Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dpexpp1 Structured version   Visualization version   GIF version

Theorem dpexpp1 30856
Description: Add one zero to the mantisse, and a one to the exponent in a scientific notation. (Contributed by Thierry Arnoux, 16-Dec-2021.)
Hypotheses
Ref Expression
dpexpp1.a 𝐴 ∈ ℕ0
dpexpp1.b 𝐵 ∈ ℝ+
dpexpp1.1 (𝑃 + 1) = 𝑄
dpexpp1.p 𝑃 ∈ ℤ
dpexpp1.q 𝑄 ∈ ℤ
Assertion
Ref Expression
dpexpp1 ((𝐴.𝐵) · (10↑𝑃)) = ((0.𝐴𝐵) · (10↑𝑄))

Proof of Theorem dpexpp1
StepHypRef Expression
1 0re 10800 . . . . . 6 0 ∈ ℝ
2 10pos 12275 . . . . . 6 0 < 10
31, 2gtneii 10909 . . . . 5 10 ≠ 0
4 dpexpp1.a . . . . . . . . . 10 𝐴 ∈ ℕ0
5 dpexpp1.b . . . . . . . . . 10 𝐵 ∈ ℝ+
64, 5rpdp2cl 30830 . . . . . . . . 9 𝐴𝐵 ∈ ℝ+
7 rpre 12559 . . . . . . . . 9 (𝐴𝐵 ∈ ℝ+𝐴𝐵 ∈ ℝ)
86, 7ax-mp 5 . . . . . . . 8 𝐴𝐵 ∈ ℝ
98recni 10812 . . . . . . 7 𝐴𝐵 ∈ ℂ
10 10re 12277 . . . . . . . . . . 11 10 ∈ ℝ
1110, 2pm3.2i 474 . . . . . . . . . 10 (10 ∈ ℝ ∧ 0 < 10)
12 elrp 12553 . . . . . . . . . 10 (10 ∈ ℝ+ ↔ (10 ∈ ℝ ∧ 0 < 10))
1311, 12mpbir 234 . . . . . . . . 9 10 ∈ ℝ+
14 dpexpp1.p . . . . . . . . 9 𝑃 ∈ ℤ
15 rpexpcl 13619 . . . . . . . . 9 ((10 ∈ ℝ+𝑃 ∈ ℤ) → (10↑𝑃) ∈ ℝ+)
1613, 14, 15mp2an 692 . . . . . . . 8 (10↑𝑃) ∈ ℝ+
17 rpcn 12561 . . . . . . . 8 ((10↑𝑃) ∈ ℝ+ → (10↑𝑃) ∈ ℂ)
1816, 17ax-mp 5 . . . . . . 7 (10↑𝑃) ∈ ℂ
199, 18mulcli 10805 . . . . . 6 (𝐴𝐵 · (10↑𝑃)) ∈ ℂ
20 10nn0 12276 . . . . . . 7 10 ∈ ℕ0
2120nn0cni 12067 . . . . . 6 10 ∈ ℂ
2219, 21divcan1zi 11533 . . . . 5 (10 ≠ 0 → (((𝐴𝐵 · (10↑𝑃)) / 10) · 10) = (𝐴𝐵 · (10↑𝑃)))
233, 22ax-mp 5 . . . 4 (((𝐴𝐵 · (10↑𝑃)) / 10) · 10) = (𝐴𝐵 · (10↑𝑃))
2421, 3pm3.2i 474 . . . . . 6 (10 ∈ ℂ ∧ 10 ≠ 0)
25 div23 11474 . . . . . 6 ((𝐴𝐵 ∈ ℂ ∧ (10↑𝑃) ∈ ℂ ∧ (10 ∈ ℂ ∧ 10 ≠ 0)) → ((𝐴𝐵 · (10↑𝑃)) / 10) = ((𝐴𝐵 / 10) · (10↑𝑃)))
269, 18, 24, 25mp3an 1463 . . . . 5 ((𝐴𝐵 · (10↑𝑃)) / 10) = ((𝐴𝐵 / 10) · (10↑𝑃))
2726oveq1i 7201 . . . 4 (((𝐴𝐵 · (10↑𝑃)) / 10) · 10) = (((𝐴𝐵 / 10) · (10↑𝑃)) · 10)
2823, 27eqtr3i 2761 . . 3 (𝐴𝐵 · (10↑𝑃)) = (((𝐴𝐵 / 10) · (10↑𝑃)) · 10)
299, 21, 3divcli 11539 . . . 4 (𝐴𝐵 / 10) ∈ ℂ
3029, 18, 21mulassi 10809 . . 3 (((𝐴𝐵 / 10) · (10↑𝑃)) · 10) = ((𝐴𝐵 / 10) · ((10↑𝑃) · 10))
31 expp1z 13649 . . . . . 6 ((10 ∈ ℂ ∧ 10 ≠ 0 ∧ 𝑃 ∈ ℤ) → (10↑(𝑃 + 1)) = ((10↑𝑃) · 10))
3221, 3, 14, 31mp3an 1463 . . . . 5 (10↑(𝑃 + 1)) = ((10↑𝑃) · 10)
33 dpexpp1.1 . . . . . 6 (𝑃 + 1) = 𝑄
3433oveq2i 7202 . . . . 5 (10↑(𝑃 + 1)) = (10↑𝑄)
3532, 34eqtr3i 2761 . . . 4 ((10↑𝑃) · 10) = (10↑𝑄)
3635oveq2i 7202 . . 3 ((𝐴𝐵 / 10) · ((10↑𝑃) · 10)) = ((𝐴𝐵 / 10) · (10↑𝑄))
3728, 30, 363eqtri 2763 . 2 (𝐴𝐵 · (10↑𝑃)) = ((𝐴𝐵 / 10) · (10↑𝑄))
384, 5dpval3rp 30848 . . 3 (𝐴.𝐵) = 𝐴𝐵
3938oveq1i 7201 . 2 ((𝐴.𝐵) · (10↑𝑃)) = (𝐴𝐵 · (10↑𝑃))
40 0nn0 12070 . . . . 5 0 ∈ ℕ0
4140, 6dpval3rp 30848 . . . 4 (0.𝐴𝐵) = 0𝐴𝐵
426dp20h 30827 . . . 4 0𝐴𝐵 = (𝐴𝐵 / 10)
4341, 42eqtri 2759 . . 3 (0.𝐴𝐵) = (𝐴𝐵 / 10)
4443oveq1i 7201 . 2 ((0.𝐴𝐵) · (10↑𝑄)) = ((𝐴𝐵 / 10) · (10↑𝑄))
4537, 39, 443eqtr4i 2769 1 ((𝐴.𝐵) · (10↑𝑃)) = ((0.𝐴𝐵) · (10↑𝑄))
Colors of variables: wff setvar class
Syntax hints:  wa 399   = wceq 1543  wcel 2112  wne 2932   class class class wbr 5039  (class class class)co 7191  cc 10692  cr 10693  0cc0 10694  1c1 10695   + caddc 10697   · cmul 10699   < clt 10832   / cdiv 11454  0cn0 12055  cz 12141  cdc 12258  +crp 12551  cexp 13600  cdp2 30819  .cdp 30836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-5 11861  df-6 11862  df-7 11863  df-8 11864  df-9 11865  df-n0 12056  df-z 12142  df-dec 12259  df-uz 12404  df-rp 12552  df-seq 13540  df-exp 13601  df-dp2 30820  df-dp 30837
This theorem is referenced by:  0dp2dp  30857  hgt750lemd  32294  hgt750lem  32297
  Copyright terms: Public domain W3C validator