MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreexdomd Structured version   Visualization version   GIF version

Theorem mreexdomd 17610
Description: In a Moore system whose closure operator has the exchange property, if 𝑆 is independent and contained in the closure of 𝑇, and either 𝑆 or 𝑇 is finite, then 𝑇 dominates 𝑆. This is an immediate consequence of mreexexd 17609. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mreexdomd.1 (𝜑𝐴 ∈ (Moore‘𝑋))
mreexdomd.2 𝑁 = (mrCls‘𝐴)
mreexdomd.3 𝐼 = (mrInd‘𝐴)
mreexdomd.4 (𝜑 → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
mreexdomd.5 (𝜑𝑆 ⊆ (𝑁𝑇))
mreexdomd.6 (𝜑𝑇𝑋)
mreexdomd.7 (𝜑 → (𝑆 ∈ Fin ∨ 𝑇 ∈ Fin))
mreexdomd.8 (𝜑𝑆𝐼)
Assertion
Ref Expression
mreexdomd (𝜑𝑆𝑇)
Distinct variable groups:   𝑋,𝑠,𝑦,𝑧   𝜑,𝑠,𝑦,𝑧   𝐼,𝑠,𝑦,𝑧   𝑁,𝑠,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑦,𝑧,𝑠)   𝑆(𝑦,𝑧,𝑠)   𝑇(𝑦,𝑧,𝑠)

Proof of Theorem mreexdomd
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 mreexdomd.1 . . 3 (𝜑𝐴 ∈ (Moore‘𝑋))
2 mreexdomd.2 . . 3 𝑁 = (mrCls‘𝐴)
3 mreexdomd.3 . . 3 𝐼 = (mrInd‘𝐴)
4 mreexdomd.4 . . 3 (𝜑 → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
5 mreexdomd.8 . . . . 5 (𝜑𝑆𝐼)
63, 1, 5mrissd 17597 . . . 4 (𝜑𝑆𝑋)
7 dif0 4341 . . . 4 (𝑋 ∖ ∅) = 𝑋
86, 7sseqtrrdi 3988 . . 3 (𝜑𝑆 ⊆ (𝑋 ∖ ∅))
9 mreexdomd.6 . . . 4 (𝜑𝑇𝑋)
109, 7sseqtrrdi 3988 . . 3 (𝜑𝑇 ⊆ (𝑋 ∖ ∅))
11 mreexdomd.5 . . . 4 (𝜑𝑆 ⊆ (𝑁𝑇))
12 un0 4357 . . . . 5 (𝑇 ∪ ∅) = 𝑇
1312fveq2i 6861 . . . 4 (𝑁‘(𝑇 ∪ ∅)) = (𝑁𝑇)
1411, 13sseqtrrdi 3988 . . 3 (𝜑𝑆 ⊆ (𝑁‘(𝑇 ∪ ∅)))
15 un0 4357 . . . 4 (𝑆 ∪ ∅) = 𝑆
1615, 5eqeltrid 2832 . . 3 (𝜑 → (𝑆 ∪ ∅) ∈ 𝐼)
17 mreexdomd.7 . . 3 (𝜑 → (𝑆 ∈ Fin ∨ 𝑇 ∈ Fin))
181, 2, 3, 4, 8, 10, 14, 16, 17mreexexd 17609 . 2 (𝜑 → ∃𝑖 ∈ 𝒫 𝑇(𝑆𝑖 ∧ (𝑖 ∪ ∅) ∈ 𝐼))
19 simprrl 780 . . 3 ((𝜑 ∧ (𝑖 ∈ 𝒫 𝑇 ∧ (𝑆𝑖 ∧ (𝑖 ∪ ∅) ∈ 𝐼))) → 𝑆𝑖)
20 simprl 770 . . . . 5 ((𝜑 ∧ (𝑖 ∈ 𝒫 𝑇 ∧ (𝑆𝑖 ∧ (𝑖 ∪ ∅) ∈ 𝐼))) → 𝑖 ∈ 𝒫 𝑇)
2120elpwid 4572 . . . 4 ((𝜑 ∧ (𝑖 ∈ 𝒫 𝑇 ∧ (𝑆𝑖 ∧ (𝑖 ∪ ∅) ∈ 𝐼))) → 𝑖𝑇)
221elfvexd 6897 . . . . . . 7 (𝜑𝑋 ∈ V)
2322, 9ssexd 5279 . . . . . 6 (𝜑𝑇 ∈ V)
24 ssdomg 8971 . . . . . 6 (𝑇 ∈ V → (𝑖𝑇𝑖𝑇))
2523, 24syl 17 . . . . 5 (𝜑 → (𝑖𝑇𝑖𝑇))
2625adantr 480 . . . 4 ((𝜑 ∧ (𝑖 ∈ 𝒫 𝑇 ∧ (𝑆𝑖 ∧ (𝑖 ∪ ∅) ∈ 𝐼))) → (𝑖𝑇𝑖𝑇))
2721, 26mpd 15 . . 3 ((𝜑 ∧ (𝑖 ∈ 𝒫 𝑇 ∧ (𝑆𝑖 ∧ (𝑖 ∪ ∅) ∈ 𝐼))) → 𝑖𝑇)
28 endomtr 8983 . . 3 ((𝑆𝑖𝑖𝑇) → 𝑆𝑇)
2919, 27, 28syl2anc 584 . 2 ((𝜑 ∧ (𝑖 ∈ 𝒫 𝑇 ∧ (𝑆𝑖 ∧ (𝑖 ∪ ∅) ∈ 𝐼))) → 𝑆𝑇)
3018, 29rexlimddv 3140 1 (𝜑𝑆𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447  cdif 3911  cun 3912  wss 3914  c0 4296  𝒫 cpw 4563  {csn 4589   class class class wbr 5107  cfv 6511  cen 8915  cdom 8916  Fincfn 8918  Moorecmre 17543  mrClscmrc 17544  mrIndcmri 17545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-om 7843  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-mre 17547  df-mrc 17548  df-mri 17549
This theorem is referenced by:  mreexfidimd  17611
  Copyright terms: Public domain W3C validator