| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sn-1ticom | Structured version Visualization version GIF version | ||
| Description: Lemma for sn-mullid 42419 and sn-it1ei 42420. (Contributed by SN, 27-May-2024.) |
| Ref | Expression |
|---|---|
| sn-1ticom | ⊢ (1 · i) = (i · 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn 11068 | . . . . 5 ⊢ i ∈ ℂ | |
| 2 | 1, 1 | mulcli 11122 | . . . 4 ⊢ (i · i) ∈ ℂ |
| 3 | 2, 2, 1 | mulassi 11126 | . . 3 ⊢ (((i · i) · (i · i)) · i) = ((i · i) · ((i · i) · i)) |
| 4 | 1, 2 | mulcli 11122 | . . . . 5 ⊢ (i · (i · i)) ∈ ℂ |
| 5 | 1, 1, 4 | mulassi 11126 | . . . 4 ⊢ ((i · i) · (i · (i · i))) = (i · (i · (i · (i · i)))) |
| 6 | 1, 1, 1 | mulassi 11126 | . . . . 5 ⊢ ((i · i) · i) = (i · (i · i)) |
| 7 | 6 | oveq2i 7360 | . . . 4 ⊢ ((i · i) · ((i · i) · i)) = ((i · i) · (i · (i · i))) |
| 8 | 1, 1, 2 | mulassi 11126 | . . . . 5 ⊢ ((i · i) · (i · i)) = (i · (i · (i · i))) |
| 9 | 8 | oveq2i 7360 | . . . 4 ⊢ (i · ((i · i) · (i · i))) = (i · (i · (i · (i · i)))) |
| 10 | 5, 7, 9 | 3eqtr4i 2762 | . . 3 ⊢ ((i · i) · ((i · i) · i)) = (i · ((i · i) · (i · i))) |
| 11 | 3, 10 | eqtri 2752 | . 2 ⊢ (((i · i) · (i · i)) · i) = (i · ((i · i) · (i · i))) |
| 12 | rei4 42407 | . . 3 ⊢ ((i · i) · (i · i)) = 1 | |
| 13 | 12 | oveq1i 7359 | . 2 ⊢ (((i · i) · (i · i)) · i) = (1 · i) |
| 14 | 12 | oveq2i 7360 | . 2 ⊢ (i · ((i · i) · (i · i))) = (i · 1) |
| 15 | 11, 13, 14 | 3eqtr3i 2760 | 1 ⊢ (1 · i) = (i · 1) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7349 1c1 11010 ici 11011 · cmul 11014 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-ltxr 11154 df-2 12191 df-3 12192 df-resub 42349 |
| This theorem is referenced by: sn-mullid 42419 sn-it1ei 42420 sn-retire 42472 |
| Copyright terms: Public domain | W3C validator |