| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dpexpp1 | Structured version Visualization version GIF version | ||
| Description: Add one zero to the mantisse, and a one to the exponent in a scientific notation. (Contributed by Thierry Arnoux, 16-Dec-2021.) |
| Ref | Expression |
|---|---|
| dpexpp1.a | ⊢ 𝐴 ∈ ℕ0 |
| dpexpp1.b | ⊢ 𝐵 ∈ ℝ+ |
| dpexpp1.1 | ⊢ (𝑃 + 1) = 𝑄 |
| dpexpp1.p | ⊢ 𝑃 ∈ ℤ |
| dpexpp1.q | ⊢ 𝑄 ∈ ℤ |
| Ref | Expression |
|---|---|
| dpexpp1 | ⊢ ((𝐴.𝐵) · (;10↑𝑃)) = ((0._𝐴𝐵) · (;10↑𝑄)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11235 | . . . . . 6 ⊢ 0 ∈ ℝ | |
| 2 | 10pos 12723 | . . . . . 6 ⊢ 0 < ;10 | |
| 3 | 1, 2 | gtneii 11345 | . . . . 5 ⊢ ;10 ≠ 0 |
| 4 | dpexpp1.a | . . . . . . . . . 10 ⊢ 𝐴 ∈ ℕ0 | |
| 5 | dpexpp1.b | . . . . . . . . . 10 ⊢ 𝐵 ∈ ℝ+ | |
| 6 | 4, 5 | rpdp2cl 32802 | . . . . . . . . 9 ⊢ _𝐴𝐵 ∈ ℝ+ |
| 7 | rpre 13015 | . . . . . . . . 9 ⊢ (_𝐴𝐵 ∈ ℝ+ → _𝐴𝐵 ∈ ℝ) | |
| 8 | 6, 7 | ax-mp 5 | . . . . . . . 8 ⊢ _𝐴𝐵 ∈ ℝ |
| 9 | 8 | recni 11247 | . . . . . . 7 ⊢ _𝐴𝐵 ∈ ℂ |
| 10 | 10re 12725 | . . . . . . . . . . 11 ⊢ ;10 ∈ ℝ | |
| 11 | 10, 2 | pm3.2i 470 | . . . . . . . . . 10 ⊢ (;10 ∈ ℝ ∧ 0 < ;10) |
| 12 | elrp 13008 | . . . . . . . . . 10 ⊢ (;10 ∈ ℝ+ ↔ (;10 ∈ ℝ ∧ 0 < ;10)) | |
| 13 | 11, 12 | mpbir 231 | . . . . . . . . 9 ⊢ ;10 ∈ ℝ+ |
| 14 | dpexpp1.p | . . . . . . . . 9 ⊢ 𝑃 ∈ ℤ | |
| 15 | rpexpcl 14096 | . . . . . . . . 9 ⊢ ((;10 ∈ ℝ+ ∧ 𝑃 ∈ ℤ) → (;10↑𝑃) ∈ ℝ+) | |
| 16 | 13, 14, 15 | mp2an 692 | . . . . . . . 8 ⊢ (;10↑𝑃) ∈ ℝ+ |
| 17 | rpcn 13017 | . . . . . . . 8 ⊢ ((;10↑𝑃) ∈ ℝ+ → (;10↑𝑃) ∈ ℂ) | |
| 18 | 16, 17 | ax-mp 5 | . . . . . . 7 ⊢ (;10↑𝑃) ∈ ℂ |
| 19 | 9, 18 | mulcli 11240 | . . . . . 6 ⊢ (_𝐴𝐵 · (;10↑𝑃)) ∈ ℂ |
| 20 | 10nn0 12724 | . . . . . . 7 ⊢ ;10 ∈ ℕ0 | |
| 21 | 20 | nn0cni 12511 | . . . . . 6 ⊢ ;10 ∈ ℂ |
| 22 | 19, 21 | divcan1zi 11975 | . . . . 5 ⊢ (;10 ≠ 0 → (((_𝐴𝐵 · (;10↑𝑃)) / ;10) · ;10) = (_𝐴𝐵 · (;10↑𝑃))) |
| 23 | 3, 22 | ax-mp 5 | . . . 4 ⊢ (((_𝐴𝐵 · (;10↑𝑃)) / ;10) · ;10) = (_𝐴𝐵 · (;10↑𝑃)) |
| 24 | 21, 3 | pm3.2i 470 | . . . . . 6 ⊢ (;10 ∈ ℂ ∧ ;10 ≠ 0) |
| 25 | div23 11913 | . . . . . 6 ⊢ ((_𝐴𝐵 ∈ ℂ ∧ (;10↑𝑃) ∈ ℂ ∧ (;10 ∈ ℂ ∧ ;10 ≠ 0)) → ((_𝐴𝐵 · (;10↑𝑃)) / ;10) = ((_𝐴𝐵 / ;10) · (;10↑𝑃))) | |
| 26 | 9, 18, 24, 25 | mp3an 1463 | . . . . 5 ⊢ ((_𝐴𝐵 · (;10↑𝑃)) / ;10) = ((_𝐴𝐵 / ;10) · (;10↑𝑃)) |
| 27 | 26 | oveq1i 7413 | . . . 4 ⊢ (((_𝐴𝐵 · (;10↑𝑃)) / ;10) · ;10) = (((_𝐴𝐵 / ;10) · (;10↑𝑃)) · ;10) |
| 28 | 23, 27 | eqtr3i 2760 | . . 3 ⊢ (_𝐴𝐵 · (;10↑𝑃)) = (((_𝐴𝐵 / ;10) · (;10↑𝑃)) · ;10) |
| 29 | 9, 21, 3 | divcli 11981 | . . . 4 ⊢ (_𝐴𝐵 / ;10) ∈ ℂ |
| 30 | 29, 18, 21 | mulassi 11244 | . . 3 ⊢ (((_𝐴𝐵 / ;10) · (;10↑𝑃)) · ;10) = ((_𝐴𝐵 / ;10) · ((;10↑𝑃) · ;10)) |
| 31 | expp1z 14127 | . . . . . 6 ⊢ ((;10 ∈ ℂ ∧ ;10 ≠ 0 ∧ 𝑃 ∈ ℤ) → (;10↑(𝑃 + 1)) = ((;10↑𝑃) · ;10)) | |
| 32 | 21, 3, 14, 31 | mp3an 1463 | . . . . 5 ⊢ (;10↑(𝑃 + 1)) = ((;10↑𝑃) · ;10) |
| 33 | dpexpp1.1 | . . . . . 6 ⊢ (𝑃 + 1) = 𝑄 | |
| 34 | 33 | oveq2i 7414 | . . . . 5 ⊢ (;10↑(𝑃 + 1)) = (;10↑𝑄) |
| 35 | 32, 34 | eqtr3i 2760 | . . . 4 ⊢ ((;10↑𝑃) · ;10) = (;10↑𝑄) |
| 36 | 35 | oveq2i 7414 | . . 3 ⊢ ((_𝐴𝐵 / ;10) · ((;10↑𝑃) · ;10)) = ((_𝐴𝐵 / ;10) · (;10↑𝑄)) |
| 37 | 28, 30, 36 | 3eqtri 2762 | . 2 ⊢ (_𝐴𝐵 · (;10↑𝑃)) = ((_𝐴𝐵 / ;10) · (;10↑𝑄)) |
| 38 | 4, 5 | dpval3rp 32820 | . . 3 ⊢ (𝐴.𝐵) = _𝐴𝐵 |
| 39 | 38 | oveq1i 7413 | . 2 ⊢ ((𝐴.𝐵) · (;10↑𝑃)) = (_𝐴𝐵 · (;10↑𝑃)) |
| 40 | 0nn0 12514 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
| 41 | 40, 6 | dpval3rp 32820 | . . . 4 ⊢ (0._𝐴𝐵) = _0_𝐴𝐵 |
| 42 | 6 | dp20h 32799 | . . . 4 ⊢ _0_𝐴𝐵 = (_𝐴𝐵 / ;10) |
| 43 | 41, 42 | eqtri 2758 | . . 3 ⊢ (0._𝐴𝐵) = (_𝐴𝐵 / ;10) |
| 44 | 43 | oveq1i 7413 | . 2 ⊢ ((0._𝐴𝐵) · (;10↑𝑄)) = ((_𝐴𝐵 / ;10) · (;10↑𝑄)) |
| 45 | 37, 39, 44 | 3eqtr4i 2768 | 1 ⊢ ((𝐴.𝐵) · (;10↑𝑃)) = ((0._𝐴𝐵) · (;10↑𝑄)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 class class class wbr 5119 (class class class)co 7403 ℂcc 11125 ℝcr 11126 0cc0 11127 1c1 11128 + caddc 11130 · cmul 11132 < clt 11267 / cdiv 11892 ℕ0cn0 12499 ℤcz 12586 ;cdc 12706 ℝ+crp 13006 ↑cexp 14077 _cdp2 32791 .cdp 32808 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-z 12587 df-dec 12707 df-uz 12851 df-rp 13007 df-seq 14018 df-exp 14078 df-dp2 32792 df-dp 32809 |
| This theorem is referenced by: 0dp2dp 32829 hgt750lemd 34626 hgt750lem 34629 |
| Copyright terms: Public domain | W3C validator |