Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  41prothprm Structured version   Visualization version   GIF version

Theorem 41prothprm 44504
Description: 41 is a Proth prime. (Contributed by AV, 5-Jul-2020.)
Hypothesis
Ref Expression
41prothprm.p 𝑃 = 41
Assertion
Ref Expression
41prothprm (𝑃 = ((5 · (2↑3)) + 1) ∧ 𝑃 ∈ ℙ)

Proof of Theorem 41prothprm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 41prothprm.p . . 3 𝑃 = 41
2141prothprmlem2 44503 . 2 ((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)
3 dfdec10 12140 . . 3 41 = ((10 · 4) + 1)
4 4t2e8 11842 . . . . . . . 8 (4 · 2) = 8
5 4cn 11759 . . . . . . . . 9 4 ∈ ℂ
6 2cn 11749 . . . . . . . . 9 2 ∈ ℂ
75, 6mulcomi 10687 . . . . . . . 8 (4 · 2) = (2 · 4)
84, 7eqtr3i 2783 . . . . . . 7 8 = (2 · 4)
98oveq2i 7161 . . . . . 6 (5 · 8) = (5 · (2 · 4))
10 5cn 11762 . . . . . . 7 5 ∈ ℂ
1110, 6, 5mulassi 10690 . . . . . 6 ((5 · 2) · 4) = (5 · (2 · 4))
12 5t2e10 12237 . . . . . . 7 (5 · 2) = 10
1312oveq1i 7160 . . . . . 6 ((5 · 2) · 4) = (10 · 4)
149, 11, 133eqtr2i 2787 . . . . 5 (5 · 8) = (10 · 4)
15 cu2 13613 . . . . . . 7 (2↑3) = 8
1615eqcomi 2767 . . . . . 6 8 = (2↑3)
1716oveq2i 7161 . . . . 5 (5 · 8) = (5 · (2↑3))
1814, 17eqtr3i 2783 . . . 4 (10 · 4) = (5 · (2↑3))
1918oveq1i 7160 . . 3 ((10 · 4) + 1) = ((5 · (2↑3)) + 1)
201, 3, 193eqtri 2785 . 2 𝑃 = ((5 · (2↑3)) + 1)
21 simpr 488 . . 3 ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → 𝑃 = ((5 · (2↑3)) + 1))
22 3nn 11753 . . . . 5 3 ∈ ℕ
2322a1i 11 . . . 4 ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → 3 ∈ ℕ)
24 5nn 11760 . . . . 5 5 ∈ ℕ
2524a1i 11 . . . 4 ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → 5 ∈ ℕ)
26 5lt8 11868 . . . . . 6 5 < 8
2726, 15breqtrri 5059 . . . . 5 5 < (2↑3)
2827a1i 11 . . . 4 ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → 5 < (2↑3))
29 3z 12054 . . . . . . 7 3 ∈ ℤ
3029a1i 11 . . . . . 6 (((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) → 3 ∈ ℤ)
31 oveq1 7157 . . . . . . . . 9 (𝑥 = 3 → (𝑥↑((𝑃 − 1) / 2)) = (3↑((𝑃 − 1) / 2)))
3231oveq1d 7165 . . . . . . . 8 (𝑥 = 3 → ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = ((3↑((𝑃 − 1) / 2)) mod 𝑃))
3332eqeq1d 2760 . . . . . . 7 (𝑥 = 3 → (((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ↔ ((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)))
3433adantl 485 . . . . . 6 ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑥 = 3) → (((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ↔ ((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)))
35 id 22 . . . . . 6 (((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) → ((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃))
3630, 34, 35rspcedvd 3544 . . . . 5 (((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) → ∃𝑥 ∈ ℤ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃))
3736adantr 484 . . . 4 ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → ∃𝑥 ∈ ℤ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃))
3823, 25, 21, 28, 37proththd 44499 . . 3 ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → 𝑃 ∈ ℙ)
3921, 38jca 515 . 2 ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → (𝑃 = ((5 · (2↑3)) + 1) ∧ 𝑃 ∈ ℙ))
402, 20, 39mp2an 691 1 (𝑃 = ((5 · (2↑3)) + 1) ∧ 𝑃 ∈ ℙ)
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399   = wceq 1538  wcel 2111  wrex 3071   class class class wbr 5032  (class class class)co 7150  0cc0 10575  1c1 10576   + caddc 10578   · cmul 10580   < clt 10713  cmin 10908  -cneg 10909   / cdiv 11335  cn 11674  2c2 11729  3c3 11730  4c4 11731  5c5 11732  8c8 11735  cz 12020  cdc 12137   mod cmo 13286  cexp 13479  cprime 16067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-pre-sup 10653
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-2o 8113  df-oadd 8116  df-er 8299  df-map 8418  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-sup 8939  df-inf 8940  df-dju 9363  df-card 9401  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-nn 11675  df-2 11737  df-3 11738  df-4 11739  df-5 11740  df-6 11741  df-7 11742  df-8 11743  df-9 11744  df-n0 11935  df-xnn0 12007  df-z 12021  df-dec 12138  df-uz 12283  df-q 12389  df-rp 12431  df-fz 12940  df-fzo 13083  df-fl 13211  df-mod 13287  df-seq 13419  df-exp 13480  df-hash 13741  df-cj 14506  df-re 14507  df-im 14508  df-sqrt 14642  df-abs 14643  df-dvds 15656  df-gcd 15894  df-prm 16068  df-odz 16157  df-phi 16158  df-pc 16229
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator