Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ang180lem3 Structured version   Visualization version   GIF version

Theorem ang180lem3 25496
 Description: Lemma for ang180 25499. Since ang180lem1 25494 shows that 𝑁 is an integer and ang180lem2 25495 shows that 𝑁 is strictly between -2 and 1, it follows that 𝑁 ∈ {-1, 0}, and these two cases correspond to the two possible values for 𝑇. (Contributed by Mario Carneiro, 23-Sep-2014.)
Hypotheses
Ref Expression
ang.1 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
ang180lem1.2 𝑇 = (((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴))
ang180lem1.3 𝑁 = (((𝑇 / i) / (2 · π)) − (1 / 2))
Assertion
Ref Expression
ang180lem3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑇 ∈ {-(i · π), (i · π)})
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝑇(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem ang180lem3
StepHypRef Expression
1 2cn 11749 . . . . . . . . . 10 2 ∈ ℂ
2 picn 25151 . . . . . . . . . 10 π ∈ ℂ
31, 2mulcli 10686 . . . . . . . . 9 (2 · π) ∈ ℂ
4 2ne0 11778 . . . . . . . . 9 2 ≠ 0
53, 1, 4divreci 11423 . . . . . . . 8 ((2 · π) / 2) = ((2 · π) · (1 / 2))
62, 1, 4divcan3i 11424 . . . . . . . 8 ((2 · π) / 2) = π
75, 6eqtr3i 2783 . . . . . . 7 ((2 · π) · (1 / 2)) = π
8 ang180lem1.3 . . . . . . . . . 10 𝑁 = (((𝑇 / i) / (2 · π)) − (1 / 2))
9 ang.1 . . . . . . . . . . . . . . . 16 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
10 ang180lem1.2 . . . . . . . . . . . . . . . 16 𝑇 = (((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴))
119, 10, 8ang180lem2 25495 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-2 < 𝑁𝑁 < 1))
1211simprd 499 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑁 < 1)
13 1e0p1 12179 . . . . . . . . . . . . . 14 1 = (0 + 1)
1412, 13breqtrdi 5073 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑁 < (0 + 1))
159, 10, 8ang180lem1 25494 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑁 ∈ ℤ ∧ (𝑇 / i) ∈ ℝ))
1615simpld 498 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑁 ∈ ℤ)
17 0z 12031 . . . . . . . . . . . . . 14 0 ∈ ℤ
18 zleltp1 12072 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑁 ≤ 0 ↔ 𝑁 < (0 + 1)))
1916, 17, 18sylancl 589 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑁 ≤ 0 ↔ 𝑁 < (0 + 1)))
2014, 19mpbird 260 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑁 ≤ 0)
2120adantr 484 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → 𝑁 ≤ 0)
22 zlem1lt 12073 . . . . . . . . . . . . . 14 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ≤ 𝑁 ↔ (0 − 1) < 𝑁))
2317, 16, 22sylancr 590 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (0 ≤ 𝑁 ↔ (0 − 1) < 𝑁))
24 df-neg 10911 . . . . . . . . . . . . . 14 -1 = (0 − 1)
2524breq1i 5039 . . . . . . . . . . . . 13 (-1 < 𝑁 ↔ (0 − 1) < 𝑁)
2623, 25bitr4di 292 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (0 ≤ 𝑁 ↔ -1 < 𝑁))
2726biimpar 481 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → 0 ≤ 𝑁)
2816zred 12126 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑁 ∈ ℝ)
2928adantr 484 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → 𝑁 ∈ ℝ)
30 0re 10681 . . . . . . . . . . . 12 0 ∈ ℝ
31 letri3 10764 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 0 ∈ ℝ) → (𝑁 = 0 ↔ (𝑁 ≤ 0 ∧ 0 ≤ 𝑁)))
3229, 30, 31sylancl 589 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → (𝑁 = 0 ↔ (𝑁 ≤ 0 ∧ 0 ≤ 𝑁)))
3321, 27, 32mpbir2and 712 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → 𝑁 = 0)
348, 33syl5eqr 2807 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → (((𝑇 / i) / (2 · π)) − (1 / 2)) = 0)
35 ax-1cn 10633 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℂ
36 simp1 1133 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝐴 ∈ ℂ)
37 subcl 10923 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 − 𝐴) ∈ ℂ)
3835, 36, 37sylancr 590 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 − 𝐴) ∈ ℂ)
39 simp3 1135 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝐴 ≠ 1)
4039necomd 3006 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 1 ≠ 𝐴)
41 subeq0 10950 . . . . . . . . . . . . . . . . . . . . 21 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 − 𝐴) = 0 ↔ 1 = 𝐴))
4235, 36, 41sylancr 590 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((1 − 𝐴) = 0 ↔ 1 = 𝐴))
4342necon3bid 2995 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((1 − 𝐴) ≠ 0 ↔ 1 ≠ 𝐴))
4440, 43mpbird 260 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 − 𝐴) ≠ 0)
4538, 44reccld 11447 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 / (1 − 𝐴)) ∈ ℂ)
4638, 44recne0d 11448 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 / (1 − 𝐴)) ≠ 0)
4745, 46logcld 25261 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (log‘(1 / (1 − 𝐴))) ∈ ℂ)
48 subcl 10923 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 − 1) ∈ ℂ)
4936, 35, 48sylancl 589 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝐴 − 1) ∈ ℂ)
50 simp2 1134 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝐴 ≠ 0)
5149, 36, 50divcld 11454 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) / 𝐴) ∈ ℂ)
52 subeq0 10950 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 − 1) = 0 ↔ 𝐴 = 1))
5336, 35, 52sylancl 589 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) = 0 ↔ 𝐴 = 1))
5453necon3bid 2995 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) ≠ 0 ↔ 𝐴 ≠ 1))
5539, 54mpbird 260 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝐴 − 1) ≠ 0)
5649, 36, 55, 50divne0d 11470 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) / 𝐴) ≠ 0)
5751, 56logcld 25261 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (log‘((𝐴 − 1) / 𝐴)) ∈ ℂ)
5847, 57addcld 10698 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) ∈ ℂ)
59 logcl 25259 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ)
60593adant3 1129 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (log‘𝐴) ∈ ℂ)
6158, 60addcld 10698 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴)) ∈ ℂ)
6210, 61eqeltrid 2856 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑇 ∈ ℂ)
63 ax-icn 10634 . . . . . . . . . . . . . 14 i ∈ ℂ
6463a1i 11 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → i ∈ ℂ)
65 ine0 11113 . . . . . . . . . . . . . 14 i ≠ 0
6665a1i 11 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → i ≠ 0)
6762, 64, 66divcld 11454 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑇 / i) ∈ ℂ)
683a1i 11 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (2 · π) ∈ ℂ)
69 pire 25150 . . . . . . . . . . . . . . 15 π ∈ ℝ
70 pipos 25152 . . . . . . . . . . . . . . 15 0 < π
7169, 70gt0ne0ii 11214 . . . . . . . . . . . . . 14 π ≠ 0
721, 2, 4, 71mulne0i 11321 . . . . . . . . . . . . 13 (2 · π) ≠ 0
7372a1i 11 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (2 · π) ≠ 0)
7467, 68, 73divcld 11454 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 / i) / (2 · π)) ∈ ℂ)
7574adantr 484 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → ((𝑇 / i) / (2 · π)) ∈ ℂ)
76 halfcn 11889 . . . . . . . . . 10 (1 / 2) ∈ ℂ
77 subeq0 10950 . . . . . . . . . 10 ((((𝑇 / i) / (2 · π)) ∈ ℂ ∧ (1 / 2) ∈ ℂ) → ((((𝑇 / i) / (2 · π)) − (1 / 2)) = 0 ↔ ((𝑇 / i) / (2 · π)) = (1 / 2)))
7875, 76, 77sylancl 589 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → ((((𝑇 / i) / (2 · π)) − (1 / 2)) = 0 ↔ ((𝑇 / i) / (2 · π)) = (1 / 2)))
7934, 78mpbid 235 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → ((𝑇 / i) / (2 · π)) = (1 / 2))
8067adantr 484 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → (𝑇 / i) ∈ ℂ)
813a1i 11 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → (2 · π) ∈ ℂ)
8276a1i 11 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → (1 / 2) ∈ ℂ)
8372a1i 11 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → (2 · π) ≠ 0)
8480, 81, 82, 83divmuld 11476 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → (((𝑇 / i) / (2 · π)) = (1 / 2) ↔ ((2 · π) · (1 / 2)) = (𝑇 / i)))
8579, 84mpbid 235 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → ((2 · π) · (1 / 2)) = (𝑇 / i))
867, 85syl5reqr 2808 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → (𝑇 / i) = π)
8762adantr 484 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → 𝑇 ∈ ℂ)
8863a1i 11 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → i ∈ ℂ)
892a1i 11 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → π ∈ ℂ)
9065a1i 11 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → i ≠ 0)
9187, 88, 89, 90divmuld 11476 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → ((𝑇 / i) = π ↔ (i · π) = 𝑇))
9286, 91mpbid 235 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → (i · π) = 𝑇)
9392eqcomd 2764 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → 𝑇 = (i · π))
9493olcd 871 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → (𝑇 = -(i · π) ∨ 𝑇 = (i · π)))
952, 63mulneg1i 11124 . . . . . . 7 (-π · i) = -(π · i)
962, 63mulcomi 10687 . . . . . . . 8 (π · i) = (i · π)
9796negeqi 10917 . . . . . . 7 -(π · i) = -(i · π)
9895, 97eqtri 2781 . . . . . 6 (-π · i) = -(i · π)
9976, 3mulneg1i 11124 . . . . . . . . . 10 (-(1 / 2) · (2 · π)) = -((1 / 2) · (2 · π))
10035, 1, 4divcan1i 11422 . . . . . . . . . . . . 13 ((1 / 2) · 2) = 1
101100oveq1i 7160 . . . . . . . . . . . 12 (((1 / 2) · 2) · π) = (1 · π)
10276, 1, 2mulassi 10690 . . . . . . . . . . . 12 (((1 / 2) · 2) · π) = ((1 / 2) · (2 · π))
1032mulid2i 10684 . . . . . . . . . . . 12 (1 · π) = π
104101, 102, 1033eqtr3i 2789 . . . . . . . . . . 11 ((1 / 2) · (2 · π)) = π
105104negeqi 10917 . . . . . . . . . 10 -((1 / 2) · (2 · π)) = -π
10699, 105eqtri 2781 . . . . . . . . 9 (-(1 / 2) · (2 · π)) = -π
10735, 76negsubdii 11009 . . . . . . . . . . . . 13 -(1 − (1 / 2)) = (-1 + (1 / 2))
108 1mhlfehlf 11893 . . . . . . . . . . . . . 14 (1 − (1 / 2)) = (1 / 2)
109108negeqi 10917 . . . . . . . . . . . . 13 -(1 − (1 / 2)) = -(1 / 2)
110107, 109eqtr3i 2783 . . . . . . . . . . . 12 (-1 + (1 / 2)) = -(1 / 2)
111 simpr 488 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → -1 = 𝑁)
112111, 8eqtrdi 2809 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → -1 = (((𝑇 / i) / (2 · π)) − (1 / 2)))
113112oveq1d 7165 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → (-1 + (1 / 2)) = ((((𝑇 / i) / (2 · π)) − (1 / 2)) + (1 / 2)))
114110, 113syl5eqr 2807 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → -(1 / 2) = ((((𝑇 / i) / (2 · π)) − (1 / 2)) + (1 / 2)))
115 npcan 10933 . . . . . . . . . . . . 13 ((((𝑇 / i) / (2 · π)) ∈ ℂ ∧ (1 / 2) ∈ ℂ) → ((((𝑇 / i) / (2 · π)) − (1 / 2)) + (1 / 2)) = ((𝑇 / i) / (2 · π)))
11674, 76, 115sylancl 589 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((((𝑇 / i) / (2 · π)) − (1 / 2)) + (1 / 2)) = ((𝑇 / i) / (2 · π)))
117116adantr 484 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → ((((𝑇 / i) / (2 · π)) − (1 / 2)) + (1 / 2)) = ((𝑇 / i) / (2 · π)))
118114, 117eqtrd 2793 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → -(1 / 2) = ((𝑇 / i) / (2 · π)))
119118oveq1d 7165 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → (-(1 / 2) · (2 · π)) = (((𝑇 / i) / (2 · π)) · (2 · π)))
120106, 119syl5eqr 2807 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → -π = (((𝑇 / i) / (2 · π)) · (2 · π)))
12167, 68, 73divcan1d 11455 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((𝑇 / i) / (2 · π)) · (2 · π)) = (𝑇 / i))
122121adantr 484 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → (((𝑇 / i) / (2 · π)) · (2 · π)) = (𝑇 / i))
123120, 122eqtrd 2793 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → -π = (𝑇 / i))
124123oveq1d 7165 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → (-π · i) = ((𝑇 / i) · i))
12598, 124syl5eqr 2807 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → -(i · π) = ((𝑇 / i) · i))
12662, 64, 66divcan1d 11455 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 / i) · i) = 𝑇)
127126adantr 484 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → ((𝑇 / i) · i) = 𝑇)
128125, 127eqtr2d 2794 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → 𝑇 = -(i · π))
129128orcd 870 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → (𝑇 = -(i · π) ∨ 𝑇 = (i · π)))
130 df-2 11737 . . . . . . . 8 2 = (1 + 1)
131130negeqi 10917 . . . . . . 7 -2 = -(1 + 1)
132 negdi2 10982 . . . . . . . 8 ((1 ∈ ℂ ∧ 1 ∈ ℂ) → -(1 + 1) = (-1 − 1))
13335, 35, 132mp2an 691 . . . . . . 7 -(1 + 1) = (-1 − 1)
134131, 133eqtri 2781 . . . . . 6 -2 = (-1 − 1)
13511simpld 498 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -2 < 𝑁)
136134, 135eqbrtrrid 5068 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-1 − 1) < 𝑁)
137 neg1z 12057 . . . . . 6 -1 ∈ ℤ
138 zlem1lt 12073 . . . . . 6 ((-1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-1 ≤ 𝑁 ↔ (-1 − 1) < 𝑁))
139137, 16, 138sylancr 590 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-1 ≤ 𝑁 ↔ (-1 − 1) < 𝑁))
140136, 139mpbird 260 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -1 ≤ 𝑁)
141 neg1rr 11789 . . . . 5 -1 ∈ ℝ
142 leloe 10765 . . . . 5 ((-1 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (-1 ≤ 𝑁 ↔ (-1 < 𝑁 ∨ -1 = 𝑁)))
143141, 28, 142sylancr 590 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-1 ≤ 𝑁 ↔ (-1 < 𝑁 ∨ -1 = 𝑁)))
144140, 143mpbid 235 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-1 < 𝑁 ∨ -1 = 𝑁))
14594, 129, 144mpjaodan 956 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑇 = -(i · π) ∨ 𝑇 = (i · π)))
14610ovexi 7184 . . 3 𝑇 ∈ V
147146elpr 4545 . 2 (𝑇 ∈ {-(i · π), (i · π)} ↔ (𝑇 = -(i · π) ∨ 𝑇 = (i · π)))
148145, 147sylibr 237 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑇 ∈ {-(i · π), (i · π)})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   ≠ wne 2951   ∖ cdif 3855  {csn 4522  {cpr 4524   class class class wbr 5032  ‘cfv 6335  (class class class)co 7150   ∈ cmpo 7152  ℂcc 10573  ℝcr 10574  0cc0 10575  1c1 10576  ici 10577   + caddc 10578   · cmul 10580   < clt 10713   ≤ cle 10714   − cmin 10908  -cneg 10909   / cdiv 11335  2c2 11729  ℤcz 12020  ℑcim 14505  πcpi 15468  logclog 25245 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-inf2 9137  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-pre-sup 10653  ax-addf 10654  ax-mulf 10655 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-iin 4886  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-se 5484  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-isom 6344  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7405  df-om 7580  df-1st 7693  df-2nd 7694  df-supp 7836  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-2o 8113  df-er 8299  df-map 8418  df-pm 8419  df-ixp 8480  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-fsupp 8867  df-fi 8908  df-sup 8939  df-inf 8940  df-oi 9007  df-card 9401  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-nn 11675  df-2 11737  df-3 11738  df-4 11739  df-5 11740  df-6 11741  df-7 11742  df-8 11743  df-9 11744  df-n0 11935  df-z 12021  df-dec 12138  df-uz 12283  df-q 12389  df-rp 12431  df-xneg 12548  df-xadd 12549  df-xmul 12550  df-ioo 12783  df-ioc 12784  df-ico 12785  df-icc 12786  df-fz 12940  df-fzo 13083  df-fl 13211  df-mod 13287  df-seq 13419  df-exp 13480  df-fac 13684  df-bc 13713  df-hash 13741  df-shft 14474  df-cj 14506  df-re 14507  df-im 14508  df-sqrt 14642  df-abs 14643  df-limsup 14876  df-clim 14893  df-rlim 14894  df-sum 15091  df-ef 15469  df-sin 15471  df-cos 15472  df-pi 15474  df-struct 16543  df-ndx 16544  df-slot 16545  df-base 16547  df-sets 16548  df-ress 16549  df-plusg 16636  df-mulr 16637  df-starv 16638  df-sca 16639  df-vsca 16640  df-ip 16641  df-tset 16642  df-ple 16643  df-ds 16645  df-unif 16646  df-hom 16647  df-cco 16648  df-rest 16754  df-topn 16755  df-0g 16773  df-gsum 16774  df-topgen 16775  df-pt 16776  df-prds 16779  df-xrs 16833  df-qtop 16838  df-imas 16839  df-xps 16841  df-mre 16915  df-mrc 16916  df-acs 16918  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-submnd 18023  df-mulg 18292  df-cntz 18514  df-cmn 18975  df-psmet 20158  df-xmet 20159  df-met 20160  df-bl 20161  df-mopn 20162  df-fbas 20163  df-fg 20164  df-cnfld 20167  df-top 21594  df-topon 21611  df-topsp 21633  df-bases 21646  df-cld 21719  df-ntr 21720  df-cls 21721  df-nei 21798  df-lp 21836  df-perf 21837  df-cn 21927  df-cnp 21928  df-haus 22015  df-tx 22262  df-hmeo 22455  df-fil 22546  df-fm 22638  df-flim 22639  df-flf 22640  df-xms 23022  df-ms 23023  df-tms 23024  df-cncf 23579  df-limc 24565  df-dv 24566  df-log 25247 This theorem is referenced by:  ang180lem4  25497
 Copyright terms: Public domain W3C validator