![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dec5dvds | Structured version Visualization version GIF version |
Description: Divisibility by five is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
dec5dvds.1 | ⊢ 𝐴 ∈ ℕ0 |
dec5dvds.2 | ⊢ 𝐵 ∈ ℕ |
dec5dvds.3 | ⊢ 𝐵 < 5 |
Ref | Expression |
---|---|
dec5dvds | ⊢ ¬ 5 ∥ ;𝐴𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 5nn 11401 | . 2 ⊢ 5 ∈ ℕ | |
2 | 2nn0 11599 | . . 3 ⊢ 2 ∈ ℕ0 | |
3 | dec5dvds.1 | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
4 | 2, 3 | nn0mulcli 11620 | . 2 ⊢ (2 · 𝐴) ∈ ℕ0 |
5 | dec5dvds.2 | . 2 ⊢ 𝐵 ∈ ℕ | |
6 | 5cn 11403 | . . . . . 6 ⊢ 5 ∈ ℂ | |
7 | 2cn 11388 | . . . . . 6 ⊢ 2 ∈ ℂ | |
8 | 3 | nn0cni 11593 | . . . . . 6 ⊢ 𝐴 ∈ ℂ |
9 | 6, 7, 8 | mulassi 10340 | . . . . 5 ⊢ ((5 · 2) · 𝐴) = (5 · (2 · 𝐴)) |
10 | 5t2e10 11885 | . . . . . 6 ⊢ (5 · 2) = ;10 | |
11 | 10 | oveq1i 6888 | . . . . 5 ⊢ ((5 · 2) · 𝐴) = (;10 · 𝐴) |
12 | 9, 11 | eqtr3i 2823 | . . . 4 ⊢ (5 · (2 · 𝐴)) = (;10 · 𝐴) |
13 | 12 | oveq1i 6888 | . . 3 ⊢ ((5 · (2 · 𝐴)) + 𝐵) = ((;10 · 𝐴) + 𝐵) |
14 | dfdec10 11786 | . . 3 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
15 | 13, 14 | eqtr4i 2824 | . 2 ⊢ ((5 · (2 · 𝐴)) + 𝐵) = ;𝐴𝐵 |
16 | dec5dvds.3 | . 2 ⊢ 𝐵 < 5 | |
17 | 1, 4, 5, 15, 16 | ndvdsi 15471 | 1 ⊢ ¬ 5 ∥ ;𝐴𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2157 class class class wbr 4843 (class class class)co 6878 0cc0 10224 1c1 10225 + caddc 10227 · cmul 10229 < clt 10363 ℕcn 11312 2c2 11368 5c5 11371 ℕ0cn0 11580 ;cdc 11783 ∥ cdvds 15319 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 ax-pre-sup 10302 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-1st 7401 df-2nd 7402 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-sup 8590 df-inf 8591 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-div 10977 df-nn 11313 df-2 11376 df-3 11377 df-4 11378 df-5 11379 df-6 11380 df-7 11381 df-8 11382 df-9 11383 df-n0 11581 df-z 11667 df-dec 11784 df-uz 11931 df-rp 12075 df-fz 12581 df-seq 13056 df-exp 13115 df-cj 14180 df-re 14181 df-im 14182 df-sqrt 14316 df-abs 14317 df-dvds 15320 |
This theorem is referenced by: dec5dvds2 16102 43prm 16156 83prm 16157 163prm 16159 631prm 16161 31prm 42290 |
Copyright terms: Public domain | W3C validator |