![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mreexdomd | Structured version Visualization version GIF version |
Description: In a Moore system whose closure operator has the exchange property, if π is independent and contained in the closure of π, and either π or π is finite, then π dominates π. This is an immediate consequence of mreexexd 17594. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
mreexdomd.1 | β’ (π β π΄ β (Mooreβπ)) |
mreexdomd.2 | β’ π = (mrClsβπ΄) |
mreexdomd.3 | β’ πΌ = (mrIndβπ΄) |
mreexdomd.4 | β’ (π β βπ β π« πβπ¦ β π βπ§ β ((πβ(π βͺ {π¦})) β (πβπ ))π¦ β (πβ(π βͺ {π§}))) |
mreexdomd.5 | β’ (π β π β (πβπ)) |
mreexdomd.6 | β’ (π β π β π) |
mreexdomd.7 | β’ (π β (π β Fin β¨ π β Fin)) |
mreexdomd.8 | β’ (π β π β πΌ) |
Ref | Expression |
---|---|
mreexdomd | β’ (π β π βΌ π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mreexdomd.1 | . . 3 β’ (π β π΄ β (Mooreβπ)) | |
2 | mreexdomd.2 | . . 3 β’ π = (mrClsβπ΄) | |
3 | mreexdomd.3 | . . 3 β’ πΌ = (mrIndβπ΄) | |
4 | mreexdomd.4 | . . 3 β’ (π β βπ β π« πβπ¦ β π βπ§ β ((πβ(π βͺ {π¦})) β (πβπ ))π¦ β (πβ(π βͺ {π§}))) | |
5 | mreexdomd.8 | . . . . 5 β’ (π β π β πΌ) | |
6 | 3, 1, 5 | mrissd 17582 | . . . 4 β’ (π β π β π) |
7 | dif0 4372 | . . . 4 β’ (π β β ) = π | |
8 | 6, 7 | sseqtrrdi 4033 | . . 3 β’ (π β π β (π β β )) |
9 | mreexdomd.6 | . . . 4 β’ (π β π β π) | |
10 | 9, 7 | sseqtrrdi 4033 | . . 3 β’ (π β π β (π β β )) |
11 | mreexdomd.5 | . . . 4 β’ (π β π β (πβπ)) | |
12 | un0 4390 | . . . . 5 β’ (π βͺ β ) = π | |
13 | 12 | fveq2i 6894 | . . . 4 β’ (πβ(π βͺ β )) = (πβπ) |
14 | 11, 13 | sseqtrrdi 4033 | . . 3 β’ (π β π β (πβ(π βͺ β ))) |
15 | un0 4390 | . . . 4 β’ (π βͺ β ) = π | |
16 | 15, 5 | eqeltrid 2837 | . . 3 β’ (π β (π βͺ β ) β πΌ) |
17 | mreexdomd.7 | . . 3 β’ (π β (π β Fin β¨ π β Fin)) | |
18 | 1, 2, 3, 4, 8, 10, 14, 16, 17 | mreexexd 17594 | . 2 β’ (π β βπ β π« π(π β π β§ (π βͺ β ) β πΌ)) |
19 | simprrl 779 | . . 3 β’ ((π β§ (π β π« π β§ (π β π β§ (π βͺ β ) β πΌ))) β π β π) | |
20 | simprl 769 | . . . . 5 β’ ((π β§ (π β π« π β§ (π β π β§ (π βͺ β ) β πΌ))) β π β π« π) | |
21 | 20 | elpwid 4611 | . . . 4 β’ ((π β§ (π β π« π β§ (π β π β§ (π βͺ β ) β πΌ))) β π β π) |
22 | 1 | elfvexd 6930 | . . . . . . 7 β’ (π β π β V) |
23 | 22, 9 | ssexd 5324 | . . . . . 6 β’ (π β π β V) |
24 | ssdomg 8998 | . . . . . 6 β’ (π β V β (π β π β π βΌ π)) | |
25 | 23, 24 | syl 17 | . . . . 5 β’ (π β (π β π β π βΌ π)) |
26 | 25 | adantr 481 | . . . 4 β’ ((π β§ (π β π« π β§ (π β π β§ (π βͺ β ) β πΌ))) β (π β π β π βΌ π)) |
27 | 21, 26 | mpd 15 | . . 3 β’ ((π β§ (π β π« π β§ (π β π β§ (π βͺ β ) β πΌ))) β π βΌ π) |
28 | endomtr 9010 | . . 3 β’ ((π β π β§ π βΌ π) β π βΌ π) | |
29 | 19, 27, 28 | syl2anc 584 | . 2 β’ ((π β§ (π β π« π β§ (π β π β§ (π βͺ β ) β πΌ))) β π βΌ π) |
30 | 18, 29 | rexlimddv 3161 | 1 β’ (π β π βΌ π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β¨ wo 845 = wceq 1541 β wcel 2106 βwral 3061 Vcvv 3474 β cdif 3945 βͺ cun 3946 β wss 3948 β c0 4322 π« cpw 4602 {csn 4628 class class class wbr 5148 βcfv 6543 β cen 8938 βΌ cdom 8939 Fincfn 8941 Moorecmre 17528 mrClscmrc 17529 mrIndcmri 17530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-om 7858 df-1o 8468 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-card 9936 df-mre 17532 df-mrc 17533 df-mri 17534 |
This theorem is referenced by: mreexfidimd 17596 |
Copyright terms: Public domain | W3C validator |