| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 41prothprm | Structured version Visualization version GIF version | ||
| Description: 41 is a Proth prime. (Contributed by AV, 5-Jul-2020.) |
| Ref | Expression |
|---|---|
| 41prothprm.p | ⊢ 𝑃 = ;41 |
| Ref | Expression |
|---|---|
| 41prothprm | ⊢ (𝑃 = ((5 · (2↑3)) + 1) ∧ 𝑃 ∈ ℙ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 41prothprm.p | . . 3 ⊢ 𝑃 = ;41 | |
| 2 | 1 | 41prothprmlem2 47605 | . 2 ⊢ ((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) |
| 3 | dfdec10 12736 | . . 3 ⊢ ;41 = ((;10 · 4) + 1) | |
| 4 | 4t2e8 12434 | . . . . . . . 8 ⊢ (4 · 2) = 8 | |
| 5 | 4cn 12351 | . . . . . . . . 9 ⊢ 4 ∈ ℂ | |
| 6 | 2cn 12341 | . . . . . . . . 9 ⊢ 2 ∈ ℂ | |
| 7 | 5, 6 | mulcomi 11269 | . . . . . . . 8 ⊢ (4 · 2) = (2 · 4) |
| 8 | 4, 7 | eqtr3i 2767 | . . . . . . 7 ⊢ 8 = (2 · 4) |
| 9 | 8 | oveq2i 7442 | . . . . . 6 ⊢ (5 · 8) = (5 · (2 · 4)) |
| 10 | 5cn 12354 | . . . . . . 7 ⊢ 5 ∈ ℂ | |
| 11 | 10, 6, 5 | mulassi 11272 | . . . . . 6 ⊢ ((5 · 2) · 4) = (5 · (2 · 4)) |
| 12 | 5t2e10 12833 | . . . . . . 7 ⊢ (5 · 2) = ;10 | |
| 13 | 12 | oveq1i 7441 | . . . . . 6 ⊢ ((5 · 2) · 4) = (;10 · 4) |
| 14 | 9, 11, 13 | 3eqtr2i 2771 | . . . . 5 ⊢ (5 · 8) = (;10 · 4) |
| 15 | cu2 14239 | . . . . . . 7 ⊢ (2↑3) = 8 | |
| 16 | 15 | eqcomi 2746 | . . . . . 6 ⊢ 8 = (2↑3) |
| 17 | 16 | oveq2i 7442 | . . . . 5 ⊢ (5 · 8) = (5 · (2↑3)) |
| 18 | 14, 17 | eqtr3i 2767 | . . . 4 ⊢ (;10 · 4) = (5 · (2↑3)) |
| 19 | 18 | oveq1i 7441 | . . 3 ⊢ ((;10 · 4) + 1) = ((5 · (2↑3)) + 1) |
| 20 | 1, 3, 19 | 3eqtri 2769 | . 2 ⊢ 𝑃 = ((5 · (2↑3)) + 1) |
| 21 | simpr 484 | . . 3 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → 𝑃 = ((5 · (2↑3)) + 1)) | |
| 22 | 3nn 12345 | . . . . 5 ⊢ 3 ∈ ℕ | |
| 23 | 22 | a1i 11 | . . . 4 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → 3 ∈ ℕ) |
| 24 | 5nn 12352 | . . . . 5 ⊢ 5 ∈ ℕ | |
| 25 | 24 | a1i 11 | . . . 4 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → 5 ∈ ℕ) |
| 26 | 5lt8 12460 | . . . . . 6 ⊢ 5 < 8 | |
| 27 | 26, 15 | breqtrri 5170 | . . . . 5 ⊢ 5 < (2↑3) |
| 28 | 27 | a1i 11 | . . . 4 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → 5 < (2↑3)) |
| 29 | 3z 12650 | . . . . . . 7 ⊢ 3 ∈ ℤ | |
| 30 | 29 | a1i 11 | . . . . . 6 ⊢ (((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) → 3 ∈ ℤ) |
| 31 | oveq1 7438 | . . . . . . . . 9 ⊢ (𝑥 = 3 → (𝑥↑((𝑃 − 1) / 2)) = (3↑((𝑃 − 1) / 2))) | |
| 32 | 31 | oveq1d 7446 | . . . . . . . 8 ⊢ (𝑥 = 3 → ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = ((3↑((𝑃 − 1) / 2)) mod 𝑃)) |
| 33 | 32 | eqeq1d 2739 | . . . . . . 7 ⊢ (𝑥 = 3 → (((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ↔ ((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃))) |
| 34 | 33 | adantl 481 | . . . . . 6 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑥 = 3) → (((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ↔ ((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃))) |
| 35 | id 22 | . . . . . 6 ⊢ (((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) → ((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) | |
| 36 | 30, 34, 35 | rspcedvd 3624 | . . . . 5 ⊢ (((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) → ∃𝑥 ∈ ℤ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) |
| 37 | 36 | adantr 480 | . . . 4 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → ∃𝑥 ∈ ℤ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) |
| 38 | 23, 25, 21, 28, 37 | proththd 47601 | . . 3 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → 𝑃 ∈ ℙ) |
| 39 | 21, 38 | jca 511 | . 2 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → (𝑃 = ((5 · (2↑3)) + 1) ∧ 𝑃 ∈ ℙ)) |
| 40 | 2, 20, 39 | mp2an 692 | 1 ⊢ (𝑃 = ((5 · (2↑3)) + 1) ∧ 𝑃 ∈ ℙ) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3070 class class class wbr 5143 (class class class)co 7431 0cc0 11155 1c1 11156 + caddc 11158 · cmul 11160 < clt 11295 − cmin 11492 -cneg 11493 / cdiv 11920 ℕcn 12266 2c2 12321 3c3 12322 4c4 12323 5c5 12324 8c8 12327 ℤcz 12613 ;cdc 12733 mod cmo 13909 ↑cexp 14102 ℙcprime 16708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-oadd 8510 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-sup 9482 df-inf 9483 df-dju 9941 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-xnn0 12600 df-z 12614 df-dec 12734 df-uz 12879 df-q 12991 df-rp 13035 df-fz 13548 df-fzo 13695 df-fl 13832 df-mod 13910 df-seq 14043 df-exp 14103 df-hash 14370 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-dvds 16291 df-gcd 16532 df-prm 16709 df-odz 16802 df-phi 16803 df-pc 16875 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |