Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dpexpp1 Structured version   Visualization version   GIF version

Theorem dpexpp1 32835
Description: Add one zero to the mantisse, and a one to the exponent in a scientific notation. (Contributed by Thierry Arnoux, 16-Dec-2021.)
Hypotheses
Ref Expression
dpexpp1.a 𝐴 ∈ ℕ0
dpexpp1.b 𝐵 ∈ ℝ+
dpexpp1.1 (𝑃 + 1) = 𝑄
dpexpp1.p 𝑃 ∈ ℤ
dpexpp1.q 𝑄 ∈ ℤ
Assertion
Ref Expression
dpexpp1 ((𝐴.𝐵) · (10↑𝑃)) = ((0.𝐴𝐵) · (10↑𝑄))

Proof of Theorem dpexpp1
StepHypRef Expression
1 0re 11183 . . . . . 6 0 ∈ ℝ
2 10pos 12673 . . . . . 6 0 < 10
31, 2gtneii 11293 . . . . 5 10 ≠ 0
4 dpexpp1.a . . . . . . . . . 10 𝐴 ∈ ℕ0
5 dpexpp1.b . . . . . . . . . 10 𝐵 ∈ ℝ+
64, 5rpdp2cl 32809 . . . . . . . . 9 𝐴𝐵 ∈ ℝ+
7 rpre 12967 . . . . . . . . 9 (𝐴𝐵 ∈ ℝ+𝐴𝐵 ∈ ℝ)
86, 7ax-mp 5 . . . . . . . 8 𝐴𝐵 ∈ ℝ
98recni 11195 . . . . . . 7 𝐴𝐵 ∈ ℂ
10 10re 12675 . . . . . . . . . . 11 10 ∈ ℝ
1110, 2pm3.2i 470 . . . . . . . . . 10 (10 ∈ ℝ ∧ 0 < 10)
12 elrp 12960 . . . . . . . . . 10 (10 ∈ ℝ+ ↔ (10 ∈ ℝ ∧ 0 < 10))
1311, 12mpbir 231 . . . . . . . . 9 10 ∈ ℝ+
14 dpexpp1.p . . . . . . . . 9 𝑃 ∈ ℤ
15 rpexpcl 14052 . . . . . . . . 9 ((10 ∈ ℝ+𝑃 ∈ ℤ) → (10↑𝑃) ∈ ℝ+)
1613, 14, 15mp2an 692 . . . . . . . 8 (10↑𝑃) ∈ ℝ+
17 rpcn 12969 . . . . . . . 8 ((10↑𝑃) ∈ ℝ+ → (10↑𝑃) ∈ ℂ)
1816, 17ax-mp 5 . . . . . . 7 (10↑𝑃) ∈ ℂ
199, 18mulcli 11188 . . . . . 6 (𝐴𝐵 · (10↑𝑃)) ∈ ℂ
20 10nn0 12674 . . . . . . 7 10 ∈ ℕ0
2120nn0cni 12461 . . . . . 6 10 ∈ ℂ
2219, 21divcan1zi 11925 . . . . 5 (10 ≠ 0 → (((𝐴𝐵 · (10↑𝑃)) / 10) · 10) = (𝐴𝐵 · (10↑𝑃)))
233, 22ax-mp 5 . . . 4 (((𝐴𝐵 · (10↑𝑃)) / 10) · 10) = (𝐴𝐵 · (10↑𝑃))
2421, 3pm3.2i 470 . . . . . 6 (10 ∈ ℂ ∧ 10 ≠ 0)
25 div23 11863 . . . . . 6 ((𝐴𝐵 ∈ ℂ ∧ (10↑𝑃) ∈ ℂ ∧ (10 ∈ ℂ ∧ 10 ≠ 0)) → ((𝐴𝐵 · (10↑𝑃)) / 10) = ((𝐴𝐵 / 10) · (10↑𝑃)))
269, 18, 24, 25mp3an 1463 . . . . 5 ((𝐴𝐵 · (10↑𝑃)) / 10) = ((𝐴𝐵 / 10) · (10↑𝑃))
2726oveq1i 7400 . . . 4 (((𝐴𝐵 · (10↑𝑃)) / 10) · 10) = (((𝐴𝐵 / 10) · (10↑𝑃)) · 10)
2823, 27eqtr3i 2755 . . 3 (𝐴𝐵 · (10↑𝑃)) = (((𝐴𝐵 / 10) · (10↑𝑃)) · 10)
299, 21, 3divcli 11931 . . . 4 (𝐴𝐵 / 10) ∈ ℂ
3029, 18, 21mulassi 11192 . . 3 (((𝐴𝐵 / 10) · (10↑𝑃)) · 10) = ((𝐴𝐵 / 10) · ((10↑𝑃) · 10))
31 expp1z 14083 . . . . . 6 ((10 ∈ ℂ ∧ 10 ≠ 0 ∧ 𝑃 ∈ ℤ) → (10↑(𝑃 + 1)) = ((10↑𝑃) · 10))
3221, 3, 14, 31mp3an 1463 . . . . 5 (10↑(𝑃 + 1)) = ((10↑𝑃) · 10)
33 dpexpp1.1 . . . . . 6 (𝑃 + 1) = 𝑄
3433oveq2i 7401 . . . . 5 (10↑(𝑃 + 1)) = (10↑𝑄)
3532, 34eqtr3i 2755 . . . 4 ((10↑𝑃) · 10) = (10↑𝑄)
3635oveq2i 7401 . . 3 ((𝐴𝐵 / 10) · ((10↑𝑃) · 10)) = ((𝐴𝐵 / 10) · (10↑𝑄))
3728, 30, 363eqtri 2757 . 2 (𝐴𝐵 · (10↑𝑃)) = ((𝐴𝐵 / 10) · (10↑𝑄))
384, 5dpval3rp 32827 . . 3 (𝐴.𝐵) = 𝐴𝐵
3938oveq1i 7400 . 2 ((𝐴.𝐵) · (10↑𝑃)) = (𝐴𝐵 · (10↑𝑃))
40 0nn0 12464 . . . . 5 0 ∈ ℕ0
4140, 6dpval3rp 32827 . . . 4 (0.𝐴𝐵) = 0𝐴𝐵
426dp20h 32806 . . . 4 0𝐴𝐵 = (𝐴𝐵 / 10)
4341, 42eqtri 2753 . . 3 (0.𝐴𝐵) = (𝐴𝐵 / 10)
4443oveq1i 7400 . 2 ((0.𝐴𝐵) · (10↑𝑄)) = ((𝐴𝐵 / 10) · (10↑𝑄))
4537, 39, 443eqtr4i 2763 1 ((𝐴.𝐵) · (10↑𝑃)) = ((0.𝐴𝐵) · (10↑𝑄))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  wne 2926   class class class wbr 5110  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080   < clt 11215   / cdiv 11842  0cn0 12449  cz 12536  cdc 12656  +crp 12958  cexp 14033  cdp2 32798  .cdp 32815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-rp 12959  df-seq 13974  df-exp 14034  df-dp2 32799  df-dp 32816
This theorem is referenced by:  0dp2dp  32836  hgt750lemd  34646  hgt750lem  34649
  Copyright terms: Public domain W3C validator