Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dpexpp1 | Structured version Visualization version GIF version |
Description: Add one zero to the mantisse, and a one to the exponent in a scientific notation. (Contributed by Thierry Arnoux, 16-Dec-2021.) |
Ref | Expression |
---|---|
dpexpp1.a | ⊢ 𝐴 ∈ ℕ0 |
dpexpp1.b | ⊢ 𝐵 ∈ ℝ+ |
dpexpp1.1 | ⊢ (𝑃 + 1) = 𝑄 |
dpexpp1.p | ⊢ 𝑃 ∈ ℤ |
dpexpp1.q | ⊢ 𝑄 ∈ ℤ |
Ref | Expression |
---|---|
dpexpp1 | ⊢ ((𝐴.𝐵) · (;10↑𝑃)) = ((0._𝐴𝐵) · (;10↑𝑄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 10961 | . . . . . 6 ⊢ 0 ∈ ℝ | |
2 | 10pos 12436 | . . . . . 6 ⊢ 0 < ;10 | |
3 | 1, 2 | gtneii 11070 | . . . . 5 ⊢ ;10 ≠ 0 |
4 | dpexpp1.a | . . . . . . . . . 10 ⊢ 𝐴 ∈ ℕ0 | |
5 | dpexpp1.b | . . . . . . . . . 10 ⊢ 𝐵 ∈ ℝ+ | |
6 | 4, 5 | rpdp2cl 31135 | . . . . . . . . 9 ⊢ _𝐴𝐵 ∈ ℝ+ |
7 | rpre 12720 | . . . . . . . . 9 ⊢ (_𝐴𝐵 ∈ ℝ+ → _𝐴𝐵 ∈ ℝ) | |
8 | 6, 7 | ax-mp 5 | . . . . . . . 8 ⊢ _𝐴𝐵 ∈ ℝ |
9 | 8 | recni 10973 | . . . . . . 7 ⊢ _𝐴𝐵 ∈ ℂ |
10 | 10re 12438 | . . . . . . . . . . 11 ⊢ ;10 ∈ ℝ | |
11 | 10, 2 | pm3.2i 470 | . . . . . . . . . 10 ⊢ (;10 ∈ ℝ ∧ 0 < ;10) |
12 | elrp 12714 | . . . . . . . . . 10 ⊢ (;10 ∈ ℝ+ ↔ (;10 ∈ ℝ ∧ 0 < ;10)) | |
13 | 11, 12 | mpbir 230 | . . . . . . . . 9 ⊢ ;10 ∈ ℝ+ |
14 | dpexpp1.p | . . . . . . . . 9 ⊢ 𝑃 ∈ ℤ | |
15 | rpexpcl 13782 | . . . . . . . . 9 ⊢ ((;10 ∈ ℝ+ ∧ 𝑃 ∈ ℤ) → (;10↑𝑃) ∈ ℝ+) | |
16 | 13, 14, 15 | mp2an 688 | . . . . . . . 8 ⊢ (;10↑𝑃) ∈ ℝ+ |
17 | rpcn 12722 | . . . . . . . 8 ⊢ ((;10↑𝑃) ∈ ℝ+ → (;10↑𝑃) ∈ ℂ) | |
18 | 16, 17 | ax-mp 5 | . . . . . . 7 ⊢ (;10↑𝑃) ∈ ℂ |
19 | 9, 18 | mulcli 10966 | . . . . . 6 ⊢ (_𝐴𝐵 · (;10↑𝑃)) ∈ ℂ |
20 | 10nn0 12437 | . . . . . . 7 ⊢ ;10 ∈ ℕ0 | |
21 | 20 | nn0cni 12228 | . . . . . 6 ⊢ ;10 ∈ ℂ |
22 | 19, 21 | divcan1zi 11694 | . . . . 5 ⊢ (;10 ≠ 0 → (((_𝐴𝐵 · (;10↑𝑃)) / ;10) · ;10) = (_𝐴𝐵 · (;10↑𝑃))) |
23 | 3, 22 | ax-mp 5 | . . . 4 ⊢ (((_𝐴𝐵 · (;10↑𝑃)) / ;10) · ;10) = (_𝐴𝐵 · (;10↑𝑃)) |
24 | 21, 3 | pm3.2i 470 | . . . . . 6 ⊢ (;10 ∈ ℂ ∧ ;10 ≠ 0) |
25 | div23 11635 | . . . . . 6 ⊢ ((_𝐴𝐵 ∈ ℂ ∧ (;10↑𝑃) ∈ ℂ ∧ (;10 ∈ ℂ ∧ ;10 ≠ 0)) → ((_𝐴𝐵 · (;10↑𝑃)) / ;10) = ((_𝐴𝐵 / ;10) · (;10↑𝑃))) | |
26 | 9, 18, 24, 25 | mp3an 1459 | . . . . 5 ⊢ ((_𝐴𝐵 · (;10↑𝑃)) / ;10) = ((_𝐴𝐵 / ;10) · (;10↑𝑃)) |
27 | 26 | oveq1i 7278 | . . . 4 ⊢ (((_𝐴𝐵 · (;10↑𝑃)) / ;10) · ;10) = (((_𝐴𝐵 / ;10) · (;10↑𝑃)) · ;10) |
28 | 23, 27 | eqtr3i 2769 | . . 3 ⊢ (_𝐴𝐵 · (;10↑𝑃)) = (((_𝐴𝐵 / ;10) · (;10↑𝑃)) · ;10) |
29 | 9, 21, 3 | divcli 11700 | . . . 4 ⊢ (_𝐴𝐵 / ;10) ∈ ℂ |
30 | 29, 18, 21 | mulassi 10970 | . . 3 ⊢ (((_𝐴𝐵 / ;10) · (;10↑𝑃)) · ;10) = ((_𝐴𝐵 / ;10) · ((;10↑𝑃) · ;10)) |
31 | expp1z 13813 | . . . . . 6 ⊢ ((;10 ∈ ℂ ∧ ;10 ≠ 0 ∧ 𝑃 ∈ ℤ) → (;10↑(𝑃 + 1)) = ((;10↑𝑃) · ;10)) | |
32 | 21, 3, 14, 31 | mp3an 1459 | . . . . 5 ⊢ (;10↑(𝑃 + 1)) = ((;10↑𝑃) · ;10) |
33 | dpexpp1.1 | . . . . . 6 ⊢ (𝑃 + 1) = 𝑄 | |
34 | 33 | oveq2i 7279 | . . . . 5 ⊢ (;10↑(𝑃 + 1)) = (;10↑𝑄) |
35 | 32, 34 | eqtr3i 2769 | . . . 4 ⊢ ((;10↑𝑃) · ;10) = (;10↑𝑄) |
36 | 35 | oveq2i 7279 | . . 3 ⊢ ((_𝐴𝐵 / ;10) · ((;10↑𝑃) · ;10)) = ((_𝐴𝐵 / ;10) · (;10↑𝑄)) |
37 | 28, 30, 36 | 3eqtri 2771 | . 2 ⊢ (_𝐴𝐵 · (;10↑𝑃)) = ((_𝐴𝐵 / ;10) · (;10↑𝑄)) |
38 | 4, 5 | dpval3rp 31153 | . . 3 ⊢ (𝐴.𝐵) = _𝐴𝐵 |
39 | 38 | oveq1i 7278 | . 2 ⊢ ((𝐴.𝐵) · (;10↑𝑃)) = (_𝐴𝐵 · (;10↑𝑃)) |
40 | 0nn0 12231 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
41 | 40, 6 | dpval3rp 31153 | . . . 4 ⊢ (0._𝐴𝐵) = _0_𝐴𝐵 |
42 | 6 | dp20h 31132 | . . . 4 ⊢ _0_𝐴𝐵 = (_𝐴𝐵 / ;10) |
43 | 41, 42 | eqtri 2767 | . . 3 ⊢ (0._𝐴𝐵) = (_𝐴𝐵 / ;10) |
44 | 43 | oveq1i 7278 | . 2 ⊢ ((0._𝐴𝐵) · (;10↑𝑄)) = ((_𝐴𝐵 / ;10) · (;10↑𝑄)) |
45 | 37, 39, 44 | 3eqtr4i 2777 | 1 ⊢ ((𝐴.𝐵) · (;10↑𝑃)) = ((0._𝐴𝐵) · (;10↑𝑄)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 class class class wbr 5078 (class class class)co 7268 ℂcc 10853 ℝcr 10854 0cc0 10855 1c1 10856 + caddc 10858 · cmul 10860 < clt 10993 / cdiv 11615 ℕ0cn0 12216 ℤcz 12302 ;cdc 12419 ℝ+crp 12712 ↑cexp 13763 _cdp2 31124 .cdp 31141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-div 11616 df-nn 11957 df-2 12019 df-3 12020 df-4 12021 df-5 12022 df-6 12023 df-7 12024 df-8 12025 df-9 12026 df-n0 12217 df-z 12303 df-dec 12420 df-uz 12565 df-rp 12713 df-seq 13703 df-exp 13764 df-dp2 31125 df-dp 31142 |
This theorem is referenced by: 0dp2dp 31162 hgt750lemd 32607 hgt750lem 32610 |
Copyright terms: Public domain | W3C validator |