Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dpexpp1 Structured version   Visualization version   GIF version

Theorem dpexpp1 32883
Description: Add one zero to the mantisse, and a one to the exponent in a scientific notation. (Contributed by Thierry Arnoux, 16-Dec-2021.)
Hypotheses
Ref Expression
dpexpp1.a 𝐴 ∈ ℕ0
dpexpp1.b 𝐵 ∈ ℝ+
dpexpp1.1 (𝑃 + 1) = 𝑄
dpexpp1.p 𝑃 ∈ ℤ
dpexpp1.q 𝑄 ∈ ℤ
Assertion
Ref Expression
dpexpp1 ((𝐴.𝐵) · (10↑𝑃)) = ((0.𝐴𝐵) · (10↑𝑄))

Proof of Theorem dpexpp1
StepHypRef Expression
1 0re 11111 . . . . . 6 0 ∈ ℝ
2 10pos 12602 . . . . . 6 0 < 10
31, 2gtneii 11222 . . . . 5 10 ≠ 0
4 dpexpp1.a . . . . . . . . . 10 𝐴 ∈ ℕ0
5 dpexpp1.b . . . . . . . . . 10 𝐵 ∈ ℝ+
64, 5rpdp2cl 32857 . . . . . . . . 9 𝐴𝐵 ∈ ℝ+
7 rpre 12896 . . . . . . . . 9 (𝐴𝐵 ∈ ℝ+𝐴𝐵 ∈ ℝ)
86, 7ax-mp 5 . . . . . . . 8 𝐴𝐵 ∈ ℝ
98recni 11123 . . . . . . 7 𝐴𝐵 ∈ ℂ
10 10re 12604 . . . . . . . . . . 11 10 ∈ ℝ
1110, 2pm3.2i 470 . . . . . . . . . 10 (10 ∈ ℝ ∧ 0 < 10)
12 elrp 12889 . . . . . . . . . 10 (10 ∈ ℝ+ ↔ (10 ∈ ℝ ∧ 0 < 10))
1311, 12mpbir 231 . . . . . . . . 9 10 ∈ ℝ+
14 dpexpp1.p . . . . . . . . 9 𝑃 ∈ ℤ
15 rpexpcl 13984 . . . . . . . . 9 ((10 ∈ ℝ+𝑃 ∈ ℤ) → (10↑𝑃) ∈ ℝ+)
1613, 14, 15mp2an 692 . . . . . . . 8 (10↑𝑃) ∈ ℝ+
17 rpcn 12898 . . . . . . . 8 ((10↑𝑃) ∈ ℝ+ → (10↑𝑃) ∈ ℂ)
1816, 17ax-mp 5 . . . . . . 7 (10↑𝑃) ∈ ℂ
199, 18mulcli 11116 . . . . . 6 (𝐴𝐵 · (10↑𝑃)) ∈ ℂ
20 10nn0 12603 . . . . . . 7 10 ∈ ℕ0
2120nn0cni 12390 . . . . . 6 10 ∈ ℂ
2219, 21divcan1zi 11854 . . . . 5 (10 ≠ 0 → (((𝐴𝐵 · (10↑𝑃)) / 10) · 10) = (𝐴𝐵 · (10↑𝑃)))
233, 22ax-mp 5 . . . 4 (((𝐴𝐵 · (10↑𝑃)) / 10) · 10) = (𝐴𝐵 · (10↑𝑃))
2421, 3pm3.2i 470 . . . . . 6 (10 ∈ ℂ ∧ 10 ≠ 0)
25 div23 11792 . . . . . 6 ((𝐴𝐵 ∈ ℂ ∧ (10↑𝑃) ∈ ℂ ∧ (10 ∈ ℂ ∧ 10 ≠ 0)) → ((𝐴𝐵 · (10↑𝑃)) / 10) = ((𝐴𝐵 / 10) · (10↑𝑃)))
269, 18, 24, 25mp3an 1463 . . . . 5 ((𝐴𝐵 · (10↑𝑃)) / 10) = ((𝐴𝐵 / 10) · (10↑𝑃))
2726oveq1i 7356 . . . 4 (((𝐴𝐵 · (10↑𝑃)) / 10) · 10) = (((𝐴𝐵 / 10) · (10↑𝑃)) · 10)
2823, 27eqtr3i 2756 . . 3 (𝐴𝐵 · (10↑𝑃)) = (((𝐴𝐵 / 10) · (10↑𝑃)) · 10)
299, 21, 3divcli 11860 . . . 4 (𝐴𝐵 / 10) ∈ ℂ
3029, 18, 21mulassi 11120 . . 3 (((𝐴𝐵 / 10) · (10↑𝑃)) · 10) = ((𝐴𝐵 / 10) · ((10↑𝑃) · 10))
31 expp1z 14015 . . . . . 6 ((10 ∈ ℂ ∧ 10 ≠ 0 ∧ 𝑃 ∈ ℤ) → (10↑(𝑃 + 1)) = ((10↑𝑃) · 10))
3221, 3, 14, 31mp3an 1463 . . . . 5 (10↑(𝑃 + 1)) = ((10↑𝑃) · 10)
33 dpexpp1.1 . . . . . 6 (𝑃 + 1) = 𝑄
3433oveq2i 7357 . . . . 5 (10↑(𝑃 + 1)) = (10↑𝑄)
3532, 34eqtr3i 2756 . . . 4 ((10↑𝑃) · 10) = (10↑𝑄)
3635oveq2i 7357 . . 3 ((𝐴𝐵 / 10) · ((10↑𝑃) · 10)) = ((𝐴𝐵 / 10) · (10↑𝑄))
3728, 30, 363eqtri 2758 . 2 (𝐴𝐵 · (10↑𝑃)) = ((𝐴𝐵 / 10) · (10↑𝑄))
384, 5dpval3rp 32875 . . 3 (𝐴.𝐵) = 𝐴𝐵
3938oveq1i 7356 . 2 ((𝐴.𝐵) · (10↑𝑃)) = (𝐴𝐵 · (10↑𝑃))
40 0nn0 12393 . . . . 5 0 ∈ ℕ0
4140, 6dpval3rp 32875 . . . 4 (0.𝐴𝐵) = 0𝐴𝐵
426dp20h 32854 . . . 4 0𝐴𝐵 = (𝐴𝐵 / 10)
4341, 42eqtri 2754 . . 3 (0.𝐴𝐵) = (𝐴𝐵 / 10)
4443oveq1i 7356 . 2 ((0.𝐴𝐵) · (10↑𝑄)) = ((𝐴𝐵 / 10) · (10↑𝑄))
4537, 39, 443eqtr4i 2764 1 ((𝐴.𝐵) · (10↑𝑃)) = ((0.𝐴𝐵) · (10↑𝑄))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5091  (class class class)co 7346  cc 11001  cr 11002  0cc0 11003  1c1 11004   + caddc 11006   · cmul 11008   < clt 11143   / cdiv 11771  0cn0 12378  cz 12465  cdc 12585  +crp 12887  cexp 13965  cdp2 32846  .cdp 32863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-uz 12730  df-rp 12888  df-seq 13906  df-exp 13966  df-dp2 32847  df-dp 32864
This theorem is referenced by:  0dp2dp  32884  hgt750lemd  34656  hgt750lem  34659
  Copyright terms: Public domain W3C validator