝑇𝑖𝑇))
2523, 24syl 17 . . . . 5 (𝜑 → (𝑖𝑇𝑖𝑇))
2625adantr 481 . . . 4 ((𝜑 ∧ (𝑖 ∈ 𝒫 𝑇 ∧ (𝑆𝑖 ∧ (𝑖 ∪ ∅) ∈ 𝐼))) → (𝑖𝑇𝑖𝑇))
2721, 26mpd 15 . . 3 ((𝜑 ∧ (𝑖 ∈ 𝒫 𝑇 ∧ (𝑆𝑖 ∧ (𝑖 ∪ ∅) ∈ 𝐼))) → 𝑖𝑇)
28 endomtr 8420 . . 3 ((𝑆𝑖𝑖𝑇) → 𝑆𝑇)
2919, 27, 28syl2anc 584 . 2 ((𝜑 ∧ (𝑖 ∈ 𝒫 𝑇 ∧ (𝑆𝑖 ∧ (𝑖 ∪ ∅) ∈ 𝐼))) → 𝑆𝑇)
3018, 29rexlimddv 3254 1 (𝜑𝑆𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 842   = wceq 1522  wcel 2081  wral 3105  Vcvv 3437  cdif 3860  cun 3861  wss 3863  c0 4215  𝒫 cpw 4457  {csn 4476   class class class wbr 4966  cfv 6230  cen 8359  cdom 8360  Fincfn 8362  Moorecmre 16687  mrClscmrc 16688  mrIndcmri 16689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5099  ax-nul 5106  ax-pow 5162  ax-pr 5226  ax-un 7324
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-rab 3114  df-v 3439  df-sbc 3710  df-csb 3816  df-dif 3866  df-un 3868  df-in 3870  df-ss 3878  df-pss 3880  df-nul 4216  df-if 4386  df-pw 4459  df-sn 4477  df-pr 4479  df-tp 4481  df-op 4483  df-uni 4750  df-int 4787  df-br 4967  df-opab 5029  df-mpt 5046  df-tr 5069  df-id 5353  df-eprel 5358  df-po 5367  df-so 5368  df-fr 5407  df-we 5409  df-xp 5454  df-rel 5455  df-cnv 5456  df-co 5457  df-dm 5458  df-rn 5459  df-res 5460  df-ima 5461  df-ord 6074  df-on 6075  df-lim 6076  df-suc 6077  df-iota 6194  df-fun 6232  df-fn 6233  df-f 6234  df-f1 6235  df-fo 6236  df-f1o 6237  df-fv 6238  df-om 7442  df-1o 7958  df-er 8144  df-en 8363  df-dom 8364  df-sdom 8365  df-fin 8366  df-card 9219  df-mre 16691  df-mrc 16692  df-mri 16693
This theorem is referenced by:  mreexfidimd  16755
  Copyright terms: Public domain W3C validator