| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dpexpp1 | Structured version Visualization version GIF version | ||
| Description: Add one zero to the mantisse, and a one to the exponent in a scientific notation. (Contributed by Thierry Arnoux, 16-Dec-2021.) |
| Ref | Expression |
|---|---|
| dpexpp1.a | ⊢ 𝐴 ∈ ℕ0 |
| dpexpp1.b | ⊢ 𝐵 ∈ ℝ+ |
| dpexpp1.1 | ⊢ (𝑃 + 1) = 𝑄 |
| dpexpp1.p | ⊢ 𝑃 ∈ ℤ |
| dpexpp1.q | ⊢ 𝑄 ∈ ℤ |
| Ref | Expression |
|---|---|
| dpexpp1 | ⊢ ((𝐴.𝐵) · (;10↑𝑃)) = ((0._𝐴𝐵) · (;10↑𝑄)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11183 | . . . . . 6 ⊢ 0 ∈ ℝ | |
| 2 | 10pos 12673 | . . . . . 6 ⊢ 0 < ;10 | |
| 3 | 1, 2 | gtneii 11293 | . . . . 5 ⊢ ;10 ≠ 0 |
| 4 | dpexpp1.a | . . . . . . . . . 10 ⊢ 𝐴 ∈ ℕ0 | |
| 5 | dpexpp1.b | . . . . . . . . . 10 ⊢ 𝐵 ∈ ℝ+ | |
| 6 | 4, 5 | rpdp2cl 32809 | . . . . . . . . 9 ⊢ _𝐴𝐵 ∈ ℝ+ |
| 7 | rpre 12967 | . . . . . . . . 9 ⊢ (_𝐴𝐵 ∈ ℝ+ → _𝐴𝐵 ∈ ℝ) | |
| 8 | 6, 7 | ax-mp 5 | . . . . . . . 8 ⊢ _𝐴𝐵 ∈ ℝ |
| 9 | 8 | recni 11195 | . . . . . . 7 ⊢ _𝐴𝐵 ∈ ℂ |
| 10 | 10re 12675 | . . . . . . . . . . 11 ⊢ ;10 ∈ ℝ | |
| 11 | 10, 2 | pm3.2i 470 | . . . . . . . . . 10 ⊢ (;10 ∈ ℝ ∧ 0 < ;10) |
| 12 | elrp 12960 | . . . . . . . . . 10 ⊢ (;10 ∈ ℝ+ ↔ (;10 ∈ ℝ ∧ 0 < ;10)) | |
| 13 | 11, 12 | mpbir 231 | . . . . . . . . 9 ⊢ ;10 ∈ ℝ+ |
| 14 | dpexpp1.p | . . . . . . . . 9 ⊢ 𝑃 ∈ ℤ | |
| 15 | rpexpcl 14052 | . . . . . . . . 9 ⊢ ((;10 ∈ ℝ+ ∧ 𝑃 ∈ ℤ) → (;10↑𝑃) ∈ ℝ+) | |
| 16 | 13, 14, 15 | mp2an 692 | . . . . . . . 8 ⊢ (;10↑𝑃) ∈ ℝ+ |
| 17 | rpcn 12969 | . . . . . . . 8 ⊢ ((;10↑𝑃) ∈ ℝ+ → (;10↑𝑃) ∈ ℂ) | |
| 18 | 16, 17 | ax-mp 5 | . . . . . . 7 ⊢ (;10↑𝑃) ∈ ℂ |
| 19 | 9, 18 | mulcli 11188 | . . . . . 6 ⊢ (_𝐴𝐵 · (;10↑𝑃)) ∈ ℂ |
| 20 | 10nn0 12674 | . . . . . . 7 ⊢ ;10 ∈ ℕ0 | |
| 21 | 20 | nn0cni 12461 | . . . . . 6 ⊢ ;10 ∈ ℂ |
| 22 | 19, 21 | divcan1zi 11925 | . . . . 5 ⊢ (;10 ≠ 0 → (((_𝐴𝐵 · (;10↑𝑃)) / ;10) · ;10) = (_𝐴𝐵 · (;10↑𝑃))) |
| 23 | 3, 22 | ax-mp 5 | . . . 4 ⊢ (((_𝐴𝐵 · (;10↑𝑃)) / ;10) · ;10) = (_𝐴𝐵 · (;10↑𝑃)) |
| 24 | 21, 3 | pm3.2i 470 | . . . . . 6 ⊢ (;10 ∈ ℂ ∧ ;10 ≠ 0) |
| 25 | div23 11863 | . . . . . 6 ⊢ ((_𝐴𝐵 ∈ ℂ ∧ (;10↑𝑃) ∈ ℂ ∧ (;10 ∈ ℂ ∧ ;10 ≠ 0)) → ((_𝐴𝐵 · (;10↑𝑃)) / ;10) = ((_𝐴𝐵 / ;10) · (;10↑𝑃))) | |
| 26 | 9, 18, 24, 25 | mp3an 1463 | . . . . 5 ⊢ ((_𝐴𝐵 · (;10↑𝑃)) / ;10) = ((_𝐴𝐵 / ;10) · (;10↑𝑃)) |
| 27 | 26 | oveq1i 7400 | . . . 4 ⊢ (((_𝐴𝐵 · (;10↑𝑃)) / ;10) · ;10) = (((_𝐴𝐵 / ;10) · (;10↑𝑃)) · ;10) |
| 28 | 23, 27 | eqtr3i 2755 | . . 3 ⊢ (_𝐴𝐵 · (;10↑𝑃)) = (((_𝐴𝐵 / ;10) · (;10↑𝑃)) · ;10) |
| 29 | 9, 21, 3 | divcli 11931 | . . . 4 ⊢ (_𝐴𝐵 / ;10) ∈ ℂ |
| 30 | 29, 18, 21 | mulassi 11192 | . . 3 ⊢ (((_𝐴𝐵 / ;10) · (;10↑𝑃)) · ;10) = ((_𝐴𝐵 / ;10) · ((;10↑𝑃) · ;10)) |
| 31 | expp1z 14083 | . . . . . 6 ⊢ ((;10 ∈ ℂ ∧ ;10 ≠ 0 ∧ 𝑃 ∈ ℤ) → (;10↑(𝑃 + 1)) = ((;10↑𝑃) · ;10)) | |
| 32 | 21, 3, 14, 31 | mp3an 1463 | . . . . 5 ⊢ (;10↑(𝑃 + 1)) = ((;10↑𝑃) · ;10) |
| 33 | dpexpp1.1 | . . . . . 6 ⊢ (𝑃 + 1) = 𝑄 | |
| 34 | 33 | oveq2i 7401 | . . . . 5 ⊢ (;10↑(𝑃 + 1)) = (;10↑𝑄) |
| 35 | 32, 34 | eqtr3i 2755 | . . . 4 ⊢ ((;10↑𝑃) · ;10) = (;10↑𝑄) |
| 36 | 35 | oveq2i 7401 | . . 3 ⊢ ((_𝐴𝐵 / ;10) · ((;10↑𝑃) · ;10)) = ((_𝐴𝐵 / ;10) · (;10↑𝑄)) |
| 37 | 28, 30, 36 | 3eqtri 2757 | . 2 ⊢ (_𝐴𝐵 · (;10↑𝑃)) = ((_𝐴𝐵 / ;10) · (;10↑𝑄)) |
| 38 | 4, 5 | dpval3rp 32827 | . . 3 ⊢ (𝐴.𝐵) = _𝐴𝐵 |
| 39 | 38 | oveq1i 7400 | . 2 ⊢ ((𝐴.𝐵) · (;10↑𝑃)) = (_𝐴𝐵 · (;10↑𝑃)) |
| 40 | 0nn0 12464 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
| 41 | 40, 6 | dpval3rp 32827 | . . . 4 ⊢ (0._𝐴𝐵) = _0_𝐴𝐵 |
| 42 | 6 | dp20h 32806 | . . . 4 ⊢ _0_𝐴𝐵 = (_𝐴𝐵 / ;10) |
| 43 | 41, 42 | eqtri 2753 | . . 3 ⊢ (0._𝐴𝐵) = (_𝐴𝐵 / ;10) |
| 44 | 43 | oveq1i 7400 | . 2 ⊢ ((0._𝐴𝐵) · (;10↑𝑄)) = ((_𝐴𝐵 / ;10) · (;10↑𝑄)) |
| 45 | 37, 39, 44 | 3eqtr4i 2763 | 1 ⊢ ((𝐴.𝐵) · (;10↑𝑃)) = ((0._𝐴𝐵) · (;10↑𝑄)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 class class class wbr 5110 (class class class)co 7390 ℂcc 11073 ℝcr 11074 0cc0 11075 1c1 11076 + caddc 11078 · cmul 11080 < clt 11215 / cdiv 11842 ℕ0cn0 12449 ℤcz 12536 ;cdc 12656 ℝ+crp 12958 ↑cexp 14033 _cdp2 32798 .cdp 32815 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-rp 12959 df-seq 13974 df-exp 14034 df-dp2 32799 df-dp 32816 |
| This theorem is referenced by: 0dp2dp 32836 hgt750lemd 34646 hgt750lem 34649 |
| Copyright terms: Public domain | W3C validator |