| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 41prothprm | Structured version Visualization version GIF version | ||
| Description: 41 is a Proth prime. (Contributed by AV, 5-Jul-2020.) |
| Ref | Expression |
|---|---|
| 41prothprm.p | ⊢ 𝑃 = ;41 |
| Ref | Expression |
|---|---|
| 41prothprm | ⊢ (𝑃 = ((5 · (2↑3)) + 1) ∧ 𝑃 ∈ ℙ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 41prothprm.p | . . 3 ⊢ 𝑃 = ;41 | |
| 2 | 1 | 41prothprmlem2 47745 | . 2 ⊢ ((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) |
| 3 | dfdec10 12599 | . . 3 ⊢ ;41 = ((;10 · 4) + 1) | |
| 4 | 4t2e8 12297 | . . . . . . . 8 ⊢ (4 · 2) = 8 | |
| 5 | 4cn 12219 | . . . . . . . . 9 ⊢ 4 ∈ ℂ | |
| 6 | 2cn 12209 | . . . . . . . . 9 ⊢ 2 ∈ ℂ | |
| 7 | 5, 6 | mulcomi 11129 | . . . . . . . 8 ⊢ (4 · 2) = (2 · 4) |
| 8 | 4, 7 | eqtr3i 2758 | . . . . . . 7 ⊢ 8 = (2 · 4) |
| 9 | 8 | oveq2i 7365 | . . . . . 6 ⊢ (5 · 8) = (5 · (2 · 4)) |
| 10 | 5cn 12222 | . . . . . . 7 ⊢ 5 ∈ ℂ | |
| 11 | 10, 6, 5 | mulassi 11132 | . . . . . 6 ⊢ ((5 · 2) · 4) = (5 · (2 · 4)) |
| 12 | 5t2e10 12696 | . . . . . . 7 ⊢ (5 · 2) = ;10 | |
| 13 | 12 | oveq1i 7364 | . . . . . 6 ⊢ ((5 · 2) · 4) = (;10 · 4) |
| 14 | 9, 11, 13 | 3eqtr2i 2762 | . . . . 5 ⊢ (5 · 8) = (;10 · 4) |
| 15 | cu2 14111 | . . . . . . 7 ⊢ (2↑3) = 8 | |
| 16 | 15 | eqcomi 2742 | . . . . . 6 ⊢ 8 = (2↑3) |
| 17 | 16 | oveq2i 7365 | . . . . 5 ⊢ (5 · 8) = (5 · (2↑3)) |
| 18 | 14, 17 | eqtr3i 2758 | . . . 4 ⊢ (;10 · 4) = (5 · (2↑3)) |
| 19 | 18 | oveq1i 7364 | . . 3 ⊢ ((;10 · 4) + 1) = ((5 · (2↑3)) + 1) |
| 20 | 1, 3, 19 | 3eqtri 2760 | . 2 ⊢ 𝑃 = ((5 · (2↑3)) + 1) |
| 21 | simpr 484 | . . 3 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → 𝑃 = ((5 · (2↑3)) + 1)) | |
| 22 | 3nn 12213 | . . . . 5 ⊢ 3 ∈ ℕ | |
| 23 | 22 | a1i 11 | . . . 4 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → 3 ∈ ℕ) |
| 24 | 5nn 12220 | . . . . 5 ⊢ 5 ∈ ℕ | |
| 25 | 24 | a1i 11 | . . . 4 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → 5 ∈ ℕ) |
| 26 | 5lt8 12323 | . . . . . 6 ⊢ 5 < 8 | |
| 27 | 26, 15 | breqtrri 5122 | . . . . 5 ⊢ 5 < (2↑3) |
| 28 | 27 | a1i 11 | . . . 4 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → 5 < (2↑3)) |
| 29 | 3z 12513 | . . . . . . 7 ⊢ 3 ∈ ℤ | |
| 30 | 29 | a1i 11 | . . . . . 6 ⊢ (((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) → 3 ∈ ℤ) |
| 31 | oveq1 7361 | . . . . . . . . 9 ⊢ (𝑥 = 3 → (𝑥↑((𝑃 − 1) / 2)) = (3↑((𝑃 − 1) / 2))) | |
| 32 | 31 | oveq1d 7369 | . . . . . . . 8 ⊢ (𝑥 = 3 → ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = ((3↑((𝑃 − 1) / 2)) mod 𝑃)) |
| 33 | 32 | eqeq1d 2735 | . . . . . . 7 ⊢ (𝑥 = 3 → (((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ↔ ((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃))) |
| 34 | 33 | adantl 481 | . . . . . 6 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑥 = 3) → (((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ↔ ((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃))) |
| 35 | id 22 | . . . . . 6 ⊢ (((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) → ((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) | |
| 36 | 30, 34, 35 | rspcedvd 3575 | . . . . 5 ⊢ (((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) → ∃𝑥 ∈ ℤ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) |
| 37 | 36 | adantr 480 | . . . 4 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → ∃𝑥 ∈ ℤ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) |
| 38 | 23, 25, 21, 28, 37 | proththd 47741 | . . 3 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → 𝑃 ∈ ℙ) |
| 39 | 21, 38 | jca 511 | . 2 ⊢ ((((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ∧ 𝑃 = ((5 · (2↑3)) + 1)) → (𝑃 = ((5 · (2↑3)) + 1) ∧ 𝑃 ∈ ℙ)) |
| 40 | 2, 20, 39 | mp2an 692 | 1 ⊢ (𝑃 = ((5 · (2↑3)) + 1) ∧ 𝑃 ∈ ℙ) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 class class class wbr 5095 (class class class)co 7354 0cc0 11015 1c1 11016 + caddc 11018 · cmul 11020 < clt 11155 − cmin 11353 -cneg 11354 / cdiv 11783 ℕcn 12134 2c2 12189 3c3 12190 4c4 12191 5c5 12192 8c8 12195 ℤcz 12477 ;cdc 12596 mod cmo 13777 ↑cexp 13972 ℙcprime 16586 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-pre-sup 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-2o 8394 df-oadd 8397 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-sup 9335 df-inf 9336 df-dju 9803 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-div 11784 df-nn 12135 df-2 12197 df-3 12198 df-4 12199 df-5 12200 df-6 12201 df-7 12202 df-8 12203 df-9 12204 df-n0 12391 df-xnn0 12464 df-z 12478 df-dec 12597 df-uz 12741 df-q 12851 df-rp 12895 df-fz 13412 df-fzo 13559 df-fl 13700 df-mod 13778 df-seq 13913 df-exp 13973 df-hash 14242 df-cj 15010 df-re 15011 df-im 15012 df-sqrt 15146 df-abs 15147 df-dvds 16168 df-gcd 16410 df-prm 16587 df-odz 16680 df-phi 16681 df-pc 16753 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |