Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  41prothprm Structured version   Visualization version   GIF version

Theorem 41prothprm 47746
Description: 41 is a Proth prime. (Contributed by AV, 5-Jul-2020.)
Hypothesis
Ref Expression
41prothprm.p 𝑃 = 41
Assertion
Ref Expression
41prothprm (𝑃 = ((5 · (2↑3)) + 1) ∧ 𝑃 ∈ ℙ)

Proof of Theorem 41prothprm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 41prothprm.p . . 3 𝑃 = 41
2141prothprmlem2 47745 . 2 ((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)
3 dfdec10 12599 . . 3 41 = ((10 · 4) + 1)
4 4t2e8 12297 . . . . . . . 8 (4 · 2) = 8
5 4cn 12219 . . . . . . . . 9 4 ∈ ℂ
6 2cn 12209 . . . . . . . . 9 2 ∈ ℂ
75, 6mulcomi 11129 . . . . . . . 8 (4 · 2) = (2 · 4)
84, 7eqtr3i 2758 . . . . . . 7 8 = (2 · 4)
98oveq2i 7365 . . . . . 6 (5 · 8) = (5 · (2 · 4))
10 5cn 12222 . . . . . . 7 5 ∈ ℂ
1110, 6, 5mulassi 11132 . . . . . 6 ((5 · 2) · 4) = (5 · (2 · 4))
12 5t2e10 12696 . . . . . . 7 (5 · 2) = 10
1312oveq1i 7364 . . . . . 6 ((5 · 2) · 4) = (10 · 4)
149, 11, 133eqtr2i 2762 . . . . 5 (5 · 8) = (10 · 4)
15 cu2 14111 . . . . . . 7 (2↑3) = 8
1615eqcomi 2742 . . . . . 6 8 = (2↑3)
1716oveq2i 7365 . . . . 5 (5 · 8) = (5 · (2↑3))
1814, 17eqtr3i 2758 . . . 4 (10 · 4) = (5 · (2↑3))
1918oveq1i 7364 . . 3 ((10 · 4) + 1) = ((5 · (2↑3)) + 1)
201, 3, 193eqtri 2760 . 2 𝑃 = ((5 · (2↑3)) + 1)
21 simpr 484 . . 3 ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → 𝑃 = ((5 · (2↑3)) + 1))
22 3nn 12213 . . . . 5 3 ∈ ℕ
2322a1i 11 . . . 4 ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → 3 ∈ ℕ)
24 5nn 12220 . . . . 5 5 ∈ ℕ
2524a1i 11 . . . 4 ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → 5 ∈ ℕ)
26 5lt8 12323 . . . . . 6 5 < 8
2726, 15breqtrri 5122 . . . . 5 5 < (2↑3)
2827a1i 11 . . . 4 ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → 5 < (2↑3))
29 3z 12513 . . . . . . 7 3 ∈ ℤ
3029a1i 11 . . . . . 6 (((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) → 3 ∈ ℤ)
31 oveq1 7361 . . . . . . . . 9 (𝑥 = 3 → (𝑥↑((𝑃 − 1) / 2)) = (3↑((𝑃 − 1) / 2)))
3231oveq1d 7369 . . . . . . . 8 (𝑥 = 3 → ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = ((3↑((𝑃 − 1) / 2)) mod 𝑃))
3332eqeq1d 2735 . . . . . . 7 (𝑥 = 3 → (((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ↔ ((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)))
3433adantl 481 . . . . . 6 ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑥 = 3) → (((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ↔ ((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)))
35 id 22 . . . . . 6 (((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) → ((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃))
3630, 34, 35rspcedvd 3575 . . . . 5 (((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) → ∃𝑥 ∈ ℤ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃))
3736adantr 480 . . . 4 ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → ∃𝑥 ∈ ℤ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃))
3823, 25, 21, 28, 37proththd 47741 . . 3 ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → 𝑃 ∈ ℙ)
3921, 38jca 511 . 2 ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → (𝑃 = ((5 · (2↑3)) + 1) ∧ 𝑃 ∈ ℙ))
402, 20, 39mp2an 692 1 (𝑃 = ((5 · (2↑3)) + 1) ∧ 𝑃 ∈ ℙ)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2113  wrex 3057   class class class wbr 5095  (class class class)co 7354  0cc0 11015  1c1 11016   + caddc 11018   · cmul 11020   < clt 11155  cmin 11353  -cneg 11354   / cdiv 11783  cn 12134  2c2 12189  3c3 12190  4c4 12191  5c5 12192  8c8 12195  cz 12477  cdc 12596   mod cmo 13777  cexp 13972  cprime 16586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-pre-sup 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-1st 7929  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-2o 8394  df-oadd 8397  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-sup 9335  df-inf 9336  df-dju 9803  df-card 9841  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-nn 12135  df-2 12197  df-3 12198  df-4 12199  df-5 12200  df-6 12201  df-7 12202  df-8 12203  df-9 12204  df-n0 12391  df-xnn0 12464  df-z 12478  df-dec 12597  df-uz 12741  df-q 12851  df-rp 12895  df-fz 13412  df-fzo 13559  df-fl 13700  df-mod 13778  df-seq 13913  df-exp 13973  df-hash 14242  df-cj 15010  df-re 15011  df-im 15012  df-sqrt 15146  df-abs 15147  df-dvds 16168  df-gcd 16410  df-prm 16587  df-odz 16680  df-phi 16681  df-pc 16753
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator