Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 41prothprm | Structured version Visualization version GIF version |
Description: 41 is a Proth prime. (Contributed by AV, 5-Jul-2020.) |
Ref | Expression |
---|---|
41prothprm.p | ⊢ 𝑃 = ;41 |
Ref | Expression |
---|---|
41prothprm | ⊢ (𝑃 = ((5 · (2↑3)) + 1) ∧ 𝑃 ∈ ℙ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 41prothprm.p | . . 3 ⊢ 𝑃 = ;41 | |
2 | 1 | 41prothprmlem2 44958 | . 2 ⊢ ((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) |
3 | dfdec10 12369 | . . 3 ⊢ ;41 = ((;10 · 4) + 1) | |
4 | 4t2e8 12071 | . . . . . . . 8 ⊢ (4 · 2) = 8 | |
5 | 4cn 11988 | . . . . . . . . 9 ⊢ 4 ∈ ℂ | |
6 | 2cn 11978 | . . . . . . . . 9 ⊢ 2 ∈ ℂ | |
7 | 5, 6 | mulcomi 10914 | . . . . . . . 8 ⊢ (4 · 2) = (2 · 4) |
8 | 4, 7 | eqtr3i 2768 | . . . . . . 7 ⊢ 8 = (2 · 4) |
9 | 8 | oveq2i 7266 | . . . . . 6 ⊢ (5 · 8) = (5 · (2 · 4)) |
10 | 5cn 11991 | . . . . . . 7 ⊢ 5 ∈ ℂ | |
11 | 10, 6, 5 | mulassi 10917 | . . . . . 6 ⊢ ((5 · 2) · 4) = (5 · (2 · 4)) |
12 | 5t2e10 12466 | . . . . . . 7 ⊢ (5 · 2) = ;10 | |
13 | 12 | oveq1i 7265 | . . . . . 6 ⊢ ((5 · 2) · 4) = (;10 · 4) |
14 | 9, 11, 13 | 3eqtr2i 2772 | . . . . 5 ⊢ (5 · 8) = (;10 · 4) |
15 | cu2 13845 | . . . . . . 7 ⊢ (2↑3) = 8 | |
16 | 15 | eqcomi 2747 | . . . . . 6 ⊢ 8 = (2↑3) |
17 | 16 | oveq2i 7266 | . . . . 5 ⊢ (5 · 8) = (5 · (2↑3)) |
18 | 14, 17 | eqtr3i 2768 | . . . 4 ⊢ (;10 · 4) = (5 · (2↑3)) |
19 | 18 | oveq1i 7265 | . . 3 ⊢ ((;10 · 4) + 1) = ((5 · (2↑3)) + 1) |
20 | 1, 3, 19 | 3eqtri 2770 | . 2 ⊢ 𝑃 = ((5 · (2↑3)) + 1) |
21 | simpr 484 | . . 3 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → 𝑃 = ((5 · (2↑3)) + 1)) | |
22 | 3nn 11982 | . . . . 5 ⊢ 3 ∈ ℕ | |
23 | 22 | a1i 11 | . . . 4 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → 3 ∈ ℕ) |
24 | 5nn 11989 | . . . . 5 ⊢ 5 ∈ ℕ | |
25 | 24 | a1i 11 | . . . 4 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → 5 ∈ ℕ) |
26 | 5lt8 12097 | . . . . . 6 ⊢ 5 < 8 | |
27 | 26, 15 | breqtrri 5097 | . . . . 5 ⊢ 5 < (2↑3) |
28 | 27 | a1i 11 | . . . 4 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → 5 < (2↑3)) |
29 | 3z 12283 | . . . . . . 7 ⊢ 3 ∈ ℤ | |
30 | 29 | a1i 11 | . . . . . 6 ⊢ (((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) → 3 ∈ ℤ) |
31 | oveq1 7262 | . . . . . . . . 9 ⊢ (𝑥 = 3 → (𝑥↑((𝑃 − 1) / 2)) = (3↑((𝑃 − 1) / 2))) | |
32 | 31 | oveq1d 7270 | . . . . . . . 8 ⊢ (𝑥 = 3 → ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = ((3↑((𝑃 − 1) / 2)) mod 𝑃)) |
33 | 32 | eqeq1d 2740 | . . . . . . 7 ⊢ (𝑥 = 3 → (((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ↔ ((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃))) |
34 | 33 | adantl 481 | . . . . . 6 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑥 = 3) → (((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ↔ ((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃))) |
35 | id 22 | . . . . . 6 ⊢ (((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) → ((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) | |
36 | 30, 34, 35 | rspcedvd 3555 | . . . . 5 ⊢ (((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) → ∃𝑥 ∈ ℤ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) |
37 | 36 | adantr 480 | . . . 4 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → ∃𝑥 ∈ ℤ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) |
38 | 23, 25, 21, 28, 37 | proththd 44954 | . . 3 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → 𝑃 ∈ ℙ) |
39 | 21, 38 | jca 511 | . 2 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → (𝑃 = ((5 · (2↑3)) + 1) ∧ 𝑃 ∈ ℙ)) |
40 | 2, 20, 39 | mp2an 688 | 1 ⊢ (𝑃 = ((5 · (2↑3)) + 1) ∧ 𝑃 ∈ ℙ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 class class class wbr 5070 (class class class)co 7255 0cc0 10802 1c1 10803 + caddc 10805 · cmul 10807 < clt 10940 − cmin 11135 -cneg 11136 / cdiv 11562 ℕcn 11903 2c2 11958 3c3 11959 4c4 11960 5c5 11961 8c8 11964 ℤcz 12249 ;cdc 12366 mod cmo 13517 ↑cexp 13710 ℙcprime 16304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-oadd 8271 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-xnn0 12236 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-fz 13169 df-fzo 13312 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-dvds 15892 df-gcd 16130 df-prm 16305 df-odz 16394 df-phi 16395 df-pc 16466 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |