MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreexdomd Structured version   Visualization version   GIF version

Theorem mreexdomd 17707
Description: In a Moore system whose closure operator has the exchange property, if 𝑆 is independent and contained in the closure of 𝑇, and either 𝑆 or 𝑇 is finite, then 𝑇 dominates 𝑆. This is an immediate consequence of mreexexd 17706. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mreexdomd.1 (𝜑𝐴 ∈ (Moore‘𝑋))
mreexdomd.2 𝑁 = (mrCls‘𝐴)
mreexdomd.3 𝐼 = (mrInd‘𝐴)
mreexdomd.4 (𝜑 → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
mreexdomd.5 (𝜑𝑆 ⊆ (𝑁𝑇))
mreexdomd.6 (𝜑𝑇𝑋)
mreexdomd.7 (𝜑 → (𝑆 ∈ Fin ∨ 𝑇 ∈ Fin))
mreexdomd.8 (𝜑𝑆𝐼)
Assertion
Ref Expression
mreexdomd (𝜑𝑆𝑇)
Distinct variable groups:   𝑋,𝑠,𝑦,𝑧   𝜑,𝑠,𝑦,𝑧   𝐼,𝑠,𝑦,𝑧   𝑁,𝑠,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑦,𝑧,𝑠)   𝑆(𝑦,𝑧,𝑠)   𝑇(𝑦,𝑧,𝑠)

Proof of Theorem mreexdomd
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 mreexdomd.1 . . 3 (𝜑𝐴 ∈ (Moore‘𝑋))
2 mreexdomd.2 . . 3 𝑁 = (mrCls‘𝐴)
3 mreexdomd.3 . . 3 𝐼 = (mrInd‘𝐴)
4 mreexdomd.4 . . 3 (𝜑 → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
5 mreexdomd.8 . . . . 5 (𝜑𝑆𝐼)
63, 1, 5mrissd 17694 . . . 4 (𝜑𝑆𝑋)
7 dif0 4400 . . . 4 (𝑋 ∖ ∅) = 𝑋
86, 7sseqtrrdi 4060 . . 3 (𝜑𝑆 ⊆ (𝑋 ∖ ∅))
9 mreexdomd.6 . . . 4 (𝜑𝑇𝑋)
109, 7sseqtrrdi 4060 . . 3 (𝜑𝑇 ⊆ (𝑋 ∖ ∅))
11 mreexdomd.5 . . . 4 (𝜑𝑆 ⊆ (𝑁𝑇))
12 un0 4417 . . . . 5 (𝑇 ∪ ∅) = 𝑇
1312fveq2i 6923 . . . 4 (𝑁‘(𝑇 ∪ ∅)) = (𝑁𝑇)
1411, 13sseqtrrdi 4060 . . 3 (𝜑𝑆 ⊆ (𝑁‘(𝑇 ∪ ∅)))
15 un0 4417 . . . 4 (𝑆 ∪ ∅) = 𝑆
1615, 5eqeltrid 2848 . . 3 (𝜑 → (𝑆 ∪ ∅) ∈ 𝐼)
17 mreexdomd.7 . . 3 (𝜑 → (𝑆 ∈ Fin ∨ 𝑇 ∈ Fin))
181, 2, 3, 4, 8, 10, 14, 16, 17mreexexd 17706 . 2 (𝜑 → ∃𝑖 ∈ 𝒫 𝑇(𝑆𝑖 ∧ (𝑖 ∪ ∅) ∈ 𝐼))
19 simprrl 780 . . 3 ((𝜑 ∧ (𝑖 ∈ 𝒫 𝑇 ∧ (𝑆𝑖 ∧ (𝑖 ∪ ∅) ∈ 𝐼))) → 𝑆𝑖)
20 simprl 770 . . . . 5 ((𝜑 ∧ (𝑖 ∈ 𝒫 𝑇 ∧ (𝑆𝑖 ∧ (𝑖 ∪ ∅) ∈ 𝐼))) → 𝑖 ∈ 𝒫 𝑇)
2120elpwid 4631 . . . 4 ((𝜑 ∧ (𝑖 ∈ 𝒫 𝑇 ∧ (𝑆𝑖 ∧ (𝑖 ∪ ∅) ∈ 𝐼))) → 𝑖𝑇)
221elfvexd 6959 . . . . . . 7 (𝜑𝑋 ∈ V)
2322, 9ssexd 5342 . . . . . 6 (𝜑𝑇 ∈ V)
24 ssdomg 9060 . . . . . 6 (𝑇 ∈ V → (𝑖𝑇𝑖𝑇))
2523, 24syl 17 . . . . 5 (𝜑 → (𝑖𝑇𝑖𝑇))
2625adantr 480 . . . 4 ((𝜑 ∧ (𝑖 ∈ 𝒫 𝑇 ∧ (𝑆𝑖 ∧ (𝑖 ∪ ∅) ∈ 𝐼))) → (𝑖𝑇𝑖𝑇))
2721, 26mpd 15 . . 3 ((𝜑 ∧ (𝑖 ∈ 𝒫 𝑇 ∧ (𝑆𝑖 ∧ (𝑖 ∪ ∅) ∈ 𝐼))) → 𝑖𝑇)
28 endomtr 9072 . . 3 ((𝑆𝑖𝑖𝑇) → 𝑆𝑇)
2919, 27, 28syl2anc 583 . 2 ((𝜑 ∧ (𝑖 ∈ 𝒫 𝑇 ∧ (𝑆𝑖 ∧ (𝑖 ∪ ∅) ∈ 𝐼))) → 𝑆𝑇)
3018, 29rexlimddv 3167 1 (𝜑𝑆𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  cdif 3973  cun 3974  wss 3976  c0 4352  𝒫 cpw 4622  {csn 4648   class class class wbr 5166  cfv 6573  cen 9000  cdom 9001  Fincfn 9003  Moorecmre 17640  mrClscmrc 17641  mrIndcmri 17642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-mre 17644  df-mrc 17645  df-mri 17646
This theorem is referenced by:  mreexfidimd  17708
  Copyright terms: Public domain W3C validator