![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 41prothprm | Structured version Visualization version GIF version |
Description: 41 is a Proth prime. (Contributed by AV, 5-Jul-2020.) |
Ref | Expression |
---|---|
41prothprm.p | ⊢ 𝑃 = ;41 |
Ref | Expression |
---|---|
41prothprm | ⊢ (𝑃 = ((5 · (2↑3)) + 1) ∧ 𝑃 ∈ ℙ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 41prothprm.p | . . 3 ⊢ 𝑃 = ;41 | |
2 | 1 | 41prothprmlem2 46771 | . 2 ⊢ ((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) |
3 | dfdec10 12677 | . . 3 ⊢ ;41 = ((;10 · 4) + 1) | |
4 | 4t2e8 12377 | . . . . . . . 8 ⊢ (4 · 2) = 8 | |
5 | 4cn 12294 | . . . . . . . . 9 ⊢ 4 ∈ ℂ | |
6 | 2cn 12284 | . . . . . . . . 9 ⊢ 2 ∈ ℂ | |
7 | 5, 6 | mulcomi 11219 | . . . . . . . 8 ⊢ (4 · 2) = (2 · 4) |
8 | 4, 7 | eqtr3i 2754 | . . . . . . 7 ⊢ 8 = (2 · 4) |
9 | 8 | oveq2i 7412 | . . . . . 6 ⊢ (5 · 8) = (5 · (2 · 4)) |
10 | 5cn 12297 | . . . . . . 7 ⊢ 5 ∈ ℂ | |
11 | 10, 6, 5 | mulassi 11222 | . . . . . 6 ⊢ ((5 · 2) · 4) = (5 · (2 · 4)) |
12 | 5t2e10 12774 | . . . . . . 7 ⊢ (5 · 2) = ;10 | |
13 | 12 | oveq1i 7411 | . . . . . 6 ⊢ ((5 · 2) · 4) = (;10 · 4) |
14 | 9, 11, 13 | 3eqtr2i 2758 | . . . . 5 ⊢ (5 · 8) = (;10 · 4) |
15 | cu2 14161 | . . . . . . 7 ⊢ (2↑3) = 8 | |
16 | 15 | eqcomi 2733 | . . . . . 6 ⊢ 8 = (2↑3) |
17 | 16 | oveq2i 7412 | . . . . 5 ⊢ (5 · 8) = (5 · (2↑3)) |
18 | 14, 17 | eqtr3i 2754 | . . . 4 ⊢ (;10 · 4) = (5 · (2↑3)) |
19 | 18 | oveq1i 7411 | . . 3 ⊢ ((;10 · 4) + 1) = ((5 · (2↑3)) + 1) |
20 | 1, 3, 19 | 3eqtri 2756 | . 2 ⊢ 𝑃 = ((5 · (2↑3)) + 1) |
21 | simpr 484 | . . 3 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → 𝑃 = ((5 · (2↑3)) + 1)) | |
22 | 3nn 12288 | . . . . 5 ⊢ 3 ∈ ℕ | |
23 | 22 | a1i 11 | . . . 4 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → 3 ∈ ℕ) |
24 | 5nn 12295 | . . . . 5 ⊢ 5 ∈ ℕ | |
25 | 24 | a1i 11 | . . . 4 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → 5 ∈ ℕ) |
26 | 5lt8 12403 | . . . . . 6 ⊢ 5 < 8 | |
27 | 26, 15 | breqtrri 5165 | . . . . 5 ⊢ 5 < (2↑3) |
28 | 27 | a1i 11 | . . . 4 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → 5 < (2↑3)) |
29 | 3z 12592 | . . . . . . 7 ⊢ 3 ∈ ℤ | |
30 | 29 | a1i 11 | . . . . . 6 ⊢ (((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) → 3 ∈ ℤ) |
31 | oveq1 7408 | . . . . . . . . 9 ⊢ (𝑥 = 3 → (𝑥↑((𝑃 − 1) / 2)) = (3↑((𝑃 − 1) / 2))) | |
32 | 31 | oveq1d 7416 | . . . . . . . 8 ⊢ (𝑥 = 3 → ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = ((3↑((𝑃 − 1) / 2)) mod 𝑃)) |
33 | 32 | eqeq1d 2726 | . . . . . . 7 ⊢ (𝑥 = 3 → (((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ↔ ((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃))) |
34 | 33 | adantl 481 | . . . . . 6 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑥 = 3) → (((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ↔ ((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃))) |
35 | id 22 | . . . . . 6 ⊢ (((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) → ((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) | |
36 | 30, 34, 35 | rspcedvd 3606 | . . . . 5 ⊢ (((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) → ∃𝑥 ∈ ℤ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) |
37 | 36 | adantr 480 | . . . 4 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → ∃𝑥 ∈ ℤ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) |
38 | 23, 25, 21, 28, 37 | proththd 46767 | . . 3 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → 𝑃 ∈ ℙ) |
39 | 21, 38 | jca 511 | . 2 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → (𝑃 = ((5 · (2↑3)) + 1) ∧ 𝑃 ∈ ℙ)) |
40 | 2, 20, 39 | mp2an 689 | 1 ⊢ (𝑃 = ((5 · (2↑3)) + 1) ∧ 𝑃 ∈ ℙ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∃wrex 3062 class class class wbr 5138 (class class class)co 7401 0cc0 11106 1c1 11107 + caddc 11109 · cmul 11111 < clt 11245 − cmin 11441 -cneg 11442 / cdiv 11868 ℕcn 12209 2c2 12264 3c3 12265 4c4 12266 5c5 12267 8c8 12270 ℤcz 12555 ;cdc 12674 mod cmo 13831 ↑cexp 14024 ℙcprime 16605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-2o 8462 df-oadd 8465 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-inf 9434 df-dju 9892 df-card 9930 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-div 11869 df-nn 12210 df-2 12272 df-3 12273 df-4 12274 df-5 12275 df-6 12276 df-7 12277 df-8 12278 df-9 12279 df-n0 12470 df-xnn0 12542 df-z 12556 df-dec 12675 df-uz 12820 df-q 12930 df-rp 12972 df-fz 13482 df-fzo 13625 df-fl 13754 df-mod 13832 df-seq 13964 df-exp 14025 df-hash 14288 df-cj 15043 df-re 15044 df-im 15045 df-sqrt 15179 df-abs 15180 df-dvds 16195 df-gcd 16433 df-prm 16606 df-odz 16697 df-phi 16698 df-pc 16769 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |