![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dpexpp1 | Structured version Visualization version GIF version |
Description: Add one zero to the mantisse, and a one to the exponent in a scientific notation. (Contributed by Thierry Arnoux, 16-Dec-2021.) |
Ref | Expression |
---|---|
dpexpp1.a | ⊢ 𝐴 ∈ ℕ0 |
dpexpp1.b | ⊢ 𝐵 ∈ ℝ+ |
dpexpp1.1 | ⊢ (𝑃 + 1) = 𝑄 |
dpexpp1.p | ⊢ 𝑃 ∈ ℤ |
dpexpp1.q | ⊢ 𝑄 ∈ ℤ |
Ref | Expression |
---|---|
dpexpp1 | ⊢ ((𝐴.𝐵) · (;10↑𝑃)) = ((0._𝐴𝐵) · (;10↑𝑄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 10443 | . . . . . 6 ⊢ 0 ∈ ℝ | |
2 | 10pos 11931 | . . . . . 6 ⊢ 0 < ;10 | |
3 | 1, 2 | gtneii 10554 | . . . . 5 ⊢ ;10 ≠ 0 |
4 | dpexpp1.a | . . . . . . . . . 10 ⊢ 𝐴 ∈ ℕ0 | |
5 | dpexpp1.b | . . . . . . . . . 10 ⊢ 𝐵 ∈ ℝ+ | |
6 | 4, 5 | rpdp2cl 30307 | . . . . . . . . 9 ⊢ _𝐴𝐵 ∈ ℝ+ |
7 | rpre 12215 | . . . . . . . . 9 ⊢ (_𝐴𝐵 ∈ ℝ+ → _𝐴𝐵 ∈ ℝ) | |
8 | 6, 7 | ax-mp 5 | . . . . . . . 8 ⊢ _𝐴𝐵 ∈ ℝ |
9 | 8 | recni 10456 | . . . . . . 7 ⊢ _𝐴𝐵 ∈ ℂ |
10 | 10re 11933 | . . . . . . . . . . 11 ⊢ ;10 ∈ ℝ | |
11 | 10, 2 | pm3.2i 463 | . . . . . . . . . 10 ⊢ (;10 ∈ ℝ ∧ 0 < ;10) |
12 | elrp 12209 | . . . . . . . . . 10 ⊢ (;10 ∈ ℝ+ ↔ (;10 ∈ ℝ ∧ 0 < ;10)) | |
13 | 11, 12 | mpbir 223 | . . . . . . . . 9 ⊢ ;10 ∈ ℝ+ |
14 | dpexpp1.p | . . . . . . . . 9 ⊢ 𝑃 ∈ ℤ | |
15 | rpexpcl 13266 | . . . . . . . . 9 ⊢ ((;10 ∈ ℝ+ ∧ 𝑃 ∈ ℤ) → (;10↑𝑃) ∈ ℝ+) | |
16 | 13, 14, 15 | mp2an 679 | . . . . . . . 8 ⊢ (;10↑𝑃) ∈ ℝ+ |
17 | rpcn 12219 | . . . . . . . 8 ⊢ ((;10↑𝑃) ∈ ℝ+ → (;10↑𝑃) ∈ ℂ) | |
18 | 16, 17 | ax-mp 5 | . . . . . . 7 ⊢ (;10↑𝑃) ∈ ℂ |
19 | 9, 18 | mulcli 10449 | . . . . . 6 ⊢ (_𝐴𝐵 · (;10↑𝑃)) ∈ ℂ |
20 | 10nn0 11932 | . . . . . . 7 ⊢ ;10 ∈ ℕ0 | |
21 | 20 | nn0cni 11723 | . . . . . 6 ⊢ ;10 ∈ ℂ |
22 | 19, 21 | divcan1zi 11179 | . . . . 5 ⊢ (;10 ≠ 0 → (((_𝐴𝐵 · (;10↑𝑃)) / ;10) · ;10) = (_𝐴𝐵 · (;10↑𝑃))) |
23 | 3, 22 | ax-mp 5 | . . . 4 ⊢ (((_𝐴𝐵 · (;10↑𝑃)) / ;10) · ;10) = (_𝐴𝐵 · (;10↑𝑃)) |
24 | 21, 3 | pm3.2i 463 | . . . . . 6 ⊢ (;10 ∈ ℂ ∧ ;10 ≠ 0) |
25 | div23 11120 | . . . . . 6 ⊢ ((_𝐴𝐵 ∈ ℂ ∧ (;10↑𝑃) ∈ ℂ ∧ (;10 ∈ ℂ ∧ ;10 ≠ 0)) → ((_𝐴𝐵 · (;10↑𝑃)) / ;10) = ((_𝐴𝐵 / ;10) · (;10↑𝑃))) | |
26 | 9, 18, 24, 25 | mp3an 1440 | . . . . 5 ⊢ ((_𝐴𝐵 · (;10↑𝑃)) / ;10) = ((_𝐴𝐵 / ;10) · (;10↑𝑃)) |
27 | 26 | oveq1i 6988 | . . . 4 ⊢ (((_𝐴𝐵 · (;10↑𝑃)) / ;10) · ;10) = (((_𝐴𝐵 / ;10) · (;10↑𝑃)) · ;10) |
28 | 23, 27 | eqtr3i 2804 | . . 3 ⊢ (_𝐴𝐵 · (;10↑𝑃)) = (((_𝐴𝐵 / ;10) · (;10↑𝑃)) · ;10) |
29 | 9, 21, 3 | divcli 11185 | . . . 4 ⊢ (_𝐴𝐵 / ;10) ∈ ℂ |
30 | 29, 18, 21 | mulassi 10453 | . . 3 ⊢ (((_𝐴𝐵 / ;10) · (;10↑𝑃)) · ;10) = ((_𝐴𝐵 / ;10) · ((;10↑𝑃) · ;10)) |
31 | expp1z 13296 | . . . . . 6 ⊢ ((;10 ∈ ℂ ∧ ;10 ≠ 0 ∧ 𝑃 ∈ ℤ) → (;10↑(𝑃 + 1)) = ((;10↑𝑃) · ;10)) | |
32 | 21, 3, 14, 31 | mp3an 1440 | . . . . 5 ⊢ (;10↑(𝑃 + 1)) = ((;10↑𝑃) · ;10) |
33 | dpexpp1.1 | . . . . . 6 ⊢ (𝑃 + 1) = 𝑄 | |
34 | 33 | oveq2i 6989 | . . . . 5 ⊢ (;10↑(𝑃 + 1)) = (;10↑𝑄) |
35 | 32, 34 | eqtr3i 2804 | . . . 4 ⊢ ((;10↑𝑃) · ;10) = (;10↑𝑄) |
36 | 35 | oveq2i 6989 | . . 3 ⊢ ((_𝐴𝐵 / ;10) · ((;10↑𝑃) · ;10)) = ((_𝐴𝐵 / ;10) · (;10↑𝑄)) |
37 | 28, 30, 36 | 3eqtri 2806 | . 2 ⊢ (_𝐴𝐵 · (;10↑𝑃)) = ((_𝐴𝐵 / ;10) · (;10↑𝑄)) |
38 | 4, 5 | dpval3rp 30325 | . . 3 ⊢ (𝐴.𝐵) = _𝐴𝐵 |
39 | 38 | oveq1i 6988 | . 2 ⊢ ((𝐴.𝐵) · (;10↑𝑃)) = (_𝐴𝐵 · (;10↑𝑃)) |
40 | 0nn0 11727 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
41 | 40, 6 | dpval3rp 30325 | . . . 4 ⊢ (0._𝐴𝐵) = _0_𝐴𝐵 |
42 | 6 | dp20h 30304 | . . . 4 ⊢ _0_𝐴𝐵 = (_𝐴𝐵 / ;10) |
43 | 41, 42 | eqtri 2802 | . . 3 ⊢ (0._𝐴𝐵) = (_𝐴𝐵 / ;10) |
44 | 43 | oveq1i 6988 | . 2 ⊢ ((0._𝐴𝐵) · (;10↑𝑄)) = ((_𝐴𝐵 / ;10) · (;10↑𝑄)) |
45 | 37, 39, 44 | 3eqtr4i 2812 | 1 ⊢ ((𝐴.𝐵) · (;10↑𝑃)) = ((0._𝐴𝐵) · (;10↑𝑄)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 387 = wceq 1507 ∈ wcel 2050 ≠ wne 2967 class class class wbr 4930 (class class class)co 6978 ℂcc 10335 ℝcr 10336 0cc0 10337 1c1 10338 + caddc 10340 · cmul 10342 < clt 10476 / cdiv 11100 ℕ0cn0 11710 ℤcz 11796 ;cdc 11914 ℝ+crp 12207 ↑cexp 13247 _cdp2 30296 .cdp 30313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5061 ax-nul 5068 ax-pow 5120 ax-pr 5187 ax-un 7281 ax-cnex 10393 ax-resscn 10394 ax-1cn 10395 ax-icn 10396 ax-addcl 10397 ax-addrcl 10398 ax-mulcl 10399 ax-mulrcl 10400 ax-mulcom 10401 ax-addass 10402 ax-mulass 10403 ax-distr 10404 ax-i2m1 10405 ax-1ne0 10406 ax-1rid 10407 ax-rnegex 10408 ax-rrecex 10409 ax-cnre 10410 ax-pre-lttri 10411 ax-pre-lttrn 10412 ax-pre-ltadd 10413 ax-pre-mulgt0 10414 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2583 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-nel 3074 df-ral 3093 df-rex 3094 df-reu 3095 df-rmo 3096 df-rab 3097 df-v 3417 df-sbc 3684 df-csb 3789 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-pss 3847 df-nul 4181 df-if 4352 df-pw 4425 df-sn 4443 df-pr 4445 df-tp 4447 df-op 4449 df-uni 4714 df-iun 4795 df-br 4931 df-opab 4993 df-mpt 5010 df-tr 5032 df-id 5313 df-eprel 5318 df-po 5327 df-so 5328 df-fr 5367 df-we 5369 df-xp 5414 df-rel 5415 df-cnv 5416 df-co 5417 df-dm 5418 df-rn 5419 df-res 5420 df-ima 5421 df-pred 5988 df-ord 6034 df-on 6035 df-lim 6036 df-suc 6037 df-iota 6154 df-fun 6192 df-fn 6193 df-f 6194 df-f1 6195 df-fo 6196 df-f1o 6197 df-fv 6198 df-riota 6939 df-ov 6981 df-oprab 6982 df-mpo 6983 df-om 7399 df-2nd 7504 df-wrecs 7752 df-recs 7814 df-rdg 7852 df-er 8091 df-en 8309 df-dom 8310 df-sdom 8311 df-pnf 10478 df-mnf 10479 df-xr 10480 df-ltxr 10481 df-le 10482 df-sub 10674 df-neg 10675 df-div 11101 df-nn 11442 df-2 11506 df-3 11507 df-4 11508 df-5 11509 df-6 11510 df-7 11511 df-8 11512 df-9 11513 df-n0 11711 df-z 11797 df-dec 11915 df-uz 12062 df-rp 12208 df-seq 13188 df-exp 13248 df-dp2 30297 df-dp 30314 |
This theorem is referenced by: 0dp2dp 30334 hgt750lemd 31567 hgt750lem 31570 |
Copyright terms: Public domain | W3C validator |