| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dec5dvds | Structured version Visualization version GIF version | ||
| Description: Divisibility by five is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| dec5dvds.1 | ⊢ 𝐴 ∈ ℕ0 |
| dec5dvds.2 | ⊢ 𝐵 ∈ ℕ |
| dec5dvds.3 | ⊢ 𝐵 < 5 |
| Ref | Expression |
|---|---|
| dec5dvds | ⊢ ¬ 5 ∥ ;𝐴𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 5nn 12218 | . 2 ⊢ 5 ∈ ℕ | |
| 2 | 2nn0 12405 | . . 3 ⊢ 2 ∈ ℕ0 | |
| 3 | dec5dvds.1 | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
| 4 | 2, 3 | nn0mulcli 12426 | . 2 ⊢ (2 · 𝐴) ∈ ℕ0 |
| 5 | dec5dvds.2 | . 2 ⊢ 𝐵 ∈ ℕ | |
| 6 | 5cn 12220 | . . . . . 6 ⊢ 5 ∈ ℂ | |
| 7 | 2cn 12207 | . . . . . 6 ⊢ 2 ∈ ℂ | |
| 8 | 3 | nn0cni 12400 | . . . . . 6 ⊢ 𝐴 ∈ ℂ |
| 9 | 6, 7, 8 | mulassi 11130 | . . . . 5 ⊢ ((5 · 2) · 𝐴) = (5 · (2 · 𝐴)) |
| 10 | 5t2e10 12694 | . . . . . 6 ⊢ (5 · 2) = ;10 | |
| 11 | 10 | oveq1i 7362 | . . . . 5 ⊢ ((5 · 2) · 𝐴) = (;10 · 𝐴) |
| 12 | 9, 11 | eqtr3i 2758 | . . . 4 ⊢ (5 · (2 · 𝐴)) = (;10 · 𝐴) |
| 13 | 12 | oveq1i 7362 | . . 3 ⊢ ((5 · (2 · 𝐴)) + 𝐵) = ((;10 · 𝐴) + 𝐵) |
| 14 | dfdec10 12597 | . . 3 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
| 15 | 13, 14 | eqtr4i 2759 | . 2 ⊢ ((5 · (2 · 𝐴)) + 𝐵) = ;𝐴𝐵 |
| 16 | dec5dvds.3 | . 2 ⊢ 𝐵 < 5 | |
| 17 | 1, 4, 5, 15, 16 | ndvdsi 16325 | 1 ⊢ ¬ 5 ∥ ;𝐴𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2113 class class class wbr 5093 (class class class)co 7352 0cc0 11013 1c1 11014 + caddc 11016 · cmul 11018 < clt 11153 ℕcn 12132 2c2 12187 5c5 12190 ℕ0cn0 12388 ;cdc 12594 ∥ cdvds 16165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-sup 9333 df-inf 9334 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-uz 12739 df-rp 12893 df-fz 13410 df-seq 13911 df-exp 13971 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-dvds 16166 |
| This theorem is referenced by: dec5dvds2 16979 43prm 17035 83prm 17036 163prm 17038 631prm 17040 31prm 47721 |
| Copyright terms: Public domain | W3C validator |