| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 41prothprm | Structured version Visualization version GIF version | ||
| Description: 41 is a Proth prime. (Contributed by AV, 5-Jul-2020.) |
| Ref | Expression |
|---|---|
| 41prothprm.p | ⊢ 𝑃 = ;41 |
| Ref | Expression |
|---|---|
| 41prothprm | ⊢ (𝑃 = ((5 · (2↑3)) + 1) ∧ 𝑃 ∈ ℙ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 41prothprm.p | . . 3 ⊢ 𝑃 = ;41 | |
| 2 | 1 | 41prothprmlem2 47606 | . 2 ⊢ ((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) |
| 3 | dfdec10 12612 | . . 3 ⊢ ;41 = ((;10 · 4) + 1) | |
| 4 | 4t2e8 12309 | . . . . . . . 8 ⊢ (4 · 2) = 8 | |
| 5 | 4cn 12231 | . . . . . . . . 9 ⊢ 4 ∈ ℂ | |
| 6 | 2cn 12221 | . . . . . . . . 9 ⊢ 2 ∈ ℂ | |
| 7 | 5, 6 | mulcomi 11142 | . . . . . . . 8 ⊢ (4 · 2) = (2 · 4) |
| 8 | 4, 7 | eqtr3i 2754 | . . . . . . 7 ⊢ 8 = (2 · 4) |
| 9 | 8 | oveq2i 7364 | . . . . . 6 ⊢ (5 · 8) = (5 · (2 · 4)) |
| 10 | 5cn 12234 | . . . . . . 7 ⊢ 5 ∈ ℂ | |
| 11 | 10, 6, 5 | mulassi 11145 | . . . . . 6 ⊢ ((5 · 2) · 4) = (5 · (2 · 4)) |
| 12 | 5t2e10 12709 | . . . . . . 7 ⊢ (5 · 2) = ;10 | |
| 13 | 12 | oveq1i 7363 | . . . . . 6 ⊢ ((5 · 2) · 4) = (;10 · 4) |
| 14 | 9, 11, 13 | 3eqtr2i 2758 | . . . . 5 ⊢ (5 · 8) = (;10 · 4) |
| 15 | cu2 14125 | . . . . . . 7 ⊢ (2↑3) = 8 | |
| 16 | 15 | eqcomi 2738 | . . . . . 6 ⊢ 8 = (2↑3) |
| 17 | 16 | oveq2i 7364 | . . . . 5 ⊢ (5 · 8) = (5 · (2↑3)) |
| 18 | 14, 17 | eqtr3i 2754 | . . . 4 ⊢ (;10 · 4) = (5 · (2↑3)) |
| 19 | 18 | oveq1i 7363 | . . 3 ⊢ ((;10 · 4) + 1) = ((5 · (2↑3)) + 1) |
| 20 | 1, 3, 19 | 3eqtri 2756 | . 2 ⊢ 𝑃 = ((5 · (2↑3)) + 1) |
| 21 | simpr 484 | . . 3 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → 𝑃 = ((5 · (2↑3)) + 1)) | |
| 22 | 3nn 12225 | . . . . 5 ⊢ 3 ∈ ℕ | |
| 23 | 22 | a1i 11 | . . . 4 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → 3 ∈ ℕ) |
| 24 | 5nn 12232 | . . . . 5 ⊢ 5 ∈ ℕ | |
| 25 | 24 | a1i 11 | . . . 4 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → 5 ∈ ℕ) |
| 26 | 5lt8 12335 | . . . . . 6 ⊢ 5 < 8 | |
| 27 | 26, 15 | breqtrri 5122 | . . . . 5 ⊢ 5 < (2↑3) |
| 28 | 27 | a1i 11 | . . . 4 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → 5 < (2↑3)) |
| 29 | 3z 12526 | . . . . . . 7 ⊢ 3 ∈ ℤ | |
| 30 | 29 | a1i 11 | . . . . . 6 ⊢ (((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) → 3 ∈ ℤ) |
| 31 | oveq1 7360 | . . . . . . . . 9 ⊢ (𝑥 = 3 → (𝑥↑((𝑃 − 1) / 2)) = (3↑((𝑃 − 1) / 2))) | |
| 32 | 31 | oveq1d 7368 | . . . . . . . 8 ⊢ (𝑥 = 3 → ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = ((3↑((𝑃 − 1) / 2)) mod 𝑃)) |
| 33 | 32 | eqeq1d 2731 | . . . . . . 7 ⊢ (𝑥 = 3 → (((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ↔ ((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃))) |
| 34 | 33 | adantl 481 | . . . . . 6 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑥 = 3) → (((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ↔ ((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃))) |
| 35 | id 22 | . . . . . 6 ⊢ (((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) → ((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) | |
| 36 | 30, 34, 35 | rspcedvd 3581 | . . . . 5 ⊢ (((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) → ∃𝑥 ∈ ℤ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) |
| 37 | 36 | adantr 480 | . . . 4 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → ∃𝑥 ∈ ℤ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) |
| 38 | 23, 25, 21, 28, 37 | proththd 47602 | . . 3 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → 𝑃 ∈ ℙ) |
| 39 | 21, 38 | jca 511 | . 2 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → (𝑃 = ((5 · (2↑3)) + 1) ∧ 𝑃 ∈ ℙ)) |
| 40 | 2, 20, 39 | mp2an 692 | 1 ⊢ (𝑃 = ((5 · (2↑3)) + 1) ∧ 𝑃 ∈ ℙ) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 class class class wbr 5095 (class class class)co 7353 0cc0 11028 1c1 11029 + caddc 11031 · cmul 11033 < clt 11168 − cmin 11365 -cneg 11366 / cdiv 11795 ℕcn 12146 2c2 12201 3c3 12202 4c4 12203 5c5 12204 8c8 12207 ℤcz 12489 ;cdc 12609 mod cmo 13791 ↑cexp 13986 ℙcprime 16600 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-oadd 8399 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-inf 9352 df-dju 9816 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-xnn0 12476 df-z 12490 df-dec 12610 df-uz 12754 df-q 12868 df-rp 12912 df-fz 13429 df-fzo 13576 df-fl 13714 df-mod 13792 df-seq 13927 df-exp 13987 df-hash 14256 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-dvds 16182 df-gcd 16424 df-prm 16601 df-odz 16694 df-phi 16695 df-pc 16767 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |