Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dpexpp1 | Structured version Visualization version GIF version |
Description: Add one zero to the mantisse, and a one to the exponent in a scientific notation. (Contributed by Thierry Arnoux, 16-Dec-2021.) |
Ref | Expression |
---|---|
dpexpp1.a | ⊢ 𝐴 ∈ ℕ0 |
dpexpp1.b | ⊢ 𝐵 ∈ ℝ+ |
dpexpp1.1 | ⊢ (𝑃 + 1) = 𝑄 |
dpexpp1.p | ⊢ 𝑃 ∈ ℤ |
dpexpp1.q | ⊢ 𝑄 ∈ ℤ |
Ref | Expression |
---|---|
dpexpp1 | ⊢ ((𝐴.𝐵) · (;10↑𝑃)) = ((0._𝐴𝐵) · (;10↑𝑄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 11027 | . . . . . 6 ⊢ 0 ∈ ℝ | |
2 | 10pos 12504 | . . . . . 6 ⊢ 0 < ;10 | |
3 | 1, 2 | gtneii 11137 | . . . . 5 ⊢ ;10 ≠ 0 |
4 | dpexpp1.a | . . . . . . . . . 10 ⊢ 𝐴 ∈ ℕ0 | |
5 | dpexpp1.b | . . . . . . . . . 10 ⊢ 𝐵 ∈ ℝ+ | |
6 | 4, 5 | rpdp2cl 31205 | . . . . . . . . 9 ⊢ _𝐴𝐵 ∈ ℝ+ |
7 | rpre 12788 | . . . . . . . . 9 ⊢ (_𝐴𝐵 ∈ ℝ+ → _𝐴𝐵 ∈ ℝ) | |
8 | 6, 7 | ax-mp 5 | . . . . . . . 8 ⊢ _𝐴𝐵 ∈ ℝ |
9 | 8 | recni 11039 | . . . . . . 7 ⊢ _𝐴𝐵 ∈ ℂ |
10 | 10re 12506 | . . . . . . . . . . 11 ⊢ ;10 ∈ ℝ | |
11 | 10, 2 | pm3.2i 472 | . . . . . . . . . 10 ⊢ (;10 ∈ ℝ ∧ 0 < ;10) |
12 | elrp 12782 | . . . . . . . . . 10 ⊢ (;10 ∈ ℝ+ ↔ (;10 ∈ ℝ ∧ 0 < ;10)) | |
13 | 11, 12 | mpbir 230 | . . . . . . . . 9 ⊢ ;10 ∈ ℝ+ |
14 | dpexpp1.p | . . . . . . . . 9 ⊢ 𝑃 ∈ ℤ | |
15 | rpexpcl 13851 | . . . . . . . . 9 ⊢ ((;10 ∈ ℝ+ ∧ 𝑃 ∈ ℤ) → (;10↑𝑃) ∈ ℝ+) | |
16 | 13, 14, 15 | mp2an 690 | . . . . . . . 8 ⊢ (;10↑𝑃) ∈ ℝ+ |
17 | rpcn 12790 | . . . . . . . 8 ⊢ ((;10↑𝑃) ∈ ℝ+ → (;10↑𝑃) ∈ ℂ) | |
18 | 16, 17 | ax-mp 5 | . . . . . . 7 ⊢ (;10↑𝑃) ∈ ℂ |
19 | 9, 18 | mulcli 11032 | . . . . . 6 ⊢ (_𝐴𝐵 · (;10↑𝑃)) ∈ ℂ |
20 | 10nn0 12505 | . . . . . . 7 ⊢ ;10 ∈ ℕ0 | |
21 | 20 | nn0cni 12295 | . . . . . 6 ⊢ ;10 ∈ ℂ |
22 | 19, 21 | divcan1zi 11761 | . . . . 5 ⊢ (;10 ≠ 0 → (((_𝐴𝐵 · (;10↑𝑃)) / ;10) · ;10) = (_𝐴𝐵 · (;10↑𝑃))) |
23 | 3, 22 | ax-mp 5 | . . . 4 ⊢ (((_𝐴𝐵 · (;10↑𝑃)) / ;10) · ;10) = (_𝐴𝐵 · (;10↑𝑃)) |
24 | 21, 3 | pm3.2i 472 | . . . . . 6 ⊢ (;10 ∈ ℂ ∧ ;10 ≠ 0) |
25 | div23 11702 | . . . . . 6 ⊢ ((_𝐴𝐵 ∈ ℂ ∧ (;10↑𝑃) ∈ ℂ ∧ (;10 ∈ ℂ ∧ ;10 ≠ 0)) → ((_𝐴𝐵 · (;10↑𝑃)) / ;10) = ((_𝐴𝐵 / ;10) · (;10↑𝑃))) | |
26 | 9, 18, 24, 25 | mp3an 1461 | . . . . 5 ⊢ ((_𝐴𝐵 · (;10↑𝑃)) / ;10) = ((_𝐴𝐵 / ;10) · (;10↑𝑃)) |
27 | 26 | oveq1i 7317 | . . . 4 ⊢ (((_𝐴𝐵 · (;10↑𝑃)) / ;10) · ;10) = (((_𝐴𝐵 / ;10) · (;10↑𝑃)) · ;10) |
28 | 23, 27 | eqtr3i 2766 | . . 3 ⊢ (_𝐴𝐵 · (;10↑𝑃)) = (((_𝐴𝐵 / ;10) · (;10↑𝑃)) · ;10) |
29 | 9, 21, 3 | divcli 11767 | . . . 4 ⊢ (_𝐴𝐵 / ;10) ∈ ℂ |
30 | 29, 18, 21 | mulassi 11036 | . . 3 ⊢ (((_𝐴𝐵 / ;10) · (;10↑𝑃)) · ;10) = ((_𝐴𝐵 / ;10) · ((;10↑𝑃) · ;10)) |
31 | expp1z 13882 | . . . . . 6 ⊢ ((;10 ∈ ℂ ∧ ;10 ≠ 0 ∧ 𝑃 ∈ ℤ) → (;10↑(𝑃 + 1)) = ((;10↑𝑃) · ;10)) | |
32 | 21, 3, 14, 31 | mp3an 1461 | . . . . 5 ⊢ (;10↑(𝑃 + 1)) = ((;10↑𝑃) · ;10) |
33 | dpexpp1.1 | . . . . . 6 ⊢ (𝑃 + 1) = 𝑄 | |
34 | 33 | oveq2i 7318 | . . . . 5 ⊢ (;10↑(𝑃 + 1)) = (;10↑𝑄) |
35 | 32, 34 | eqtr3i 2766 | . . . 4 ⊢ ((;10↑𝑃) · ;10) = (;10↑𝑄) |
36 | 35 | oveq2i 7318 | . . 3 ⊢ ((_𝐴𝐵 / ;10) · ((;10↑𝑃) · ;10)) = ((_𝐴𝐵 / ;10) · (;10↑𝑄)) |
37 | 28, 30, 36 | 3eqtri 2768 | . 2 ⊢ (_𝐴𝐵 · (;10↑𝑃)) = ((_𝐴𝐵 / ;10) · (;10↑𝑄)) |
38 | 4, 5 | dpval3rp 31223 | . . 3 ⊢ (𝐴.𝐵) = _𝐴𝐵 |
39 | 38 | oveq1i 7317 | . 2 ⊢ ((𝐴.𝐵) · (;10↑𝑃)) = (_𝐴𝐵 · (;10↑𝑃)) |
40 | 0nn0 12298 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
41 | 40, 6 | dpval3rp 31223 | . . . 4 ⊢ (0._𝐴𝐵) = _0_𝐴𝐵 |
42 | 6 | dp20h 31202 | . . . 4 ⊢ _0_𝐴𝐵 = (_𝐴𝐵 / ;10) |
43 | 41, 42 | eqtri 2764 | . . 3 ⊢ (0._𝐴𝐵) = (_𝐴𝐵 / ;10) |
44 | 43 | oveq1i 7317 | . 2 ⊢ ((0._𝐴𝐵) · (;10↑𝑄)) = ((_𝐴𝐵 / ;10) · (;10↑𝑄)) |
45 | 37, 39, 44 | 3eqtr4i 2774 | 1 ⊢ ((𝐴.𝐵) · (;10↑𝑃)) = ((0._𝐴𝐵) · (;10↑𝑄)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 = wceq 1539 ∈ wcel 2104 ≠ wne 2941 class class class wbr 5081 (class class class)co 7307 ℂcc 10919 ℝcr 10920 0cc0 10921 1c1 10922 + caddc 10924 · cmul 10926 < clt 11059 / cdiv 11682 ℕ0cn0 12283 ℤcz 12369 ;cdc 12487 ℝ+crp 12780 ↑cexp 13832 _cdp2 31194 .cdp 31211 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3304 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-div 11683 df-nn 12024 df-2 12086 df-3 12087 df-4 12088 df-5 12089 df-6 12090 df-7 12091 df-8 12092 df-9 12093 df-n0 12284 df-z 12370 df-dec 12488 df-uz 12633 df-rp 12781 df-seq 13772 df-exp 13833 df-dp2 31195 df-dp 31212 |
This theorem is referenced by: 0dp2dp 31232 hgt750lemd 32677 hgt750lem 32680 |
Copyright terms: Public domain | W3C validator |