Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 41prothprm | Structured version Visualization version GIF version |
Description: 41 is a Proth prime. (Contributed by AV, 5-Jul-2020.) |
Ref | Expression |
---|---|
41prothprm.p | ⊢ 𝑃 = ;41 |
Ref | Expression |
---|---|
41prothprm | ⊢ (𝑃 = ((5 · (2↑3)) + 1) ∧ 𝑃 ∈ ℙ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 41prothprm.p | . . 3 ⊢ 𝑃 = ;41 | |
2 | 1 | 41prothprmlem2 44503 | . 2 ⊢ ((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) |
3 | dfdec10 12140 | . . 3 ⊢ ;41 = ((;10 · 4) + 1) | |
4 | 4t2e8 11842 | . . . . . . . 8 ⊢ (4 · 2) = 8 | |
5 | 4cn 11759 | . . . . . . . . 9 ⊢ 4 ∈ ℂ | |
6 | 2cn 11749 | . . . . . . . . 9 ⊢ 2 ∈ ℂ | |
7 | 5, 6 | mulcomi 10687 | . . . . . . . 8 ⊢ (4 · 2) = (2 · 4) |
8 | 4, 7 | eqtr3i 2783 | . . . . . . 7 ⊢ 8 = (2 · 4) |
9 | 8 | oveq2i 7161 | . . . . . 6 ⊢ (5 · 8) = (5 · (2 · 4)) |
10 | 5cn 11762 | . . . . . . 7 ⊢ 5 ∈ ℂ | |
11 | 10, 6, 5 | mulassi 10690 | . . . . . 6 ⊢ ((5 · 2) · 4) = (5 · (2 · 4)) |
12 | 5t2e10 12237 | . . . . . . 7 ⊢ (5 · 2) = ;10 | |
13 | 12 | oveq1i 7160 | . . . . . 6 ⊢ ((5 · 2) · 4) = (;10 · 4) |
14 | 9, 11, 13 | 3eqtr2i 2787 | . . . . 5 ⊢ (5 · 8) = (;10 · 4) |
15 | cu2 13613 | . . . . . . 7 ⊢ (2↑3) = 8 | |
16 | 15 | eqcomi 2767 | . . . . . 6 ⊢ 8 = (2↑3) |
17 | 16 | oveq2i 7161 | . . . . 5 ⊢ (5 · 8) = (5 · (2↑3)) |
18 | 14, 17 | eqtr3i 2783 | . . . 4 ⊢ (;10 · 4) = (5 · (2↑3)) |
19 | 18 | oveq1i 7160 | . . 3 ⊢ ((;10 · 4) + 1) = ((5 · (2↑3)) + 1) |
20 | 1, 3, 19 | 3eqtri 2785 | . 2 ⊢ 𝑃 = ((5 · (2↑3)) + 1) |
21 | simpr 488 | . . 3 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → 𝑃 = ((5 · (2↑3)) + 1)) | |
22 | 3nn 11753 | . . . . 5 ⊢ 3 ∈ ℕ | |
23 | 22 | a1i 11 | . . . 4 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → 3 ∈ ℕ) |
24 | 5nn 11760 | . . . . 5 ⊢ 5 ∈ ℕ | |
25 | 24 | a1i 11 | . . . 4 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → 5 ∈ ℕ) |
26 | 5lt8 11868 | . . . . . 6 ⊢ 5 < 8 | |
27 | 26, 15 | breqtrri 5059 | . . . . 5 ⊢ 5 < (2↑3) |
28 | 27 | a1i 11 | . . . 4 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → 5 < (2↑3)) |
29 | 3z 12054 | . . . . . . 7 ⊢ 3 ∈ ℤ | |
30 | 29 | a1i 11 | . . . . . 6 ⊢ (((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) → 3 ∈ ℤ) |
31 | oveq1 7157 | . . . . . . . . 9 ⊢ (𝑥 = 3 → (𝑥↑((𝑃 − 1) / 2)) = (3↑((𝑃 − 1) / 2))) | |
32 | 31 | oveq1d 7165 | . . . . . . . 8 ⊢ (𝑥 = 3 → ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = ((3↑((𝑃 − 1) / 2)) mod 𝑃)) |
33 | 32 | eqeq1d 2760 | . . . . . . 7 ⊢ (𝑥 = 3 → (((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ↔ ((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃))) |
34 | 33 | adantl 485 | . . . . . 6 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑥 = 3) → (((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ↔ ((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃))) |
35 | id 22 | . . . . . 6 ⊢ (((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) → ((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) | |
36 | 30, 34, 35 | rspcedvd 3544 | . . . . 5 ⊢ (((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) → ∃𝑥 ∈ ℤ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) |
37 | 36 | adantr 484 | . . . 4 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → ∃𝑥 ∈ ℤ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) |
38 | 23, 25, 21, 28, 37 | proththd 44499 | . . 3 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → 𝑃 ∈ ℙ) |
39 | 21, 38 | jca 515 | . 2 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → (𝑃 = ((5 · (2↑3)) + 1) ∧ 𝑃 ∈ ℙ)) |
40 | 2, 20, 39 | mp2an 691 | 1 ⊢ (𝑃 = ((5 · (2↑3)) + 1) ∧ 𝑃 ∈ ℙ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∃wrex 3071 class class class wbr 5032 (class class class)co 7150 0cc0 10575 1c1 10576 + caddc 10578 · cmul 10580 < clt 10713 − cmin 10908 -cneg 10909 / cdiv 11335 ℕcn 11674 2c2 11729 3c3 11730 4c4 11731 5c5 11732 8c8 11735 ℤcz 12020 ;cdc 12137 mod cmo 13286 ↑cexp 13479 ℙcprime 16067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 ax-pre-sup 10653 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-2o 8113 df-oadd 8116 df-er 8299 df-map 8418 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-sup 8939 df-inf 8940 df-dju 9363 df-card 9401 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-div 11336 df-nn 11675 df-2 11737 df-3 11738 df-4 11739 df-5 11740 df-6 11741 df-7 11742 df-8 11743 df-9 11744 df-n0 11935 df-xnn0 12007 df-z 12021 df-dec 12138 df-uz 12283 df-q 12389 df-rp 12431 df-fz 12940 df-fzo 13083 df-fl 13211 df-mod 13287 df-seq 13419 df-exp 13480 df-hash 13741 df-cj 14506 df-re 14507 df-im 14508 df-sqrt 14642 df-abs 14643 df-dvds 15656 df-gcd 15894 df-prm 16068 df-odz 16157 df-phi 16158 df-pc 16229 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |