Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mreexdomd | Structured version Visualization version GIF version |
Description: In a Moore system whose closure operator has the exchange property, if 𝑆 is independent and contained in the closure of 𝑇, and either 𝑆 or 𝑇 is finite, then 𝑇 dominates 𝑆. This is an immediate consequence of mreexexd 17357. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
mreexdomd.1 | ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
mreexdomd.2 | ⊢ 𝑁 = (mrCls‘𝐴) |
mreexdomd.3 | ⊢ 𝐼 = (mrInd‘𝐴) |
mreexdomd.4 | ⊢ (𝜑 → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) |
mreexdomd.5 | ⊢ (𝜑 → 𝑆 ⊆ (𝑁‘𝑇)) |
mreexdomd.6 | ⊢ (𝜑 → 𝑇 ⊆ 𝑋) |
mreexdomd.7 | ⊢ (𝜑 → (𝑆 ∈ Fin ∨ 𝑇 ∈ Fin)) |
mreexdomd.8 | ⊢ (𝜑 → 𝑆 ∈ 𝐼) |
Ref | Expression |
---|---|
mreexdomd | ⊢ (𝜑 → 𝑆 ≼ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mreexdomd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) | |
2 | mreexdomd.2 | . . 3 ⊢ 𝑁 = (mrCls‘𝐴) | |
3 | mreexdomd.3 | . . 3 ⊢ 𝐼 = (mrInd‘𝐴) | |
4 | mreexdomd.4 | . . 3 ⊢ (𝜑 → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) | |
5 | mreexdomd.8 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ 𝐼) | |
6 | 3, 1, 5 | mrissd 17345 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
7 | dif0 4306 | . . . 4 ⊢ (𝑋 ∖ ∅) = 𝑋 | |
8 | 6, 7 | sseqtrrdi 3972 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ (𝑋 ∖ ∅)) |
9 | mreexdomd.6 | . . . 4 ⊢ (𝜑 → 𝑇 ⊆ 𝑋) | |
10 | 9, 7 | sseqtrrdi 3972 | . . 3 ⊢ (𝜑 → 𝑇 ⊆ (𝑋 ∖ ∅)) |
11 | mreexdomd.5 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ (𝑁‘𝑇)) | |
12 | un0 4324 | . . . . 5 ⊢ (𝑇 ∪ ∅) = 𝑇 | |
13 | 12 | fveq2i 6777 | . . . 4 ⊢ (𝑁‘(𝑇 ∪ ∅)) = (𝑁‘𝑇) |
14 | 11, 13 | sseqtrrdi 3972 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ (𝑁‘(𝑇 ∪ ∅))) |
15 | un0 4324 | . . . 4 ⊢ (𝑆 ∪ ∅) = 𝑆 | |
16 | 15, 5 | eqeltrid 2843 | . . 3 ⊢ (𝜑 → (𝑆 ∪ ∅) ∈ 𝐼) |
17 | mreexdomd.7 | . . 3 ⊢ (𝜑 → (𝑆 ∈ Fin ∨ 𝑇 ∈ Fin)) | |
18 | 1, 2, 3, 4, 8, 10, 14, 16, 17 | mreexexd 17357 | . 2 ⊢ (𝜑 → ∃𝑖 ∈ 𝒫 𝑇(𝑆 ≈ 𝑖 ∧ (𝑖 ∪ ∅) ∈ 𝐼)) |
19 | simprrl 778 | . . 3 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝒫 𝑇 ∧ (𝑆 ≈ 𝑖 ∧ (𝑖 ∪ ∅) ∈ 𝐼))) → 𝑆 ≈ 𝑖) | |
20 | simprl 768 | . . . . 5 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝒫 𝑇 ∧ (𝑆 ≈ 𝑖 ∧ (𝑖 ∪ ∅) ∈ 𝐼))) → 𝑖 ∈ 𝒫 𝑇) | |
21 | 20 | elpwid 4544 | . . . 4 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝒫 𝑇 ∧ (𝑆 ≈ 𝑖 ∧ (𝑖 ∪ ∅) ∈ 𝐼))) → 𝑖 ⊆ 𝑇) |
22 | 1 | elfvexd 6808 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ V) |
23 | 22, 9 | ssexd 5248 | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ V) |
24 | ssdomg 8786 | . . . . . 6 ⊢ (𝑇 ∈ V → (𝑖 ⊆ 𝑇 → 𝑖 ≼ 𝑇)) | |
25 | 23, 24 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑖 ⊆ 𝑇 → 𝑖 ≼ 𝑇)) |
26 | 25 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝒫 𝑇 ∧ (𝑆 ≈ 𝑖 ∧ (𝑖 ∪ ∅) ∈ 𝐼))) → (𝑖 ⊆ 𝑇 → 𝑖 ≼ 𝑇)) |
27 | 21, 26 | mpd 15 | . . 3 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝒫 𝑇 ∧ (𝑆 ≈ 𝑖 ∧ (𝑖 ∪ ∅) ∈ 𝐼))) → 𝑖 ≼ 𝑇) |
28 | endomtr 8798 | . . 3 ⊢ ((𝑆 ≈ 𝑖 ∧ 𝑖 ≼ 𝑇) → 𝑆 ≼ 𝑇) | |
29 | 19, 27, 28 | syl2anc 584 | . 2 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝒫 𝑇 ∧ (𝑆 ≈ 𝑖 ∧ (𝑖 ∪ ∅) ∈ 𝐼))) → 𝑆 ≼ 𝑇) |
30 | 18, 29 | rexlimddv 3220 | 1 ⊢ (𝜑 → 𝑆 ≼ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ wo 844 = wceq 1539 ∈ wcel 2106 ∀wral 3064 Vcvv 3432 ∖ cdif 3884 ∪ cun 3885 ⊆ wss 3887 ∅c0 4256 𝒫 cpw 4533 {csn 4561 class class class wbr 5074 ‘cfv 6433 ≈ cen 8730 ≼ cdom 8731 Fincfn 8733 Moorecmre 17291 mrClscmrc 17292 mrIndcmri 17293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-om 7713 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-card 9697 df-mre 17295 df-mrc 17296 df-mri 17297 |
This theorem is referenced by: mreexfidimd 17359 |
Copyright terms: Public domain | W3C validator |