MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dec5dvds Structured version   Visualization version   GIF version

Theorem dec5dvds 17097
Description: Divisibility by five is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015.)
Hypotheses
Ref Expression
dec5dvds.1 𝐴 ∈ ℕ0
dec5dvds.2 𝐵 ∈ ℕ
dec5dvds.3 𝐵 < 5
Assertion
Ref Expression
dec5dvds ¬ 5 ∥ 𝐴𝐵

Proof of Theorem dec5dvds
StepHypRef Expression
1 5nn 12349 . 2 5 ∈ ℕ
2 2nn0 12540 . . 3 2 ∈ ℕ0
3 dec5dvds.1 . . 3 𝐴 ∈ ℕ0
42, 3nn0mulcli 12561 . 2 (2 · 𝐴) ∈ ℕ0
5 dec5dvds.2 . 2 𝐵 ∈ ℕ
6 5cn 12351 . . . . . 6 5 ∈ ℂ
7 2cn 12338 . . . . . 6 2 ∈ ℂ
83nn0cni 12535 . . . . . 6 𝐴 ∈ ℂ
96, 7, 8mulassi 11269 . . . . 5 ((5 · 2) · 𝐴) = (5 · (2 · 𝐴))
10 5t2e10 12830 . . . . . 6 (5 · 2) = 10
1110oveq1i 7440 . . . . 5 ((5 · 2) · 𝐴) = (10 · 𝐴)
129, 11eqtr3i 2764 . . . 4 (5 · (2 · 𝐴)) = (10 · 𝐴)
1312oveq1i 7440 . . 3 ((5 · (2 · 𝐴)) + 𝐵) = ((10 · 𝐴) + 𝐵)
14 dfdec10 12733 . . 3 𝐴𝐵 = ((10 · 𝐴) + 𝐵)
1513, 14eqtr4i 2765 . 2 ((5 · (2 · 𝐴)) + 𝐵) = 𝐴𝐵
16 dec5dvds.3 . 2 𝐵 < 5
171, 4, 5, 15, 16ndvdsi 16445 1 ¬ 5 ∥ 𝐴𝐵
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2105   class class class wbr 5147  (class class class)co 7430  0cc0 11152  1c1 11153   + caddc 11155   · cmul 11157   < clt 11292  cn 12263  2c2 12318  5c5 12321  0cn0 12523  cdc 12730  cdvds 16286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-sup 9479  df-inf 9480  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-rp 13032  df-fz 13544  df-seq 14039  df-exp 14099  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-dvds 16287
This theorem is referenced by:  dec5dvds2  17098  43prm  17155  83prm  17156  163prm  17158  631prm  17160  31prm  47521
  Copyright terms: Public domain W3C validator