Proof of Theorem ang180lem3
Step | Hyp | Ref
| Expression |
1 | | 2cn 11749 |
. . . . . . . . . 10
⊢ 2 ∈
ℂ |
2 | | picn 25151 |
. . . . . . . . . 10
⊢ π
∈ ℂ |
3 | 1, 2 | mulcli 10686 |
. . . . . . . . 9
⊢ (2
· π) ∈ ℂ |
4 | | 2ne0 11778 |
. . . . . . . . 9
⊢ 2 ≠
0 |
5 | 3, 1, 4 | divreci 11423 |
. . . . . . . 8
⊢ ((2
· π) / 2) = ((2 · π) · (1 / 2)) |
6 | 2, 1, 4 | divcan3i 11424 |
. . . . . . . 8
⊢ ((2
· π) / 2) = π |
7 | 5, 6 | eqtr3i 2783 |
. . . . . . 7
⊢ ((2
· π) · (1 / 2)) = π |
8 | | ang180lem1.3 |
. . . . . . . . . 10
⊢ 𝑁 = (((𝑇 / i) / (2 · π)) − (1 /
2)) |
9 | | ang.1 |
. . . . . . . . . . . . . . . 16
⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0})
↦ (ℑ‘(log‘(𝑦 / 𝑥)))) |
10 | | ang180lem1.2 |
. . . . . . . . . . . . . . . 16
⊢ 𝑇 = (((log‘(1 / (1 −
𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴)) |
11 | 9, 10, 8 | ang180lem2 25495 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-2 < 𝑁 ∧ 𝑁 < 1)) |
12 | 11 | simprd 499 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑁 < 1) |
13 | | 1e0p1 12179 |
. . . . . . . . . . . . . 14
⊢ 1 = (0 +
1) |
14 | 12, 13 | breqtrdi 5073 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑁 < (0 + 1)) |
15 | 9, 10, 8 | ang180lem1 25494 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑁 ∈ ℤ ∧ (𝑇 / i) ∈ ℝ)) |
16 | 15 | simpld 498 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑁 ∈ ℤ) |
17 | | 0z 12031 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
ℤ |
18 | | zleltp1 12072 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℤ ∧ 0 ∈
ℤ) → (𝑁 ≤ 0
↔ 𝑁 < (0 +
1))) |
19 | 16, 17, 18 | sylancl 589 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑁 ≤ 0 ↔ 𝑁 < (0 + 1))) |
20 | 14, 19 | mpbird 260 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑁 ≤ 0) |
21 | 20 | adantr 484 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → 𝑁 ≤ 0) |
22 | | zlem1lt 12073 |
. . . . . . . . . . . . . 14
⊢ ((0
∈ ℤ ∧ 𝑁
∈ ℤ) → (0 ≤ 𝑁 ↔ (0 − 1) < 𝑁)) |
23 | 17, 16, 22 | sylancr 590 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (0 ≤ 𝑁 ↔ (0 − 1) < 𝑁)) |
24 | | df-neg 10911 |
. . . . . . . . . . . . . 14
⊢ -1 = (0
− 1) |
25 | 24 | breq1i 5039 |
. . . . . . . . . . . . 13
⊢ (-1 <
𝑁 ↔ (0 − 1) <
𝑁) |
26 | 23, 25 | bitr4di 292 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (0 ≤ 𝑁 ↔ -1 < 𝑁)) |
27 | 26 | biimpar 481 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → 0 ≤ 𝑁) |
28 | 16 | zred 12126 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑁 ∈ ℝ) |
29 | 28 | adantr 484 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → 𝑁 ∈ ℝ) |
30 | | 0re 10681 |
. . . . . . . . . . . 12
⊢ 0 ∈
ℝ |
31 | | letri3 10764 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℝ ∧ 0 ∈
ℝ) → (𝑁 = 0
↔ (𝑁 ≤ 0 ∧ 0
≤ 𝑁))) |
32 | 29, 30, 31 | sylancl 589 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → (𝑁 = 0 ↔ (𝑁 ≤ 0 ∧ 0 ≤ 𝑁))) |
33 | 21, 27, 32 | mpbir2and 712 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → 𝑁 = 0) |
34 | 8, 33 | syl5eqr 2807 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → (((𝑇 / i) / (2 · π)) − (1 / 2))
= 0) |
35 | | ax-1cn 10633 |
. . . . . . . . . . . . . . . . . . 19
⊢ 1 ∈
ℂ |
36 | | simp1 1133 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝐴 ∈ ℂ) |
37 | | subcl 10923 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((1
∈ ℂ ∧ 𝐴
∈ ℂ) → (1 − 𝐴) ∈ ℂ) |
38 | 35, 36, 37 | sylancr 590 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 − 𝐴) ∈ ℂ) |
39 | | simp3 1135 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝐴 ≠ 1) |
40 | 39 | necomd 3006 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 1 ≠ 𝐴) |
41 | | subeq0 10950 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((1
∈ ℂ ∧ 𝐴
∈ ℂ) → ((1 − 𝐴) = 0 ↔ 1 = 𝐴)) |
42 | 35, 36, 41 | sylancr 590 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((1 − 𝐴) = 0 ↔ 1 = 𝐴)) |
43 | 42 | necon3bid 2995 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((1 − 𝐴) ≠ 0 ↔ 1 ≠ 𝐴)) |
44 | 40, 43 | mpbird 260 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 − 𝐴) ≠ 0) |
45 | 38, 44 | reccld 11447 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 / (1 − 𝐴)) ∈
ℂ) |
46 | 38, 44 | recne0d 11448 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 / (1 − 𝐴)) ≠ 0) |
47 | 45, 46 | logcld 25261 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (log‘(1 / (1 −
𝐴))) ∈
ℂ) |
48 | | subcl 10923 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ℂ ∧ 1 ∈
ℂ) → (𝐴 −
1) ∈ ℂ) |
49 | 36, 35, 48 | sylancl 589 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝐴 − 1) ∈ ℂ) |
50 | | simp2 1134 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝐴 ≠ 0) |
51 | 49, 36, 50 | divcld 11454 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) / 𝐴) ∈ ℂ) |
52 | | subeq0 10950 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝐴 −
1) = 0 ↔ 𝐴 =
1)) |
53 | 36, 35, 52 | sylancl 589 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) = 0 ↔ 𝐴 = 1)) |
54 | 53 | necon3bid 2995 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) ≠ 0 ↔ 𝐴 ≠ 1)) |
55 | 39, 54 | mpbird 260 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝐴 − 1) ≠ 0) |
56 | 49, 36, 55, 50 | divne0d 11470 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) / 𝐴) ≠ 0) |
57 | 51, 56 | logcld 25261 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (log‘((𝐴 − 1) / 𝐴)) ∈ ℂ) |
58 | 47, 57 | addcld 10698 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((log‘(1 / (1 −
𝐴))) + (log‘((𝐴 − 1) / 𝐴))) ∈ ℂ) |
59 | | logcl 25259 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈
ℂ) |
60 | 59 | 3adant3 1129 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (log‘𝐴) ∈ ℂ) |
61 | 58, 60 | addcld 10698 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((log‘(1 / (1 −
𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴)) ∈ ℂ) |
62 | 10, 61 | eqeltrid 2856 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑇 ∈ ℂ) |
63 | | ax-icn 10634 |
. . . . . . . . . . . . . 14
⊢ i ∈
ℂ |
64 | 63 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → i ∈
ℂ) |
65 | | ine0 11113 |
. . . . . . . . . . . . . 14
⊢ i ≠
0 |
66 | 65 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → i ≠ 0) |
67 | 62, 64, 66 | divcld 11454 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑇 / i) ∈ ℂ) |
68 | 3 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (2 · π) ∈
ℂ) |
69 | | pire 25150 |
. . . . . . . . . . . . . . 15
⊢ π
∈ ℝ |
70 | | pipos 25152 |
. . . . . . . . . . . . . . 15
⊢ 0 <
π |
71 | 69, 70 | gt0ne0ii 11214 |
. . . . . . . . . . . . . 14
⊢ π ≠
0 |
72 | 1, 2, 4, 71 | mulne0i 11321 |
. . . . . . . . . . . . 13
⊢ (2
· π) ≠ 0 |
73 | 72 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (2 · π) ≠
0) |
74 | 67, 68, 73 | divcld 11454 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 / i) / (2 · π)) ∈
ℂ) |
75 | 74 | adantr 484 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → ((𝑇 / i) / (2 · π)) ∈
ℂ) |
76 | | halfcn 11889 |
. . . . . . . . . 10
⊢ (1 / 2)
∈ ℂ |
77 | | subeq0 10950 |
. . . . . . . . . 10
⊢ ((((𝑇 / i) / (2 · π))
∈ ℂ ∧ (1 / 2) ∈ ℂ) → ((((𝑇 / i) / (2 · π)) − (1 / 2))
= 0 ↔ ((𝑇 / i) / (2
· π)) = (1 / 2))) |
78 | 75, 76, 77 | sylancl 589 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → ((((𝑇 / i) / (2 · π)) − (1 / 2))
= 0 ↔ ((𝑇 / i) / (2
· π)) = (1 / 2))) |
79 | 34, 78 | mpbid 235 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → ((𝑇 / i) / (2 · π)) = (1 /
2)) |
80 | 67 | adantr 484 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → (𝑇 / i) ∈ ℂ) |
81 | 3 | a1i 11 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → (2 · π) ∈
ℂ) |
82 | 76 | a1i 11 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → (1 / 2) ∈
ℂ) |
83 | 72 | a1i 11 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → (2 · π) ≠
0) |
84 | 80, 81, 82, 83 | divmuld 11476 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → (((𝑇 / i) / (2 · π)) = (1 / 2) ↔
((2 · π) · (1 / 2)) = (𝑇 / i))) |
85 | 79, 84 | mpbid 235 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → ((2 · π) · (1 /
2)) = (𝑇 /
i)) |
86 | 7, 85 | syl5reqr 2808 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → (𝑇 / i) = π) |
87 | 62 | adantr 484 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → 𝑇 ∈ ℂ) |
88 | 63 | a1i 11 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → i ∈ ℂ) |
89 | 2 | a1i 11 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → π ∈
ℂ) |
90 | 65 | a1i 11 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → i ≠ 0) |
91 | 87, 88, 89, 90 | divmuld 11476 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → ((𝑇 / i) = π ↔ (i · π) =
𝑇)) |
92 | 86, 91 | mpbid 235 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → (i · π) = 𝑇) |
93 | 92 | eqcomd 2764 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → 𝑇 = (i · π)) |
94 | 93 | olcd 871 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → (𝑇 = -(i · π) ∨ 𝑇 = (i · π))) |
95 | 2, 63 | mulneg1i 11124 |
. . . . . . 7
⊢ (-π
· i) = -(π · i) |
96 | 2, 63 | mulcomi 10687 |
. . . . . . . 8
⊢ (π
· i) = (i · π) |
97 | 96 | negeqi 10917 |
. . . . . . 7
⊢ -(π
· i) = -(i · π) |
98 | 95, 97 | eqtri 2781 |
. . . . . 6
⊢ (-π
· i) = -(i · π) |
99 | 76, 3 | mulneg1i 11124 |
. . . . . . . . . 10
⊢ (-(1 / 2)
· (2 · π)) = -((1 / 2) · (2 ·
π)) |
100 | 35, 1, 4 | divcan1i 11422 |
. . . . . . . . . . . . 13
⊢ ((1 / 2)
· 2) = 1 |
101 | 100 | oveq1i 7160 |
. . . . . . . . . . . 12
⊢ (((1 / 2)
· 2) · π) = (1 · π) |
102 | 76, 1, 2 | mulassi 10690 |
. . . . . . . . . . . 12
⊢ (((1 / 2)
· 2) · π) = ((1 / 2) · (2 ·
π)) |
103 | 2 | mulid2i 10684 |
. . . . . . . . . . . 12
⊢ (1
· π) = π |
104 | 101, 102,
103 | 3eqtr3i 2789 |
. . . . . . . . . . 11
⊢ ((1 / 2)
· (2 · π)) = π |
105 | 104 | negeqi 10917 |
. . . . . . . . . 10
⊢ -((1 / 2)
· (2 · π)) = -π |
106 | 99, 105 | eqtri 2781 |
. . . . . . . . 9
⊢ (-(1 / 2)
· (2 · π)) = -π |
107 | 35, 76 | negsubdii 11009 |
. . . . . . . . . . . . 13
⊢ -(1
− (1 / 2)) = (-1 + (1 / 2)) |
108 | | 1mhlfehlf 11893 |
. . . . . . . . . . . . . 14
⊢ (1
− (1 / 2)) = (1 / 2) |
109 | 108 | negeqi 10917 |
. . . . . . . . . . . . 13
⊢ -(1
− (1 / 2)) = -(1 / 2) |
110 | 107, 109 | eqtr3i 2783 |
. . . . . . . . . . . 12
⊢ (-1 + (1
/ 2)) = -(1 / 2) |
111 | | simpr 488 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → -1 = 𝑁) |
112 | 111, 8 | eqtrdi 2809 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → -1 = (((𝑇 / i) / (2 · π)) − (1 /
2))) |
113 | 112 | oveq1d 7165 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → (-1 + (1 / 2)) = ((((𝑇 / i) / (2 · π))
− (1 / 2)) + (1 / 2))) |
114 | 110, 113 | syl5eqr 2807 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → -(1 / 2) = ((((𝑇 / i) / (2 · π)) − (1 / 2))
+ (1 / 2))) |
115 | | npcan 10933 |
. . . . . . . . . . . . 13
⊢ ((((𝑇 / i) / (2 · π))
∈ ℂ ∧ (1 / 2) ∈ ℂ) → ((((𝑇 / i) / (2 · π)) − (1 / 2))
+ (1 / 2)) = ((𝑇 / i) / (2
· π))) |
116 | 74, 76, 115 | sylancl 589 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((((𝑇 / i) / (2 · π)) − (1 / 2))
+ (1 / 2)) = ((𝑇 / i) / (2
· π))) |
117 | 116 | adantr 484 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → ((((𝑇 / i) / (2 · π)) − (1 / 2))
+ (1 / 2)) = ((𝑇 / i) / (2
· π))) |
118 | 114, 117 | eqtrd 2793 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → -(1 / 2) = ((𝑇 / i) / (2 · π))) |
119 | 118 | oveq1d 7165 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → (-(1 / 2) · (2 ·
π)) = (((𝑇 / i) / (2
· π)) · (2 · π))) |
120 | 106, 119 | syl5eqr 2807 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → -π = (((𝑇 / i) / (2 · π)) · (2
· π))) |
121 | 67, 68, 73 | divcan1d 11455 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((𝑇 / i) / (2 · π)) · (2
· π)) = (𝑇 /
i)) |
122 | 121 | adantr 484 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → (((𝑇 / i) / (2 · π)) · (2
· π)) = (𝑇 /
i)) |
123 | 120, 122 | eqtrd 2793 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → -π = (𝑇 / i)) |
124 | 123 | oveq1d 7165 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → (-π · i) = ((𝑇 / i) ·
i)) |
125 | 98, 124 | syl5eqr 2807 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → -(i · π) = ((𝑇 / i) ·
i)) |
126 | 62, 64, 66 | divcan1d 11455 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 / i) · i) = 𝑇) |
127 | 126 | adantr 484 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → ((𝑇 / i) · i) = 𝑇) |
128 | 125, 127 | eqtr2d 2794 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → 𝑇 = -(i · π)) |
129 | 128 | orcd 870 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → (𝑇 = -(i · π) ∨ 𝑇 = (i · π))) |
130 | | df-2 11737 |
. . . . . . . 8
⊢ 2 = (1 +
1) |
131 | 130 | negeqi 10917 |
. . . . . . 7
⊢ -2 = -(1
+ 1) |
132 | | negdi2 10982 |
. . . . . . . 8
⊢ ((1
∈ ℂ ∧ 1 ∈ ℂ) → -(1 + 1) = (-1 −
1)) |
133 | 35, 35, 132 | mp2an 691 |
. . . . . . 7
⊢ -(1 + 1)
= (-1 − 1) |
134 | 131, 133 | eqtri 2781 |
. . . . . 6
⊢ -2 = (-1
− 1) |
135 | 11 | simpld 498 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -2 < 𝑁) |
136 | 134, 135 | eqbrtrrid 5068 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-1 − 1) < 𝑁) |
137 | | neg1z 12057 |
. . . . . 6
⊢ -1 ∈
ℤ |
138 | | zlem1lt 12073 |
. . . . . 6
⊢ ((-1
∈ ℤ ∧ 𝑁
∈ ℤ) → (-1 ≤ 𝑁 ↔ (-1 − 1) < 𝑁)) |
139 | 137, 16, 138 | sylancr 590 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-1 ≤ 𝑁 ↔ (-1 − 1) < 𝑁)) |
140 | 136, 139 | mpbird 260 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -1 ≤ 𝑁) |
141 | | neg1rr 11789 |
. . . . 5
⊢ -1 ∈
ℝ |
142 | | leloe 10765 |
. . . . 5
⊢ ((-1
∈ ℝ ∧ 𝑁
∈ ℝ) → (-1 ≤ 𝑁 ↔ (-1 < 𝑁 ∨ -1 = 𝑁))) |
143 | 141, 28, 142 | sylancr 590 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-1 ≤ 𝑁 ↔ (-1 < 𝑁 ∨ -1 = 𝑁))) |
144 | 140, 143 | mpbid 235 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-1 < 𝑁 ∨ -1 = 𝑁)) |
145 | 94, 129, 144 | mpjaodan 956 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑇 = -(i · π) ∨ 𝑇 = (i · π))) |
146 | 10 | ovexi 7184 |
. . 3
⊢ 𝑇 ∈ V |
147 | 146 | elpr 4545 |
. 2
⊢ (𝑇 ∈ {-(i · π), (i
· π)} ↔ (𝑇 =
-(i · π) ∨ 𝑇 =
(i · π))) |
148 | 145, 147 | sylibr 237 |
1
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑇 ∈ {-(i · π), (i ·
π)}) |