| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dpexpp1 | Structured version Visualization version GIF version | ||
| Description: Add one zero to the mantisse, and a one to the exponent in a scientific notation. (Contributed by Thierry Arnoux, 16-Dec-2021.) |
| Ref | Expression |
|---|---|
| dpexpp1.a | ⊢ 𝐴 ∈ ℕ0 |
| dpexpp1.b | ⊢ 𝐵 ∈ ℝ+ |
| dpexpp1.1 | ⊢ (𝑃 + 1) = 𝑄 |
| dpexpp1.p | ⊢ 𝑃 ∈ ℤ |
| dpexpp1.q | ⊢ 𝑄 ∈ ℤ |
| Ref | Expression |
|---|---|
| dpexpp1 | ⊢ ((𝐴.𝐵) · (;10↑𝑃)) = ((0._𝐴𝐵) · (;10↑𝑄)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11121 | . . . . . 6 ⊢ 0 ∈ ℝ | |
| 2 | 10pos 12611 | . . . . . 6 ⊢ 0 < ;10 | |
| 3 | 1, 2 | gtneii 11232 | . . . . 5 ⊢ ;10 ≠ 0 |
| 4 | dpexpp1.a | . . . . . . . . . 10 ⊢ 𝐴 ∈ ℕ0 | |
| 5 | dpexpp1.b | . . . . . . . . . 10 ⊢ 𝐵 ∈ ℝ+ | |
| 6 | 4, 5 | rpdp2cl 32869 | . . . . . . . . 9 ⊢ _𝐴𝐵 ∈ ℝ+ |
| 7 | rpre 12901 | . . . . . . . . 9 ⊢ (_𝐴𝐵 ∈ ℝ+ → _𝐴𝐵 ∈ ℝ) | |
| 8 | 6, 7 | ax-mp 5 | . . . . . . . 8 ⊢ _𝐴𝐵 ∈ ℝ |
| 9 | 8 | recni 11133 | . . . . . . 7 ⊢ _𝐴𝐵 ∈ ℂ |
| 10 | 10re 12613 | . . . . . . . . . . 11 ⊢ ;10 ∈ ℝ | |
| 11 | 10, 2 | pm3.2i 470 | . . . . . . . . . 10 ⊢ (;10 ∈ ℝ ∧ 0 < ;10) |
| 12 | elrp 12894 | . . . . . . . . . 10 ⊢ (;10 ∈ ℝ+ ↔ (;10 ∈ ℝ ∧ 0 < ;10)) | |
| 13 | 11, 12 | mpbir 231 | . . . . . . . . 9 ⊢ ;10 ∈ ℝ+ |
| 14 | dpexpp1.p | . . . . . . . . 9 ⊢ 𝑃 ∈ ℤ | |
| 15 | rpexpcl 13989 | . . . . . . . . 9 ⊢ ((;10 ∈ ℝ+ ∧ 𝑃 ∈ ℤ) → (;10↑𝑃) ∈ ℝ+) | |
| 16 | 13, 14, 15 | mp2an 692 | . . . . . . . 8 ⊢ (;10↑𝑃) ∈ ℝ+ |
| 17 | rpcn 12903 | . . . . . . . 8 ⊢ ((;10↑𝑃) ∈ ℝ+ → (;10↑𝑃) ∈ ℂ) | |
| 18 | 16, 17 | ax-mp 5 | . . . . . . 7 ⊢ (;10↑𝑃) ∈ ℂ |
| 19 | 9, 18 | mulcli 11126 | . . . . . 6 ⊢ (_𝐴𝐵 · (;10↑𝑃)) ∈ ℂ |
| 20 | 10nn0 12612 | . . . . . . 7 ⊢ ;10 ∈ ℕ0 | |
| 21 | 20 | nn0cni 12400 | . . . . . 6 ⊢ ;10 ∈ ℂ |
| 22 | 19, 21 | divcan1zi 11864 | . . . . 5 ⊢ (;10 ≠ 0 → (((_𝐴𝐵 · (;10↑𝑃)) / ;10) · ;10) = (_𝐴𝐵 · (;10↑𝑃))) |
| 23 | 3, 22 | ax-mp 5 | . . . 4 ⊢ (((_𝐴𝐵 · (;10↑𝑃)) / ;10) · ;10) = (_𝐴𝐵 · (;10↑𝑃)) |
| 24 | 21, 3 | pm3.2i 470 | . . . . . 6 ⊢ (;10 ∈ ℂ ∧ ;10 ≠ 0) |
| 25 | div23 11802 | . . . . . 6 ⊢ ((_𝐴𝐵 ∈ ℂ ∧ (;10↑𝑃) ∈ ℂ ∧ (;10 ∈ ℂ ∧ ;10 ≠ 0)) → ((_𝐴𝐵 · (;10↑𝑃)) / ;10) = ((_𝐴𝐵 / ;10) · (;10↑𝑃))) | |
| 26 | 9, 18, 24, 25 | mp3an 1463 | . . . . 5 ⊢ ((_𝐴𝐵 · (;10↑𝑃)) / ;10) = ((_𝐴𝐵 / ;10) · (;10↑𝑃)) |
| 27 | 26 | oveq1i 7362 | . . . 4 ⊢ (((_𝐴𝐵 · (;10↑𝑃)) / ;10) · ;10) = (((_𝐴𝐵 / ;10) · (;10↑𝑃)) · ;10) |
| 28 | 23, 27 | eqtr3i 2758 | . . 3 ⊢ (_𝐴𝐵 · (;10↑𝑃)) = (((_𝐴𝐵 / ;10) · (;10↑𝑃)) · ;10) |
| 29 | 9, 21, 3 | divcli 11870 | . . . 4 ⊢ (_𝐴𝐵 / ;10) ∈ ℂ |
| 30 | 29, 18, 21 | mulassi 11130 | . . 3 ⊢ (((_𝐴𝐵 / ;10) · (;10↑𝑃)) · ;10) = ((_𝐴𝐵 / ;10) · ((;10↑𝑃) · ;10)) |
| 31 | expp1z 14020 | . . . . . 6 ⊢ ((;10 ∈ ℂ ∧ ;10 ≠ 0 ∧ 𝑃 ∈ ℤ) → (;10↑(𝑃 + 1)) = ((;10↑𝑃) · ;10)) | |
| 32 | 21, 3, 14, 31 | mp3an 1463 | . . . . 5 ⊢ (;10↑(𝑃 + 1)) = ((;10↑𝑃) · ;10) |
| 33 | dpexpp1.1 | . . . . . 6 ⊢ (𝑃 + 1) = 𝑄 | |
| 34 | 33 | oveq2i 7363 | . . . . 5 ⊢ (;10↑(𝑃 + 1)) = (;10↑𝑄) |
| 35 | 32, 34 | eqtr3i 2758 | . . . 4 ⊢ ((;10↑𝑃) · ;10) = (;10↑𝑄) |
| 36 | 35 | oveq2i 7363 | . . 3 ⊢ ((_𝐴𝐵 / ;10) · ((;10↑𝑃) · ;10)) = ((_𝐴𝐵 / ;10) · (;10↑𝑄)) |
| 37 | 28, 30, 36 | 3eqtri 2760 | . 2 ⊢ (_𝐴𝐵 · (;10↑𝑃)) = ((_𝐴𝐵 / ;10) · (;10↑𝑄)) |
| 38 | 4, 5 | dpval3rp 32887 | . . 3 ⊢ (𝐴.𝐵) = _𝐴𝐵 |
| 39 | 38 | oveq1i 7362 | . 2 ⊢ ((𝐴.𝐵) · (;10↑𝑃)) = (_𝐴𝐵 · (;10↑𝑃)) |
| 40 | 0nn0 12403 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
| 41 | 40, 6 | dpval3rp 32887 | . . . 4 ⊢ (0._𝐴𝐵) = _0_𝐴𝐵 |
| 42 | 6 | dp20h 32866 | . . . 4 ⊢ _0_𝐴𝐵 = (_𝐴𝐵 / ;10) |
| 43 | 41, 42 | eqtri 2756 | . . 3 ⊢ (0._𝐴𝐵) = (_𝐴𝐵 / ;10) |
| 44 | 43 | oveq1i 7362 | . 2 ⊢ ((0._𝐴𝐵) · (;10↑𝑄)) = ((_𝐴𝐵 / ;10) · (;10↑𝑄)) |
| 45 | 37, 39, 44 | 3eqtr4i 2766 | 1 ⊢ ((𝐴.𝐵) · (;10↑𝑃)) = ((0._𝐴𝐵) · (;10↑𝑄)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 class class class wbr 5093 (class class class)co 7352 ℂcc 11011 ℝcr 11012 0cc0 11013 1c1 11014 + caddc 11016 · cmul 11018 < clt 11153 / cdiv 11781 ℕ0cn0 12388 ℤcz 12475 ;cdc 12594 ℝ+crp 12892 ↑cexp 13970 _cdp2 32858 .cdp 32875 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-uz 12739 df-rp 12893 df-seq 13911 df-exp 13971 df-dp2 32859 df-dp 32876 |
| This theorem is referenced by: 0dp2dp 32896 hgt750lemd 34682 hgt750lem 34685 |
| Copyright terms: Public domain | W3C validator |