Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  41prothprm Structured version   Visualization version   GIF version

Theorem 41prothprm 45071
Description: 41 is a Proth prime. (Contributed by AV, 5-Jul-2020.)
Hypothesis
Ref Expression
41prothprm.p 𝑃 = 41
Assertion
Ref Expression
41prothprm (𝑃 = ((5 · (2↑3)) + 1) ∧ 𝑃 ∈ ℙ)

Proof of Theorem 41prothprm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 41prothprm.p . . 3 𝑃 = 41
2141prothprmlem2 45070 . 2 ((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)
3 dfdec10 12440 . . 3 41 = ((10 · 4) + 1)
4 4t2e8 12141 . . . . . . . 8 (4 · 2) = 8
5 4cn 12058 . . . . . . . . 9 4 ∈ ℂ
6 2cn 12048 . . . . . . . . 9 2 ∈ ℂ
75, 6mulcomi 10983 . . . . . . . 8 (4 · 2) = (2 · 4)
84, 7eqtr3i 2768 . . . . . . 7 8 = (2 · 4)
98oveq2i 7286 . . . . . 6 (5 · 8) = (5 · (2 · 4))
10 5cn 12061 . . . . . . 7 5 ∈ ℂ
1110, 6, 5mulassi 10986 . . . . . 6 ((5 · 2) · 4) = (5 · (2 · 4))
12 5t2e10 12537 . . . . . . 7 (5 · 2) = 10
1312oveq1i 7285 . . . . . 6 ((5 · 2) · 4) = (10 · 4)
149, 11, 133eqtr2i 2772 . . . . 5 (5 · 8) = (10 · 4)
15 cu2 13917 . . . . . . 7 (2↑3) = 8
1615eqcomi 2747 . . . . . 6 8 = (2↑3)
1716oveq2i 7286 . . . . 5 (5 · 8) = (5 · (2↑3))
1814, 17eqtr3i 2768 . . . 4 (10 · 4) = (5 · (2↑3))
1918oveq1i 7285 . . 3 ((10 · 4) + 1) = ((5 · (2↑3)) + 1)
201, 3, 193eqtri 2770 . 2 𝑃 = ((5 · (2↑3)) + 1)
21 simpr 485 . . 3 ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → 𝑃 = ((5 · (2↑3)) + 1))
22 3nn 12052 . . . . 5 3 ∈ ℕ
2322a1i 11 . . . 4 ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → 3 ∈ ℕ)
24 5nn 12059 . . . . 5 5 ∈ ℕ
2524a1i 11 . . . 4 ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → 5 ∈ ℕ)
26 5lt8 12167 . . . . . 6 5 < 8
2726, 15breqtrri 5101 . . . . 5 5 < (2↑3)
2827a1i 11 . . . 4 ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → 5 < (2↑3))
29 3z 12353 . . . . . . 7 3 ∈ ℤ
3029a1i 11 . . . . . 6 (((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) → 3 ∈ ℤ)
31 oveq1 7282 . . . . . . . . 9 (𝑥 = 3 → (𝑥↑((𝑃 − 1) / 2)) = (3↑((𝑃 − 1) / 2)))
3231oveq1d 7290 . . . . . . . 8 (𝑥 = 3 → ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = ((3↑((𝑃 − 1) / 2)) mod 𝑃))
3332eqeq1d 2740 . . . . . . 7 (𝑥 = 3 → (((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ↔ ((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)))
3433adantl 482 . . . . . 6 ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑥 = 3) → (((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ↔ ((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)))
35 id 22 . . . . . 6 (((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) → ((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃))
3630, 34, 35rspcedvd 3563 . . . . 5 (((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) → ∃𝑥 ∈ ℤ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃))
3736adantr 481 . . . 4 ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → ∃𝑥 ∈ ℤ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃))
3823, 25, 21, 28, 37proththd 45066 . . 3 ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → 𝑃 ∈ ℙ)
3921, 38jca 512 . 2 ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → (𝑃 = ((5 · (2↑3)) + 1) ∧ 𝑃 ∈ ℙ))
402, 20, 39mp2an 689 1 (𝑃 = ((5 · (2↑3)) + 1) ∧ 𝑃 ∈ ℙ)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  wcel 2106  wrex 3065   class class class wbr 5074  (class class class)co 7275  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876   < clt 11009  cmin 11205  -cneg 11206   / cdiv 11632  cn 11973  2c2 12028  3c3 12029  4c4 12030  5c5 12031  8c8 12034  cz 12319  cdc 12437   mod cmo 13589  cexp 13782  cprime 16376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-xnn0 12306  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-dvds 15964  df-gcd 16202  df-prm 16377  df-odz 16466  df-phi 16467  df-pc 16538
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator