![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mreexdomd | Structured version Visualization version GIF version |
Description: In a Moore system whose closure operator has the exchange property, if 𝑆 is independent and contained in the closure of 𝑇, and either 𝑆 or 𝑇 is finite, then 𝑇 dominates 𝑆. This is an immediate consequence of mreexexd 16753. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
mreexdomd.1 | ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
mreexdomd.2 | ⊢ 𝑁 = (mrCls‘𝐴) |
mreexdomd.3 | ⊢ 𝐼 = (mrInd‘𝐴) |
mreexdomd.4 | ⊢ (𝜑 → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) |
mreexdomd.5 | ⊢ (𝜑 → 𝑆 ⊆ (𝑁‘𝑇)) |
mreexdomd.6 | ⊢ (𝜑 → 𝑇 ⊆ 𝑋) |
mreexdomd.7 | ⊢ (𝜑 → (𝑆 ∈ Fin ∨ 𝑇 ∈ Fin)) |
mreexdomd.8 | ⊢ (𝜑 → 𝑆 ∈ 𝐼) |
Ref | Expression |
---|---|
mreexdomd | ⊢ (𝜑 → 𝑆 ≼ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mreexdomd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) | |
2 | mreexdomd.2 | . . 3 ⊢ 𝑁 = (mrCls‘𝐴) | |
3 | mreexdomd.3 | . . 3 ⊢ 𝐼 = (mrInd‘𝐴) | |
4 | mreexdomd.4 | . . 3 ⊢ (𝜑 → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) | |
5 | mreexdomd.8 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ 𝐼) | |
6 | 3, 1, 5 | mrissd 16741 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
7 | dif0 4256 | . . . 4 ⊢ (𝑋 ∖ ∅) = 𝑋 | |
8 | 6, 7 | syl6sseqr 3943 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ (𝑋 ∖ ∅)) |
9 | mreexdomd.6 | . . . 4 ⊢ (𝜑 → 𝑇 ⊆ 𝑋) | |
10 | 9, 7 | syl6sseqr 3943 | . . 3 ⊢ (𝜑 → 𝑇 ⊆ (𝑋 ∖ ∅)) |
11 | mreexdomd.5 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ (𝑁‘𝑇)) | |
12 | un0 4268 | . . . . 5 ⊢ (𝑇 ∪ ∅) = 𝑇 | |
13 | 12 | fveq2i 6546 | . . . 4 ⊢ (𝑁‘(𝑇 ∪ ∅)) = (𝑁‘𝑇) |
14 | 11, 13 | syl6sseqr 3943 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ (𝑁‘(𝑇 ∪ ∅))) |
15 | un0 4268 | . . . 4 ⊢ (𝑆 ∪ ∅) = 𝑆 | |
16 | 15, 5 | syl5eqel 2887 | . . 3 ⊢ (𝜑 → (𝑆 ∪ ∅) ∈ 𝐼) |
17 | mreexdomd.7 | . . 3 ⊢ (𝜑 → (𝑆 ∈ Fin ∨ 𝑇 ∈ Fin)) | |
18 | 1, 2, 3, 4, 8, 10, 14, 16, 17 | mreexexd 16753 | . 2 ⊢ (𝜑 → ∃𝑖 ∈ 𝒫 𝑇(𝑆 ≈ 𝑖 ∧ (𝑖 ∪ ∅) ∈ 𝐼)) |
19 | simprrl 777 | . . 3 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝒫 𝑇 ∧ (𝑆 ≈ 𝑖 ∧ (𝑖 ∪ ∅) ∈ 𝐼))) → 𝑆 ≈ 𝑖) | |
20 | simprl 767 | . . . . 5 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝒫 𝑇 ∧ (𝑆 ≈ 𝑖 ∧ (𝑖 ∪ ∅) ∈ 𝐼))) → 𝑖 ∈ 𝒫 𝑇) | |
21 | 20 | elpwid 4469 | . . . 4 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝒫 𝑇 ∧ (𝑆 ≈ 𝑖 ∧ (𝑖 ∪ ∅) ∈ 𝐼))) → 𝑖 ⊆ 𝑇) |
22 | 1 | elfvexd 6577 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ V) |
23 | 22, 9 | ssexd 5124 | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ V) |
24 | ssdomg 8408 | . . . . . 6 ⊢ (𝑇 ∈ V → (𝑖 ⊆ 𝑇 → 𝑖 ≼ 𝑇)) | |
25 | 23, 24 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑖 ⊆ 𝑇 → 𝑖 ≼ 𝑇)) |
26 | 25 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝒫 𝑇 ∧ (𝑆 ≈ 𝑖 ∧ (𝑖 ∪ ∅) ∈ 𝐼))) → (𝑖 ⊆ 𝑇 → 𝑖 ≼ 𝑇)) |
27 | 21, 26 | mpd 15 | . . 3 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝒫 𝑇 ∧ (𝑆 ≈ 𝑖 ∧ (𝑖 ∪ ∅) ∈ 𝐼))) → 𝑖 ≼ 𝑇) |
28 | endomtr 8420 | . . 3 ⊢ ((𝑆 ≈ 𝑖 ∧ 𝑖 ≼ 𝑇) → 𝑆 ≼ 𝑇) | |
29 | 19, 27, 28 | syl2anc 584 | . 2 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝒫 𝑇 ∧ (𝑆 ≈ 𝑖 ∧ (𝑖 ∪ ∅) ∈ 𝐼))) → 𝑆 ≼ 𝑇) |
30 | 18, 29 | rexlimddv 3254 | 1 ⊢ (𝜑 → 𝑆 ≼ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ wo 842 = wceq 1522 ∈ wcel 2081 ∀wral 3105 Vcvv 3437 ∖ cdif 3860 ∪ cun 3861 ⊆ wss 3863 ∅c0 4215 𝒫 cpw 4457 {csn 4476 class class class wbr 4966 ‘cfv 6230 ≈ cen 8359 ≼ cdom 8360 Fincfn 8362 Moorecmre 16687 mrClscmrc 16688 mrIndcmri 16689 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5099 ax-nul 5106 ax-pow 5162 ax-pr 5226 ax-un 7324 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-ral 3110 df-rex 3111 df-rab 3114 df-v 3439 df-sbc 3710 df-csb 3816 df-dif 3866 df-un 3868 df-in 3870 df-ss 3878 df-pss 3880 df-nul 4216 df-if 4386 df-pw 4459 df-sn 4477 df-pr 4479 df-tp 4481 df-op 4483 df-uni 4750 df-int 4787 df-br 4967 df-opab 5029 df-mpt 5046 df-tr 5069 df-id 5353 df-eprel 5358 df-po 5367 df-so 5368 df-fr 5407 df-we 5409 df-xp 5454 df-rel 5455 df-cnv 5456 df-co 5457 df-dm 5458 df-rn 5459 df-res 5460 df-ima 5461 df-ord 6074 df-on 6075 df-lim 6076 df-suc 6077 df-iota 6194 df-fun 6232 df-fn 6233 df-f 6234 df-f1 6235 df-fo 6236 df-f1o 6237 df-fv 6238 df-om 7442 df-1o 7958 df-er 8144 df-en 8363 df-dom 8364 df-sdom 8365 df-fin 8366 df-card 9219 df-mre 16691 df-mrc 16692 df-mri 16693 |
This theorem is referenced by: mreexfidimd 16755 |
Copyright terms: Public domain | W3C validator |