![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dec5dvds | Structured version Visualization version GIF version |
Description: Divisibility by five is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
dec5dvds.1 | ⊢ 𝐴 ∈ ℕ0 |
dec5dvds.2 | ⊢ 𝐵 ∈ ℕ |
dec5dvds.3 | ⊢ 𝐵 < 5 |
Ref | Expression |
---|---|
dec5dvds | ⊢ ¬ 5 ∥ ;𝐴𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 5nn 12303 | . 2 ⊢ 5 ∈ ℕ | |
2 | 2nn0 12494 | . . 3 ⊢ 2 ∈ ℕ0 | |
3 | dec5dvds.1 | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
4 | 2, 3 | nn0mulcli 12515 | . 2 ⊢ (2 · 𝐴) ∈ ℕ0 |
5 | dec5dvds.2 | . 2 ⊢ 𝐵 ∈ ℕ | |
6 | 5cn 12305 | . . . . . 6 ⊢ 5 ∈ ℂ | |
7 | 2cn 12292 | . . . . . 6 ⊢ 2 ∈ ℂ | |
8 | 3 | nn0cni 12489 | . . . . . 6 ⊢ 𝐴 ∈ ℂ |
9 | 6, 7, 8 | mulassi 11230 | . . . . 5 ⊢ ((5 · 2) · 𝐴) = (5 · (2 · 𝐴)) |
10 | 5t2e10 12782 | . . . . . 6 ⊢ (5 · 2) = ;10 | |
11 | 10 | oveq1i 7422 | . . . . 5 ⊢ ((5 · 2) · 𝐴) = (;10 · 𝐴) |
12 | 9, 11 | eqtr3i 2761 | . . . 4 ⊢ (5 · (2 · 𝐴)) = (;10 · 𝐴) |
13 | 12 | oveq1i 7422 | . . 3 ⊢ ((5 · (2 · 𝐴)) + 𝐵) = ((;10 · 𝐴) + 𝐵) |
14 | dfdec10 12685 | . . 3 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
15 | 13, 14 | eqtr4i 2762 | . 2 ⊢ ((5 · (2 · 𝐴)) + 𝐵) = ;𝐴𝐵 |
16 | dec5dvds.3 | . 2 ⊢ 𝐵 < 5 | |
17 | 1, 4, 5, 15, 16 | ndvdsi 16360 | 1 ⊢ ¬ 5 ∥ ;𝐴𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2105 class class class wbr 5148 (class class class)co 7412 0cc0 11114 1c1 11115 + caddc 11117 · cmul 11119 < clt 11253 ℕcn 12217 2c2 12272 5c5 12275 ℕ0cn0 12477 ;cdc 12682 ∥ cdvds 16202 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 ax-pre-sup 11192 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-sup 9441 df-inf 9442 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-z 12564 df-dec 12683 df-uz 12828 df-rp 12980 df-fz 13490 df-seq 13972 df-exp 14033 df-cj 15051 df-re 15052 df-im 15053 df-sqrt 15187 df-abs 15188 df-dvds 16203 |
This theorem is referenced by: dec5dvds2 17003 43prm 17060 83prm 17061 163prm 17063 631prm 17065 31prm 46564 |
Copyright terms: Public domain | W3C validator |