| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 41prothprm | Structured version Visualization version GIF version | ||
| Description: 41 is a Proth prime. (Contributed by AV, 5-Jul-2020.) |
| Ref | Expression |
|---|---|
| 41prothprm.p | ⊢ 𝑃 = ;41 |
| Ref | Expression |
|---|---|
| 41prothprm | ⊢ (𝑃 = ((5 · (2↑3)) + 1) ∧ 𝑃 ∈ ℙ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 41prothprm.p | . . 3 ⊢ 𝑃 = ;41 | |
| 2 | 1 | 41prothprmlem2 47655 | . 2 ⊢ ((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) |
| 3 | dfdec10 12591 | . . 3 ⊢ ;41 = ((;10 · 4) + 1) | |
| 4 | 4t2e8 12288 | . . . . . . . 8 ⊢ (4 · 2) = 8 | |
| 5 | 4cn 12210 | . . . . . . . . 9 ⊢ 4 ∈ ℂ | |
| 6 | 2cn 12200 | . . . . . . . . 9 ⊢ 2 ∈ ℂ | |
| 7 | 5, 6 | mulcomi 11120 | . . . . . . . 8 ⊢ (4 · 2) = (2 · 4) |
| 8 | 4, 7 | eqtr3i 2756 | . . . . . . 7 ⊢ 8 = (2 · 4) |
| 9 | 8 | oveq2i 7357 | . . . . . 6 ⊢ (5 · 8) = (5 · (2 · 4)) |
| 10 | 5cn 12213 | . . . . . . 7 ⊢ 5 ∈ ℂ | |
| 11 | 10, 6, 5 | mulassi 11123 | . . . . . 6 ⊢ ((5 · 2) · 4) = (5 · (2 · 4)) |
| 12 | 5t2e10 12688 | . . . . . . 7 ⊢ (5 · 2) = ;10 | |
| 13 | 12 | oveq1i 7356 | . . . . . 6 ⊢ ((5 · 2) · 4) = (;10 · 4) |
| 14 | 9, 11, 13 | 3eqtr2i 2760 | . . . . 5 ⊢ (5 · 8) = (;10 · 4) |
| 15 | cu2 14107 | . . . . . . 7 ⊢ (2↑3) = 8 | |
| 16 | 15 | eqcomi 2740 | . . . . . 6 ⊢ 8 = (2↑3) |
| 17 | 16 | oveq2i 7357 | . . . . 5 ⊢ (5 · 8) = (5 · (2↑3)) |
| 18 | 14, 17 | eqtr3i 2756 | . . . 4 ⊢ (;10 · 4) = (5 · (2↑3)) |
| 19 | 18 | oveq1i 7356 | . . 3 ⊢ ((;10 · 4) + 1) = ((5 · (2↑3)) + 1) |
| 20 | 1, 3, 19 | 3eqtri 2758 | . 2 ⊢ 𝑃 = ((5 · (2↑3)) + 1) |
| 21 | simpr 484 | . . 3 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → 𝑃 = ((5 · (2↑3)) + 1)) | |
| 22 | 3nn 12204 | . . . . 5 ⊢ 3 ∈ ℕ | |
| 23 | 22 | a1i 11 | . . . 4 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → 3 ∈ ℕ) |
| 24 | 5nn 12211 | . . . . 5 ⊢ 5 ∈ ℕ | |
| 25 | 24 | a1i 11 | . . . 4 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → 5 ∈ ℕ) |
| 26 | 5lt8 12314 | . . . . . 6 ⊢ 5 < 8 | |
| 27 | 26, 15 | breqtrri 5118 | . . . . 5 ⊢ 5 < (2↑3) |
| 28 | 27 | a1i 11 | . . . 4 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → 5 < (2↑3)) |
| 29 | 3z 12505 | . . . . . . 7 ⊢ 3 ∈ ℤ | |
| 30 | 29 | a1i 11 | . . . . . 6 ⊢ (((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) → 3 ∈ ℤ) |
| 31 | oveq1 7353 | . . . . . . . . 9 ⊢ (𝑥 = 3 → (𝑥↑((𝑃 − 1) / 2)) = (3↑((𝑃 − 1) / 2))) | |
| 32 | 31 | oveq1d 7361 | . . . . . . . 8 ⊢ (𝑥 = 3 → ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = ((3↑((𝑃 − 1) / 2)) mod 𝑃)) |
| 33 | 32 | eqeq1d 2733 | . . . . . . 7 ⊢ (𝑥 = 3 → (((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ↔ ((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃))) |
| 34 | 33 | adantl 481 | . . . . . 6 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑥 = 3) → (((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ↔ ((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃))) |
| 35 | id 22 | . . . . . 6 ⊢ (((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) → ((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) | |
| 36 | 30, 34, 35 | rspcedvd 3579 | . . . . 5 ⊢ (((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) → ∃𝑥 ∈ ℤ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) |
| 37 | 36 | adantr 480 | . . . 4 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → ∃𝑥 ∈ ℤ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) |
| 38 | 23, 25, 21, 28, 37 | proththd 47651 | . . 3 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → 𝑃 ∈ ℙ) |
| 39 | 21, 38 | jca 511 | . 2 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → (𝑃 = ((5 · (2↑3)) + 1) ∧ 𝑃 ∈ ℙ)) |
| 40 | 2, 20, 39 | mp2an 692 | 1 ⊢ (𝑃 = ((5 · (2↑3)) + 1) ∧ 𝑃 ∈ ℙ) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 class class class wbr 5091 (class class class)co 7346 0cc0 11006 1c1 11007 + caddc 11009 · cmul 11011 < clt 11146 − cmin 11344 -cneg 11345 / cdiv 11774 ℕcn 12125 2c2 12180 3c3 12181 4c4 12182 5c5 12183 8c8 12186 ℤcz 12468 ;cdc 12588 mod cmo 13773 ↑cexp 13968 ℙcprime 16582 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-dju 9794 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-xnn0 12455 df-z 12469 df-dec 12589 df-uz 12733 df-q 12847 df-rp 12891 df-fz 13408 df-fzo 13555 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-dvds 16164 df-gcd 16406 df-prm 16583 df-odz 16676 df-phi 16677 df-pc 16749 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |