Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dpexpp1 Structured version   Visualization version   GIF version

Theorem dpexpp1 32874
Description: Add one zero to the mantisse, and a one to the exponent in a scientific notation. (Contributed by Thierry Arnoux, 16-Dec-2021.)
Hypotheses
Ref Expression
dpexpp1.a 𝐴 ∈ ℕ0
dpexpp1.b 𝐵 ∈ ℝ+
dpexpp1.1 (𝑃 + 1) = 𝑄
dpexpp1.p 𝑃 ∈ ℤ
dpexpp1.q 𝑄 ∈ ℤ
Assertion
Ref Expression
dpexpp1 ((𝐴.𝐵) · (10↑𝑃)) = ((0.𝐴𝐵) · (10↑𝑄))

Proof of Theorem dpexpp1
StepHypRef Expression
1 0re 11260 . . . . . 6 0 ∈ ℝ
2 10pos 12747 . . . . . 6 0 < 10
31, 2gtneii 11370 . . . . 5 10 ≠ 0
4 dpexpp1.a . . . . . . . . . 10 𝐴 ∈ ℕ0
5 dpexpp1.b . . . . . . . . . 10 𝐵 ∈ ℝ+
64, 5rpdp2cl 32848 . . . . . . . . 9 𝐴𝐵 ∈ ℝ+
7 rpre 13040 . . . . . . . . 9 (𝐴𝐵 ∈ ℝ+𝐴𝐵 ∈ ℝ)
86, 7ax-mp 5 . . . . . . . 8 𝐴𝐵 ∈ ℝ
98recni 11272 . . . . . . 7 𝐴𝐵 ∈ ℂ
10 10re 12749 . . . . . . . . . . 11 10 ∈ ℝ
1110, 2pm3.2i 470 . . . . . . . . . 10 (10 ∈ ℝ ∧ 0 < 10)
12 elrp 13033 . . . . . . . . . 10 (10 ∈ ℝ+ ↔ (10 ∈ ℝ ∧ 0 < 10))
1311, 12mpbir 231 . . . . . . . . 9 10 ∈ ℝ+
14 dpexpp1.p . . . . . . . . 9 𝑃 ∈ ℤ
15 rpexpcl 14117 . . . . . . . . 9 ((10 ∈ ℝ+𝑃 ∈ ℤ) → (10↑𝑃) ∈ ℝ+)
1613, 14, 15mp2an 692 . . . . . . . 8 (10↑𝑃) ∈ ℝ+
17 rpcn 13042 . . . . . . . 8 ((10↑𝑃) ∈ ℝ+ → (10↑𝑃) ∈ ℂ)
1816, 17ax-mp 5 . . . . . . 7 (10↑𝑃) ∈ ℂ
199, 18mulcli 11265 . . . . . 6 (𝐴𝐵 · (10↑𝑃)) ∈ ℂ
20 10nn0 12748 . . . . . . 7 10 ∈ ℕ0
2120nn0cni 12535 . . . . . 6 10 ∈ ℂ
2219, 21divcan1zi 12000 . . . . 5 (10 ≠ 0 → (((𝐴𝐵 · (10↑𝑃)) / 10) · 10) = (𝐴𝐵 · (10↑𝑃)))
233, 22ax-mp 5 . . . 4 (((𝐴𝐵 · (10↑𝑃)) / 10) · 10) = (𝐴𝐵 · (10↑𝑃))
2421, 3pm3.2i 470 . . . . . 6 (10 ∈ ℂ ∧ 10 ≠ 0)
25 div23 11938 . . . . . 6 ((𝐴𝐵 ∈ ℂ ∧ (10↑𝑃) ∈ ℂ ∧ (10 ∈ ℂ ∧ 10 ≠ 0)) → ((𝐴𝐵 · (10↑𝑃)) / 10) = ((𝐴𝐵 / 10) · (10↑𝑃)))
269, 18, 24, 25mp3an 1460 . . . . 5 ((𝐴𝐵 · (10↑𝑃)) / 10) = ((𝐴𝐵 / 10) · (10↑𝑃))
2726oveq1i 7440 . . . 4 (((𝐴𝐵 · (10↑𝑃)) / 10) · 10) = (((𝐴𝐵 / 10) · (10↑𝑃)) · 10)
2823, 27eqtr3i 2764 . . 3 (𝐴𝐵 · (10↑𝑃)) = (((𝐴𝐵 / 10) · (10↑𝑃)) · 10)
299, 21, 3divcli 12006 . . . 4 (𝐴𝐵 / 10) ∈ ℂ
3029, 18, 21mulassi 11269 . . 3 (((𝐴𝐵 / 10) · (10↑𝑃)) · 10) = ((𝐴𝐵 / 10) · ((10↑𝑃) · 10))
31 expp1z 14148 . . . . . 6 ((10 ∈ ℂ ∧ 10 ≠ 0 ∧ 𝑃 ∈ ℤ) → (10↑(𝑃 + 1)) = ((10↑𝑃) · 10))
3221, 3, 14, 31mp3an 1460 . . . . 5 (10↑(𝑃 + 1)) = ((10↑𝑃) · 10)
33 dpexpp1.1 . . . . . 6 (𝑃 + 1) = 𝑄
3433oveq2i 7441 . . . . 5 (10↑(𝑃 + 1)) = (10↑𝑄)
3532, 34eqtr3i 2764 . . . 4 ((10↑𝑃) · 10) = (10↑𝑄)
3635oveq2i 7441 . . 3 ((𝐴𝐵 / 10) · ((10↑𝑃) · 10)) = ((𝐴𝐵 / 10) · (10↑𝑄))
3728, 30, 363eqtri 2766 . 2 (𝐴𝐵 · (10↑𝑃)) = ((𝐴𝐵 / 10) · (10↑𝑄))
384, 5dpval3rp 32866 . . 3 (𝐴.𝐵) = 𝐴𝐵
3938oveq1i 7440 . 2 ((𝐴.𝐵) · (10↑𝑃)) = (𝐴𝐵 · (10↑𝑃))
40 0nn0 12538 . . . . 5 0 ∈ ℕ0
4140, 6dpval3rp 32866 . . . 4 (0.𝐴𝐵) = 0𝐴𝐵
426dp20h 32845 . . . 4 0𝐴𝐵 = (𝐴𝐵 / 10)
4341, 42eqtri 2762 . . 3 (0.𝐴𝐵) = (𝐴𝐵 / 10)
4443oveq1i 7440 . 2 ((0.𝐴𝐵) · (10↑𝑄)) = ((𝐴𝐵 / 10) · (10↑𝑄))
4537, 39, 443eqtr4i 2772 1 ((𝐴.𝐵) · (10↑𝑃)) = ((0.𝐴𝐵) · (10↑𝑄))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1536  wcel 2105  wne 2937   class class class wbr 5147  (class class class)co 7430  cc 11150  cr 11151  0cc0 11152  1c1 11153   + caddc 11155   · cmul 11157   < clt 11292   / cdiv 11917  0cn0 12523  cz 12610  cdc 12730  +crp 13031  cexp 14098  cdp2 32837  .cdp 32854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-rp 13032  df-seq 14039  df-exp 14099  df-dp2 32838  df-dp 32855
This theorem is referenced by:  0dp2dp  32875  hgt750lemd  34641  hgt750lem  34644
  Copyright terms: Public domain W3C validator