| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dpexpp1 | Structured version Visualization version GIF version | ||
| Description: Add one zero to the mantisse, and a one to the exponent in a scientific notation. (Contributed by Thierry Arnoux, 16-Dec-2021.) |
| Ref | Expression |
|---|---|
| dpexpp1.a | ⊢ 𝐴 ∈ ℕ0 |
| dpexpp1.b | ⊢ 𝐵 ∈ ℝ+ |
| dpexpp1.1 | ⊢ (𝑃 + 1) = 𝑄 |
| dpexpp1.p | ⊢ 𝑃 ∈ ℤ |
| dpexpp1.q | ⊢ 𝑄 ∈ ℤ |
| Ref | Expression |
|---|---|
| dpexpp1 | ⊢ ((𝐴.𝐵) · (;10↑𝑃)) = ((0._𝐴𝐵) · (;10↑𝑄)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11136 | . . . . . 6 ⊢ 0 ∈ ℝ | |
| 2 | 10pos 12626 | . . . . . 6 ⊢ 0 < ;10 | |
| 3 | 1, 2 | gtneii 11246 | . . . . 5 ⊢ ;10 ≠ 0 |
| 4 | dpexpp1.a | . . . . . . . . . 10 ⊢ 𝐴 ∈ ℕ0 | |
| 5 | dpexpp1.b | . . . . . . . . . 10 ⊢ 𝐵 ∈ ℝ+ | |
| 6 | 4, 5 | rpdp2cl 32835 | . . . . . . . . 9 ⊢ _𝐴𝐵 ∈ ℝ+ |
| 7 | rpre 12920 | . . . . . . . . 9 ⊢ (_𝐴𝐵 ∈ ℝ+ → _𝐴𝐵 ∈ ℝ) | |
| 8 | 6, 7 | ax-mp 5 | . . . . . . . 8 ⊢ _𝐴𝐵 ∈ ℝ |
| 9 | 8 | recni 11148 | . . . . . . 7 ⊢ _𝐴𝐵 ∈ ℂ |
| 10 | 10re 12628 | . . . . . . . . . . 11 ⊢ ;10 ∈ ℝ | |
| 11 | 10, 2 | pm3.2i 470 | . . . . . . . . . 10 ⊢ (;10 ∈ ℝ ∧ 0 < ;10) |
| 12 | elrp 12913 | . . . . . . . . . 10 ⊢ (;10 ∈ ℝ+ ↔ (;10 ∈ ℝ ∧ 0 < ;10)) | |
| 13 | 11, 12 | mpbir 231 | . . . . . . . . 9 ⊢ ;10 ∈ ℝ+ |
| 14 | dpexpp1.p | . . . . . . . . 9 ⊢ 𝑃 ∈ ℤ | |
| 15 | rpexpcl 14005 | . . . . . . . . 9 ⊢ ((;10 ∈ ℝ+ ∧ 𝑃 ∈ ℤ) → (;10↑𝑃) ∈ ℝ+) | |
| 16 | 13, 14, 15 | mp2an 692 | . . . . . . . 8 ⊢ (;10↑𝑃) ∈ ℝ+ |
| 17 | rpcn 12922 | . . . . . . . 8 ⊢ ((;10↑𝑃) ∈ ℝ+ → (;10↑𝑃) ∈ ℂ) | |
| 18 | 16, 17 | ax-mp 5 | . . . . . . 7 ⊢ (;10↑𝑃) ∈ ℂ |
| 19 | 9, 18 | mulcli 11141 | . . . . . 6 ⊢ (_𝐴𝐵 · (;10↑𝑃)) ∈ ℂ |
| 20 | 10nn0 12627 | . . . . . . 7 ⊢ ;10 ∈ ℕ0 | |
| 21 | 20 | nn0cni 12414 | . . . . . 6 ⊢ ;10 ∈ ℂ |
| 22 | 19, 21 | divcan1zi 11878 | . . . . 5 ⊢ (;10 ≠ 0 → (((_𝐴𝐵 · (;10↑𝑃)) / ;10) · ;10) = (_𝐴𝐵 · (;10↑𝑃))) |
| 23 | 3, 22 | ax-mp 5 | . . . 4 ⊢ (((_𝐴𝐵 · (;10↑𝑃)) / ;10) · ;10) = (_𝐴𝐵 · (;10↑𝑃)) |
| 24 | 21, 3 | pm3.2i 470 | . . . . . 6 ⊢ (;10 ∈ ℂ ∧ ;10 ≠ 0) |
| 25 | div23 11816 | . . . . . 6 ⊢ ((_𝐴𝐵 ∈ ℂ ∧ (;10↑𝑃) ∈ ℂ ∧ (;10 ∈ ℂ ∧ ;10 ≠ 0)) → ((_𝐴𝐵 · (;10↑𝑃)) / ;10) = ((_𝐴𝐵 / ;10) · (;10↑𝑃))) | |
| 26 | 9, 18, 24, 25 | mp3an 1463 | . . . . 5 ⊢ ((_𝐴𝐵 · (;10↑𝑃)) / ;10) = ((_𝐴𝐵 / ;10) · (;10↑𝑃)) |
| 27 | 26 | oveq1i 7363 | . . . 4 ⊢ (((_𝐴𝐵 · (;10↑𝑃)) / ;10) · ;10) = (((_𝐴𝐵 / ;10) · (;10↑𝑃)) · ;10) |
| 28 | 23, 27 | eqtr3i 2754 | . . 3 ⊢ (_𝐴𝐵 · (;10↑𝑃)) = (((_𝐴𝐵 / ;10) · (;10↑𝑃)) · ;10) |
| 29 | 9, 21, 3 | divcli 11884 | . . . 4 ⊢ (_𝐴𝐵 / ;10) ∈ ℂ |
| 30 | 29, 18, 21 | mulassi 11145 | . . 3 ⊢ (((_𝐴𝐵 / ;10) · (;10↑𝑃)) · ;10) = ((_𝐴𝐵 / ;10) · ((;10↑𝑃) · ;10)) |
| 31 | expp1z 14036 | . . . . . 6 ⊢ ((;10 ∈ ℂ ∧ ;10 ≠ 0 ∧ 𝑃 ∈ ℤ) → (;10↑(𝑃 + 1)) = ((;10↑𝑃) · ;10)) | |
| 32 | 21, 3, 14, 31 | mp3an 1463 | . . . . 5 ⊢ (;10↑(𝑃 + 1)) = ((;10↑𝑃) · ;10) |
| 33 | dpexpp1.1 | . . . . . 6 ⊢ (𝑃 + 1) = 𝑄 | |
| 34 | 33 | oveq2i 7364 | . . . . 5 ⊢ (;10↑(𝑃 + 1)) = (;10↑𝑄) |
| 35 | 32, 34 | eqtr3i 2754 | . . . 4 ⊢ ((;10↑𝑃) · ;10) = (;10↑𝑄) |
| 36 | 35 | oveq2i 7364 | . . 3 ⊢ ((_𝐴𝐵 / ;10) · ((;10↑𝑃) · ;10)) = ((_𝐴𝐵 / ;10) · (;10↑𝑄)) |
| 37 | 28, 30, 36 | 3eqtri 2756 | . 2 ⊢ (_𝐴𝐵 · (;10↑𝑃)) = ((_𝐴𝐵 / ;10) · (;10↑𝑄)) |
| 38 | 4, 5 | dpval3rp 32853 | . . 3 ⊢ (𝐴.𝐵) = _𝐴𝐵 |
| 39 | 38 | oveq1i 7363 | . 2 ⊢ ((𝐴.𝐵) · (;10↑𝑃)) = (_𝐴𝐵 · (;10↑𝑃)) |
| 40 | 0nn0 12417 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
| 41 | 40, 6 | dpval3rp 32853 | . . . 4 ⊢ (0._𝐴𝐵) = _0_𝐴𝐵 |
| 42 | 6 | dp20h 32832 | . . . 4 ⊢ _0_𝐴𝐵 = (_𝐴𝐵 / ;10) |
| 43 | 41, 42 | eqtri 2752 | . . 3 ⊢ (0._𝐴𝐵) = (_𝐴𝐵 / ;10) |
| 44 | 43 | oveq1i 7363 | . 2 ⊢ ((0._𝐴𝐵) · (;10↑𝑄)) = ((_𝐴𝐵 / ;10) · (;10↑𝑄)) |
| 45 | 37, 39, 44 | 3eqtr4i 2762 | 1 ⊢ ((𝐴.𝐵) · (;10↑𝑃)) = ((0._𝐴𝐵) · (;10↑𝑄)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5095 (class class class)co 7353 ℂcc 11026 ℝcr 11027 0cc0 11028 1c1 11029 + caddc 11031 · cmul 11033 < clt 11168 / cdiv 11795 ℕ0cn0 12402 ℤcz 12489 ;cdc 12609 ℝ+crp 12911 ↑cexp 13986 _cdp2 32824 .cdp 32841 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-rp 12912 df-seq 13927 df-exp 13987 df-dp2 32825 df-dp 32842 |
| This theorem is referenced by: 0dp2dp 32862 hgt750lemd 34615 hgt750lem 34618 |
| Copyright terms: Public domain | W3C validator |