| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 41prothprm | Structured version Visualization version GIF version | ||
| Description: 41 is a Proth prime. (Contributed by AV, 5-Jul-2020.) |
| Ref | Expression |
|---|---|
| 41prothprm.p | ⊢ 𝑃 = ;41 |
| Ref | Expression |
|---|---|
| 41prothprm | ⊢ (𝑃 = ((5 · (2↑3)) + 1) ∧ 𝑃 ∈ ℙ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 41prothprm.p | . . 3 ⊢ 𝑃 = ;41 | |
| 2 | 1 | 41prothprmlem2 47623 | . 2 ⊢ ((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) |
| 3 | dfdec10 12659 | . . 3 ⊢ ;41 = ((;10 · 4) + 1) | |
| 4 | 4t2e8 12356 | . . . . . . . 8 ⊢ (4 · 2) = 8 | |
| 5 | 4cn 12278 | . . . . . . . . 9 ⊢ 4 ∈ ℂ | |
| 6 | 2cn 12268 | . . . . . . . . 9 ⊢ 2 ∈ ℂ | |
| 7 | 5, 6 | mulcomi 11189 | . . . . . . . 8 ⊢ (4 · 2) = (2 · 4) |
| 8 | 4, 7 | eqtr3i 2755 | . . . . . . 7 ⊢ 8 = (2 · 4) |
| 9 | 8 | oveq2i 7401 | . . . . . 6 ⊢ (5 · 8) = (5 · (2 · 4)) |
| 10 | 5cn 12281 | . . . . . . 7 ⊢ 5 ∈ ℂ | |
| 11 | 10, 6, 5 | mulassi 11192 | . . . . . 6 ⊢ ((5 · 2) · 4) = (5 · (2 · 4)) |
| 12 | 5t2e10 12756 | . . . . . . 7 ⊢ (5 · 2) = ;10 | |
| 13 | 12 | oveq1i 7400 | . . . . . 6 ⊢ ((5 · 2) · 4) = (;10 · 4) |
| 14 | 9, 11, 13 | 3eqtr2i 2759 | . . . . 5 ⊢ (5 · 8) = (;10 · 4) |
| 15 | cu2 14172 | . . . . . . 7 ⊢ (2↑3) = 8 | |
| 16 | 15 | eqcomi 2739 | . . . . . 6 ⊢ 8 = (2↑3) |
| 17 | 16 | oveq2i 7401 | . . . . 5 ⊢ (5 · 8) = (5 · (2↑3)) |
| 18 | 14, 17 | eqtr3i 2755 | . . . 4 ⊢ (;10 · 4) = (5 · (2↑3)) |
| 19 | 18 | oveq1i 7400 | . . 3 ⊢ ((;10 · 4) + 1) = ((5 · (2↑3)) + 1) |
| 20 | 1, 3, 19 | 3eqtri 2757 | . 2 ⊢ 𝑃 = ((5 · (2↑3)) + 1) |
| 21 | simpr 484 | . . 3 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → 𝑃 = ((5 · (2↑3)) + 1)) | |
| 22 | 3nn 12272 | . . . . 5 ⊢ 3 ∈ ℕ | |
| 23 | 22 | a1i 11 | . . . 4 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → 3 ∈ ℕ) |
| 24 | 5nn 12279 | . . . . 5 ⊢ 5 ∈ ℕ | |
| 25 | 24 | a1i 11 | . . . 4 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → 5 ∈ ℕ) |
| 26 | 5lt8 12382 | . . . . . 6 ⊢ 5 < 8 | |
| 27 | 26, 15 | breqtrri 5137 | . . . . 5 ⊢ 5 < (2↑3) |
| 28 | 27 | a1i 11 | . . . 4 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → 5 < (2↑3)) |
| 29 | 3z 12573 | . . . . . . 7 ⊢ 3 ∈ ℤ | |
| 30 | 29 | a1i 11 | . . . . . 6 ⊢ (((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) → 3 ∈ ℤ) |
| 31 | oveq1 7397 | . . . . . . . . 9 ⊢ (𝑥 = 3 → (𝑥↑((𝑃 − 1) / 2)) = (3↑((𝑃 − 1) / 2))) | |
| 32 | 31 | oveq1d 7405 | . . . . . . . 8 ⊢ (𝑥 = 3 → ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = ((3↑((𝑃 − 1) / 2)) mod 𝑃)) |
| 33 | 32 | eqeq1d 2732 | . . . . . . 7 ⊢ (𝑥 = 3 → (((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ↔ ((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃))) |
| 34 | 33 | adantl 481 | . . . . . 6 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑥 = 3) → (((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ↔ ((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃))) |
| 35 | id 22 | . . . . . 6 ⊢ (((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) → ((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) | |
| 36 | 30, 34, 35 | rspcedvd 3593 | . . . . 5 ⊢ (((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) → ∃𝑥 ∈ ℤ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) |
| 37 | 36 | adantr 480 | . . . 4 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → ∃𝑥 ∈ ℤ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) |
| 38 | 23, 25, 21, 28, 37 | proththd 47619 | . . 3 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → 𝑃 ∈ ℙ) |
| 39 | 21, 38 | jca 511 | . 2 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → (𝑃 = ((5 · (2↑3)) + 1) ∧ 𝑃 ∈ ℙ)) |
| 40 | 2, 20, 39 | mp2an 692 | 1 ⊢ (𝑃 = ((5 · (2↑3)) + 1) ∧ 𝑃 ∈ ℙ) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 class class class wbr 5110 (class class class)co 7390 0cc0 11075 1c1 11076 + caddc 11078 · cmul 11080 < clt 11215 − cmin 11412 -cneg 11413 / cdiv 11842 ℕcn 12193 2c2 12248 3c3 12249 4c4 12250 5c5 12251 8c8 12254 ℤcz 12536 ;cdc 12656 mod cmo 13838 ↑cexp 14033 ℙcprime 16648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-oadd 8441 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-dju 9861 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-xnn0 12523 df-z 12537 df-dec 12657 df-uz 12801 df-q 12915 df-rp 12959 df-fz 13476 df-fzo 13623 df-fl 13761 df-mod 13839 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-dvds 16230 df-gcd 16472 df-prm 16649 df-odz 16742 df-phi 16743 df-pc 16815 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |