Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  41prothprm Structured version   Visualization version   GIF version

Theorem 41prothprm 47544
Description: 41 is a Proth prime. (Contributed by AV, 5-Jul-2020.)
Hypothesis
Ref Expression
41prothprm.p 𝑃 = 41
Assertion
Ref Expression
41prothprm (𝑃 = ((5 · (2↑3)) + 1) ∧ 𝑃 ∈ ℙ)

Proof of Theorem 41prothprm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 41prothprm.p . . 3 𝑃 = 41
2141prothprmlem2 47543 . 2 ((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)
3 dfdec10 12734 . . 3 41 = ((10 · 4) + 1)
4 4t2e8 12432 . . . . . . . 8 (4 · 2) = 8
5 4cn 12349 . . . . . . . . 9 4 ∈ ℂ
6 2cn 12339 . . . . . . . . 9 2 ∈ ℂ
75, 6mulcomi 11267 . . . . . . . 8 (4 · 2) = (2 · 4)
84, 7eqtr3i 2765 . . . . . . 7 8 = (2 · 4)
98oveq2i 7442 . . . . . 6 (5 · 8) = (5 · (2 · 4))
10 5cn 12352 . . . . . . 7 5 ∈ ℂ
1110, 6, 5mulassi 11270 . . . . . 6 ((5 · 2) · 4) = (5 · (2 · 4))
12 5t2e10 12831 . . . . . . 7 (5 · 2) = 10
1312oveq1i 7441 . . . . . 6 ((5 · 2) · 4) = (10 · 4)
149, 11, 133eqtr2i 2769 . . . . 5 (5 · 8) = (10 · 4)
15 cu2 14236 . . . . . . 7 (2↑3) = 8
1615eqcomi 2744 . . . . . 6 8 = (2↑3)
1716oveq2i 7442 . . . . 5 (5 · 8) = (5 · (2↑3))
1814, 17eqtr3i 2765 . . . 4 (10 · 4) = (5 · (2↑3))
1918oveq1i 7441 . . 3 ((10 · 4) + 1) = ((5 · (2↑3)) + 1)
201, 3, 193eqtri 2767 . 2 𝑃 = ((5 · (2↑3)) + 1)
21 simpr 484 . . 3 ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → 𝑃 = ((5 · (2↑3)) + 1))
22 3nn 12343 . . . . 5 3 ∈ ℕ
2322a1i 11 . . . 4 ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → 3 ∈ ℕ)
24 5nn 12350 . . . . 5 5 ∈ ℕ
2524a1i 11 . . . 4 ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → 5 ∈ ℕ)
26 5lt8 12458 . . . . . 6 5 < 8
2726, 15breqtrri 5175 . . . . 5 5 < (2↑3)
2827a1i 11 . . . 4 ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → 5 < (2↑3))
29 3z 12648 . . . . . . 7 3 ∈ ℤ
3029a1i 11 . . . . . 6 (((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) → 3 ∈ ℤ)
31 oveq1 7438 . . . . . . . . 9 (𝑥 = 3 → (𝑥↑((𝑃 − 1) / 2)) = (3↑((𝑃 − 1) / 2)))
3231oveq1d 7446 . . . . . . . 8 (𝑥 = 3 → ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = ((3↑((𝑃 − 1) / 2)) mod 𝑃))
3332eqeq1d 2737 . . . . . . 7 (𝑥 = 3 → (((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ↔ ((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)))
3433adantl 481 . . . . . 6 ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑥 = 3) → (((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ↔ ((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)))
35 id 22 . . . . . 6 (((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) → ((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃))
3630, 34, 35rspcedvd 3624 . . . . 5 (((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) → ∃𝑥 ∈ ℤ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃))
3736adantr 480 . . . 4 ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → ∃𝑥 ∈ ℤ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃))
3823, 25, 21, 28, 37proththd 47539 . . 3 ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → 𝑃 ∈ ℙ)
3921, 38jca 511 . 2 ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → (𝑃 = ((5 · (2↑3)) + 1) ∧ 𝑃 ∈ ℙ))
402, 20, 39mp2an 692 1 (𝑃 = ((5 · (2↑3)) + 1) ∧ 𝑃 ∈ ℙ)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2106  wrex 3068   class class class wbr 5148  (class class class)co 7431  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158   < clt 11293  cmin 11490  -cneg 11491   / cdiv 11918  cn 12264  2c2 12319  3c3 12320  4c4 12321  5c5 12322  8c8 12325  cz 12611  cdc 12731   mod cmo 13906  cexp 14099  cprime 16705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-xnn0 12598  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-dvds 16288  df-gcd 16529  df-prm 16706  df-odz 16799  df-phi 16800  df-pc 16871
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator