| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sn-1ticom | Structured version Visualization version GIF version | ||
| Description: Lemma for sn-mullid 42417 and sn-it1ei 42418. (Contributed by SN, 27-May-2024.) |
| Ref | Expression |
|---|---|
| sn-1ticom | ⊢ (1 · i) = (i · 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn 11103 | . . . . 5 ⊢ i ∈ ℂ | |
| 2 | 1, 1 | mulcli 11157 | . . . 4 ⊢ (i · i) ∈ ℂ |
| 3 | 2, 2, 1 | mulassi 11161 | . . 3 ⊢ (((i · i) · (i · i)) · i) = ((i · i) · ((i · i) · i)) |
| 4 | 1, 2 | mulcli 11157 | . . . . 5 ⊢ (i · (i · i)) ∈ ℂ |
| 5 | 1, 1, 4 | mulassi 11161 | . . . 4 ⊢ ((i · i) · (i · (i · i))) = (i · (i · (i · (i · i)))) |
| 6 | 1, 1, 1 | mulassi 11161 | . . . . 5 ⊢ ((i · i) · i) = (i · (i · i)) |
| 7 | 6 | oveq2i 7380 | . . . 4 ⊢ ((i · i) · ((i · i) · i)) = ((i · i) · (i · (i · i))) |
| 8 | 1, 1, 2 | mulassi 11161 | . . . . 5 ⊢ ((i · i) · (i · i)) = (i · (i · (i · i))) |
| 9 | 8 | oveq2i 7380 | . . . 4 ⊢ (i · ((i · i) · (i · i))) = (i · (i · (i · (i · i)))) |
| 10 | 5, 7, 9 | 3eqtr4i 2762 | . . 3 ⊢ ((i · i) · ((i · i) · i)) = (i · ((i · i) · (i · i))) |
| 11 | 3, 10 | eqtri 2752 | . 2 ⊢ (((i · i) · (i · i)) · i) = (i · ((i · i) · (i · i))) |
| 12 | rei4 42405 | . . 3 ⊢ ((i · i) · (i · i)) = 1 | |
| 13 | 12 | oveq1i 7379 | . 2 ⊢ (((i · i) · (i · i)) · i) = (1 · i) |
| 14 | 12 | oveq2i 7380 | . 2 ⊢ (i · ((i · i) · (i · i))) = (i · 1) |
| 15 | 11, 13, 14 | 3eqtr3i 2760 | 1 ⊢ (1 · i) = (i · 1) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7369 1c1 11045 ici 11046 · cmul 11049 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-ltxr 11189 df-2 12225 df-3 12226 df-resub 42347 |
| This theorem is referenced by: sn-mullid 42417 sn-it1ei 42418 sn-retire 42470 |
| Copyright terms: Public domain | W3C validator |