| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mreexdomd | Structured version Visualization version GIF version | ||
| Description: In a Moore system whose closure operator has the exchange property, if 𝑆 is independent and contained in the closure of 𝑇, and either 𝑆 or 𝑇 is finite, then 𝑇 dominates 𝑆. This is an immediate consequence of mreexexd 17554. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| mreexdomd.1 | ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
| mreexdomd.2 | ⊢ 𝑁 = (mrCls‘𝐴) |
| mreexdomd.3 | ⊢ 𝐼 = (mrInd‘𝐴) |
| mreexdomd.4 | ⊢ (𝜑 → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) |
| mreexdomd.5 | ⊢ (𝜑 → 𝑆 ⊆ (𝑁‘𝑇)) |
| mreexdomd.6 | ⊢ (𝜑 → 𝑇 ⊆ 𝑋) |
| mreexdomd.7 | ⊢ (𝜑 → (𝑆 ∈ Fin ∨ 𝑇 ∈ Fin)) |
| mreexdomd.8 | ⊢ (𝜑 → 𝑆 ∈ 𝐼) |
| Ref | Expression |
|---|---|
| mreexdomd | ⊢ (𝜑 → 𝑆 ≼ 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mreexdomd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) | |
| 2 | mreexdomd.2 | . . 3 ⊢ 𝑁 = (mrCls‘𝐴) | |
| 3 | mreexdomd.3 | . . 3 ⊢ 𝐼 = (mrInd‘𝐴) | |
| 4 | mreexdomd.4 | . . 3 ⊢ (𝜑 → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) | |
| 5 | mreexdomd.8 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ 𝐼) | |
| 6 | 3, 1, 5 | mrissd 17542 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
| 7 | dif0 4329 | . . . 4 ⊢ (𝑋 ∖ ∅) = 𝑋 | |
| 8 | 6, 7 | sseqtrrdi 3977 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ (𝑋 ∖ ∅)) |
| 9 | mreexdomd.6 | . . . 4 ⊢ (𝜑 → 𝑇 ⊆ 𝑋) | |
| 10 | 9, 7 | sseqtrrdi 3977 | . . 3 ⊢ (𝜑 → 𝑇 ⊆ (𝑋 ∖ ∅)) |
| 11 | mreexdomd.5 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ (𝑁‘𝑇)) | |
| 12 | un0 4345 | . . . . 5 ⊢ (𝑇 ∪ ∅) = 𝑇 | |
| 13 | 12 | fveq2i 6825 | . . . 4 ⊢ (𝑁‘(𝑇 ∪ ∅)) = (𝑁‘𝑇) |
| 14 | 11, 13 | sseqtrrdi 3977 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ (𝑁‘(𝑇 ∪ ∅))) |
| 15 | un0 4345 | . . . 4 ⊢ (𝑆 ∪ ∅) = 𝑆 | |
| 16 | 15, 5 | eqeltrid 2832 | . . 3 ⊢ (𝜑 → (𝑆 ∪ ∅) ∈ 𝐼) |
| 17 | mreexdomd.7 | . . 3 ⊢ (𝜑 → (𝑆 ∈ Fin ∨ 𝑇 ∈ Fin)) | |
| 18 | 1, 2, 3, 4, 8, 10, 14, 16, 17 | mreexexd 17554 | . 2 ⊢ (𝜑 → ∃𝑖 ∈ 𝒫 𝑇(𝑆 ≈ 𝑖 ∧ (𝑖 ∪ ∅) ∈ 𝐼)) |
| 19 | simprrl 780 | . . 3 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝒫 𝑇 ∧ (𝑆 ≈ 𝑖 ∧ (𝑖 ∪ ∅) ∈ 𝐼))) → 𝑆 ≈ 𝑖) | |
| 20 | simprl 770 | . . . . 5 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝒫 𝑇 ∧ (𝑆 ≈ 𝑖 ∧ (𝑖 ∪ ∅) ∈ 𝐼))) → 𝑖 ∈ 𝒫 𝑇) | |
| 21 | 20 | elpwid 4560 | . . . 4 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝒫 𝑇 ∧ (𝑆 ≈ 𝑖 ∧ (𝑖 ∪ ∅) ∈ 𝐼))) → 𝑖 ⊆ 𝑇) |
| 22 | 1 | elfvexd 6859 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ V) |
| 23 | 22, 9 | ssexd 5263 | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ V) |
| 24 | ssdomg 8925 | . . . . . 6 ⊢ (𝑇 ∈ V → (𝑖 ⊆ 𝑇 → 𝑖 ≼ 𝑇)) | |
| 25 | 23, 24 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑖 ⊆ 𝑇 → 𝑖 ≼ 𝑇)) |
| 26 | 25 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝒫 𝑇 ∧ (𝑆 ≈ 𝑖 ∧ (𝑖 ∪ ∅) ∈ 𝐼))) → (𝑖 ⊆ 𝑇 → 𝑖 ≼ 𝑇)) |
| 27 | 21, 26 | mpd 15 | . . 3 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝒫 𝑇 ∧ (𝑆 ≈ 𝑖 ∧ (𝑖 ∪ ∅) ∈ 𝐼))) → 𝑖 ≼ 𝑇) |
| 28 | endomtr 8937 | . . 3 ⊢ ((𝑆 ≈ 𝑖 ∧ 𝑖 ≼ 𝑇) → 𝑆 ≼ 𝑇) | |
| 29 | 19, 27, 28 | syl2anc 584 | . 2 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝒫 𝑇 ∧ (𝑆 ≈ 𝑖 ∧ (𝑖 ∪ ∅) ∈ 𝐼))) → 𝑆 ≼ 𝑇) |
| 30 | 18, 29 | rexlimddv 3136 | 1 ⊢ (𝜑 → 𝑆 ≼ 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3436 ∖ cdif 3900 ∪ cun 3901 ⊆ wss 3903 ∅c0 4284 𝒫 cpw 4551 {csn 4577 class class class wbr 5092 ‘cfv 6482 ≈ cen 8869 ≼ cdom 8870 Fincfn 8872 Moorecmre 17484 mrClscmrc 17485 mrIndcmri 17486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-om 7800 df-1o 8388 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-card 9835 df-mre 17488 df-mrc 17489 df-mri 17490 |
| This theorem is referenced by: mreexfidimd 17556 |
| Copyright terms: Public domain | W3C validator |