MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dec5dvds Structured version   Visualization version   GIF version

Theorem dec5dvds 16455
Description: Divisibility by five is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015.)
Hypotheses
Ref Expression
dec5dvds.1 𝐴 ∈ ℕ0
dec5dvds.2 𝐵 ∈ ℕ
dec5dvds.3 𝐵 < 5
Assertion
Ref Expression
dec5dvds ¬ 5 ∥ 𝐴𝐵

Proof of Theorem dec5dvds
StepHypRef Expression
1 5nn 11760 . 2 5 ∈ ℕ
2 2nn0 11951 . . 3 2 ∈ ℕ0
3 dec5dvds.1 . . 3 𝐴 ∈ ℕ0
42, 3nn0mulcli 11972 . 2 (2 · 𝐴) ∈ ℕ0
5 dec5dvds.2 . 2 𝐵 ∈ ℕ
6 5cn 11762 . . . . . 6 5 ∈ ℂ
7 2cn 11749 . . . . . 6 2 ∈ ℂ
83nn0cni 11946 . . . . . 6 𝐴 ∈ ℂ
96, 7, 8mulassi 10690 . . . . 5 ((5 · 2) · 𝐴) = (5 · (2 · 𝐴))
10 5t2e10 12237 . . . . . 6 (5 · 2) = 10
1110oveq1i 7160 . . . . 5 ((5 · 2) · 𝐴) = (10 · 𝐴)
129, 11eqtr3i 2783 . . . 4 (5 · (2 · 𝐴)) = (10 · 𝐴)
1312oveq1i 7160 . . 3 ((5 · (2 · 𝐴)) + 𝐵) = ((10 · 𝐴) + 𝐵)
14 dfdec10 12140 . . 3 𝐴𝐵 = ((10 · 𝐴) + 𝐵)
1513, 14eqtr4i 2784 . 2 ((5 · (2 · 𝐴)) + 𝐵) = 𝐴𝐵
16 dec5dvds.3 . 2 𝐵 < 5
171, 4, 5, 15, 16ndvdsi 15813 1 ¬ 5 ∥ 𝐴𝐵
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2111   class class class wbr 5032  (class class class)co 7150  0cc0 10575  1c1 10576   + caddc 10578   · cmul 10580   < clt 10713  cn 11674  2c2 11729  5c5 11732  0cn0 11934  cdc 12137  cdvds 15655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-pre-sup 10653
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-er 8299  df-en 8528  df-dom 8529  df-sdom 8530  df-sup 8939  df-inf 8940  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-nn 11675  df-2 11737  df-3 11738  df-4 11739  df-5 11740  df-6 11741  df-7 11742  df-8 11743  df-9 11744  df-n0 11935  df-z 12021  df-dec 12138  df-uz 12283  df-rp 12431  df-fz 12940  df-seq 13419  df-exp 13480  df-cj 14506  df-re 14507  df-im 14508  df-sqrt 14642  df-abs 14643  df-dvds 15656
This theorem is referenced by:  dec5dvds2  16456  43prm  16513  83prm  16514  163prm  16516  631prm  16518  31prm  44504
  Copyright terms: Public domain W3C validator