Proof of Theorem ang180lem3
Step | Hyp | Ref
| Expression |
1 | | ang180lem1.3 |
. . . . . . . . . 10
⊢ 𝑁 = (((𝑇 / i) / (2 · π)) − (1 /
2)) |
2 | | ang.1 |
. . . . . . . . . . . . . . . 16
⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0})
↦ (ℑ‘(log‘(𝑦 / 𝑥)))) |
3 | | ang180lem1.2 |
. . . . . . . . . . . . . . . 16
⊢ 𝑇 = (((log‘(1 / (1 −
𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴)) |
4 | 2, 3, 1 | ang180lem2 25969 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-2 < 𝑁 ∧ 𝑁 < 1)) |
5 | 4 | simprd 496 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑁 < 1) |
6 | | 1e0p1 12488 |
. . . . . . . . . . . . . 14
⊢ 1 = (0 +
1) |
7 | 5, 6 | breqtrdi 5116 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑁 < (0 + 1)) |
8 | 2, 3, 1 | ang180lem1 25968 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑁 ∈ ℤ ∧ (𝑇 / i) ∈ ℝ)) |
9 | 8 | simpld 495 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑁 ∈ ℤ) |
10 | | 0z 12339 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
ℤ |
11 | | zleltp1 12380 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℤ ∧ 0 ∈
ℤ) → (𝑁 ≤ 0
↔ 𝑁 < (0 +
1))) |
12 | 9, 10, 11 | sylancl 586 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑁 ≤ 0 ↔ 𝑁 < (0 + 1))) |
13 | 7, 12 | mpbird 256 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑁 ≤ 0) |
14 | 13 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → 𝑁 ≤ 0) |
15 | | zlem1lt 12381 |
. . . . . . . . . . . . . 14
⊢ ((0
∈ ℤ ∧ 𝑁
∈ ℤ) → (0 ≤ 𝑁 ↔ (0 − 1) < 𝑁)) |
16 | 10, 9, 15 | sylancr 587 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (0 ≤ 𝑁 ↔ (0 − 1) < 𝑁)) |
17 | | df-neg 11217 |
. . . . . . . . . . . . . 14
⊢ -1 = (0
− 1) |
18 | 17 | breq1i 5082 |
. . . . . . . . . . . . 13
⊢ (-1 <
𝑁 ↔ (0 − 1) <
𝑁) |
19 | 16, 18 | bitr4di 289 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (0 ≤ 𝑁 ↔ -1 < 𝑁)) |
20 | 19 | biimpar 478 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → 0 ≤ 𝑁) |
21 | 9 | zred 12435 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑁 ∈ ℝ) |
22 | 21 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → 𝑁 ∈ ℝ) |
23 | | 0re 10986 |
. . . . . . . . . . . 12
⊢ 0 ∈
ℝ |
24 | | letri3 11069 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℝ ∧ 0 ∈
ℝ) → (𝑁 = 0
↔ (𝑁 ≤ 0 ∧ 0
≤ 𝑁))) |
25 | 22, 23, 24 | sylancl 586 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → (𝑁 = 0 ↔ (𝑁 ≤ 0 ∧ 0 ≤ 𝑁))) |
26 | 14, 20, 25 | mpbir2and 710 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → 𝑁 = 0) |
27 | 1, 26 | eqtr3id 2793 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → (((𝑇 / i) / (2 · π)) − (1 / 2))
= 0) |
28 | | ax-1cn 10938 |
. . . . . . . . . . . . . . . . . . 19
⊢ 1 ∈
ℂ |
29 | | simp1 1135 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝐴 ∈ ℂ) |
30 | | subcl 11229 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((1
∈ ℂ ∧ 𝐴
∈ ℂ) → (1 − 𝐴) ∈ ℂ) |
31 | 28, 29, 30 | sylancr 587 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 − 𝐴) ∈ ℂ) |
32 | | simp3 1137 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝐴 ≠ 1) |
33 | 32 | necomd 3000 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 1 ≠ 𝐴) |
34 | | subeq0 11256 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((1
∈ ℂ ∧ 𝐴
∈ ℂ) → ((1 − 𝐴) = 0 ↔ 1 = 𝐴)) |
35 | 28, 29, 34 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((1 − 𝐴) = 0 ↔ 1 = 𝐴)) |
36 | 35 | necon3bid 2989 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((1 − 𝐴) ≠ 0 ↔ 1 ≠ 𝐴)) |
37 | 33, 36 | mpbird 256 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 − 𝐴) ≠ 0) |
38 | 31, 37 | reccld 11753 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 / (1 − 𝐴)) ∈
ℂ) |
39 | 31, 37 | recne0d 11754 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 / (1 − 𝐴)) ≠ 0) |
40 | 38, 39 | logcld 25735 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (log‘(1 / (1 −
𝐴))) ∈
ℂ) |
41 | | subcl 11229 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ℂ ∧ 1 ∈
ℂ) → (𝐴 −
1) ∈ ℂ) |
42 | 29, 28, 41 | sylancl 586 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝐴 − 1) ∈ ℂ) |
43 | | simp2 1136 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝐴 ≠ 0) |
44 | 42, 29, 43 | divcld 11760 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) / 𝐴) ∈ ℂ) |
45 | | subeq0 11256 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝐴 −
1) = 0 ↔ 𝐴 =
1)) |
46 | 29, 28, 45 | sylancl 586 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) = 0 ↔ 𝐴 = 1)) |
47 | 46 | necon3bid 2989 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) ≠ 0 ↔ 𝐴 ≠ 1)) |
48 | 32, 47 | mpbird 256 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝐴 − 1) ≠ 0) |
49 | 42, 29, 48, 43 | divne0d 11776 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) / 𝐴) ≠ 0) |
50 | 44, 49 | logcld 25735 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (log‘((𝐴 − 1) / 𝐴)) ∈ ℂ) |
51 | 40, 50 | addcld 11003 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((log‘(1 / (1 −
𝐴))) + (log‘((𝐴 − 1) / 𝐴))) ∈ ℂ) |
52 | | logcl 25733 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈
ℂ) |
53 | 52 | 3adant3 1131 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (log‘𝐴) ∈ ℂ) |
54 | 51, 53 | addcld 11003 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((log‘(1 / (1 −
𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴)) ∈ ℂ) |
55 | 3, 54 | eqeltrid 2844 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑇 ∈ ℂ) |
56 | | ax-icn 10939 |
. . . . . . . . . . . . . 14
⊢ i ∈
ℂ |
57 | 56 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → i ∈
ℂ) |
58 | | ine0 11419 |
. . . . . . . . . . . . . 14
⊢ i ≠
0 |
59 | 58 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → i ≠ 0) |
60 | 55, 57, 59 | divcld 11760 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑇 / i) ∈ ℂ) |
61 | | 2cn 12057 |
. . . . . . . . . . . . . 14
⊢ 2 ∈
ℂ |
62 | | picn 25625 |
. . . . . . . . . . . . . 14
⊢ π
∈ ℂ |
63 | 61, 62 | mulcli 10991 |
. . . . . . . . . . . . 13
⊢ (2
· π) ∈ ℂ |
64 | 63 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (2 · π) ∈
ℂ) |
65 | | 2ne0 12086 |
. . . . . . . . . . . . . 14
⊢ 2 ≠
0 |
66 | | pire 25624 |
. . . . . . . . . . . . . . 15
⊢ π
∈ ℝ |
67 | | pipos 25626 |
. . . . . . . . . . . . . . 15
⊢ 0 <
π |
68 | 66, 67 | gt0ne0ii 11520 |
. . . . . . . . . . . . . 14
⊢ π ≠
0 |
69 | 61, 62, 65, 68 | mulne0i 11627 |
. . . . . . . . . . . . 13
⊢ (2
· π) ≠ 0 |
70 | 69 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (2 · π) ≠
0) |
71 | 60, 64, 70 | divcld 11760 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 / i) / (2 · π)) ∈
ℂ) |
72 | 71 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → ((𝑇 / i) / (2 · π)) ∈
ℂ) |
73 | | halfcn 12197 |
. . . . . . . . . 10
⊢ (1 / 2)
∈ ℂ |
74 | | subeq0 11256 |
. . . . . . . . . 10
⊢ ((((𝑇 / i) / (2 · π))
∈ ℂ ∧ (1 / 2) ∈ ℂ) → ((((𝑇 / i) / (2 · π)) − (1 / 2))
= 0 ↔ ((𝑇 / i) / (2
· π)) = (1 / 2))) |
75 | 72, 73, 74 | sylancl 586 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → ((((𝑇 / i) / (2 · π)) − (1 / 2))
= 0 ↔ ((𝑇 / i) / (2
· π)) = (1 / 2))) |
76 | 27, 75 | mpbid 231 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → ((𝑇 / i) / (2 · π)) = (1 /
2)) |
77 | 60 | adantr 481 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → (𝑇 / i) ∈ ℂ) |
78 | 63 | a1i 11 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → (2 · π) ∈
ℂ) |
79 | 73 | a1i 11 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → (1 / 2) ∈
ℂ) |
80 | 69 | a1i 11 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → (2 · π) ≠
0) |
81 | 77, 78, 79, 80 | divmuld 11782 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → (((𝑇 / i) / (2 · π)) = (1 / 2) ↔
((2 · π) · (1 / 2)) = (𝑇 / i))) |
82 | 76, 81 | mpbid 231 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → ((2 · π) · (1 /
2)) = (𝑇 /
i)) |
83 | 63, 61, 65 | divreci 11729 |
. . . . . . . 8
⊢ ((2
· π) / 2) = ((2 · π) · (1 / 2)) |
84 | 62, 61, 65 | divcan3i 11730 |
. . . . . . . 8
⊢ ((2
· π) / 2) = π |
85 | 83, 84 | eqtr3i 2769 |
. . . . . . 7
⊢ ((2
· π) · (1 / 2)) = π |
86 | 82, 85 | eqtr3di 2794 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → (𝑇 / i) = π) |
87 | 55 | adantr 481 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → 𝑇 ∈ ℂ) |
88 | 56 | a1i 11 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → i ∈ ℂ) |
89 | 62 | a1i 11 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → π ∈
ℂ) |
90 | 58 | a1i 11 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → i ≠ 0) |
91 | 87, 88, 89, 90 | divmuld 11782 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → ((𝑇 / i) = π ↔ (i · π) =
𝑇)) |
92 | 86, 91 | mpbid 231 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → (i · π) = 𝑇) |
93 | 92 | eqcomd 2745 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → 𝑇 = (i · π)) |
94 | 93 | olcd 871 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → (𝑇 = -(i · π) ∨ 𝑇 = (i · π))) |
95 | 62, 56 | mulneg1i 11430 |
. . . . . . 7
⊢ (-π
· i) = -(π · i) |
96 | 62, 56 | mulcomi 10992 |
. . . . . . . 8
⊢ (π
· i) = (i · π) |
97 | 96 | negeqi 11223 |
. . . . . . 7
⊢ -(π
· i) = -(i · π) |
98 | 95, 97 | eqtri 2767 |
. . . . . 6
⊢ (-π
· i) = -(i · π) |
99 | 73, 63 | mulneg1i 11430 |
. . . . . . . . . 10
⊢ (-(1 / 2)
· (2 · π)) = -((1 / 2) · (2 ·
π)) |
100 | 28, 61, 65 | divcan1i 11728 |
. . . . . . . . . . . . 13
⊢ ((1 / 2)
· 2) = 1 |
101 | 100 | oveq1i 7294 |
. . . . . . . . . . . 12
⊢ (((1 / 2)
· 2) · π) = (1 · π) |
102 | 73, 61, 62 | mulassi 10995 |
. . . . . . . . . . . 12
⊢ (((1 / 2)
· 2) · π) = ((1 / 2) · (2 ·
π)) |
103 | 62 | mulid2i 10989 |
. . . . . . . . . . . 12
⊢ (1
· π) = π |
104 | 101, 102,
103 | 3eqtr3i 2775 |
. . . . . . . . . . 11
⊢ ((1 / 2)
· (2 · π)) = π |
105 | 104 | negeqi 11223 |
. . . . . . . . . 10
⊢ -((1 / 2)
· (2 · π)) = -π |
106 | 99, 105 | eqtri 2767 |
. . . . . . . . 9
⊢ (-(1 / 2)
· (2 · π)) = -π |
107 | 28, 73 | negsubdii 11315 |
. . . . . . . . . . . . 13
⊢ -(1
− (1 / 2)) = (-1 + (1 / 2)) |
108 | | 1mhlfehlf 12201 |
. . . . . . . . . . . . . 14
⊢ (1
− (1 / 2)) = (1 / 2) |
109 | 108 | negeqi 11223 |
. . . . . . . . . . . . 13
⊢ -(1
− (1 / 2)) = -(1 / 2) |
110 | 107, 109 | eqtr3i 2769 |
. . . . . . . . . . . 12
⊢ (-1 + (1
/ 2)) = -(1 / 2) |
111 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → -1 = 𝑁) |
112 | 111, 1 | eqtrdi 2795 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → -1 = (((𝑇 / i) / (2 · π)) − (1 /
2))) |
113 | 112 | oveq1d 7299 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → (-1 + (1 / 2)) = ((((𝑇 / i) / (2 · π))
− (1 / 2)) + (1 / 2))) |
114 | 110, 113 | eqtr3id 2793 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → -(1 / 2) = ((((𝑇 / i) / (2 · π)) − (1 / 2))
+ (1 / 2))) |
115 | | npcan 11239 |
. . . . . . . . . . . . 13
⊢ ((((𝑇 / i) / (2 · π))
∈ ℂ ∧ (1 / 2) ∈ ℂ) → ((((𝑇 / i) / (2 · π)) − (1 / 2))
+ (1 / 2)) = ((𝑇 / i) / (2
· π))) |
116 | 71, 73, 115 | sylancl 586 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((((𝑇 / i) / (2 · π)) − (1 / 2))
+ (1 / 2)) = ((𝑇 / i) / (2
· π))) |
117 | 116 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → ((((𝑇 / i) / (2 · π)) − (1 / 2))
+ (1 / 2)) = ((𝑇 / i) / (2
· π))) |
118 | 114, 117 | eqtrd 2779 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → -(1 / 2) = ((𝑇 / i) / (2 · π))) |
119 | 118 | oveq1d 7299 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → (-(1 / 2) · (2 ·
π)) = (((𝑇 / i) / (2
· π)) · (2 · π))) |
120 | 106, 119 | eqtr3id 2793 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → -π = (((𝑇 / i) / (2 · π)) · (2
· π))) |
121 | 60, 64, 70 | divcan1d 11761 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((𝑇 / i) / (2 · π)) · (2
· π)) = (𝑇 /
i)) |
122 | 121 | adantr 481 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → (((𝑇 / i) / (2 · π)) · (2
· π)) = (𝑇 /
i)) |
123 | 120, 122 | eqtrd 2779 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → -π = (𝑇 / i)) |
124 | 123 | oveq1d 7299 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → (-π · i) = ((𝑇 / i) ·
i)) |
125 | 98, 124 | eqtr3id 2793 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → -(i · π) = ((𝑇 / i) ·
i)) |
126 | 55, 57, 59 | divcan1d 11761 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 / i) · i) = 𝑇) |
127 | 126 | adantr 481 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → ((𝑇 / i) · i) = 𝑇) |
128 | 125, 127 | eqtr2d 2780 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → 𝑇 = -(i · π)) |
129 | 128 | orcd 870 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → (𝑇 = -(i · π) ∨ 𝑇 = (i · π))) |
130 | | df-2 12045 |
. . . . . . . 8
⊢ 2 = (1 +
1) |
131 | 130 | negeqi 11223 |
. . . . . . 7
⊢ -2 = -(1
+ 1) |
132 | | negdi2 11288 |
. . . . . . . 8
⊢ ((1
∈ ℂ ∧ 1 ∈ ℂ) → -(1 + 1) = (-1 −
1)) |
133 | 28, 28, 132 | mp2an 689 |
. . . . . . 7
⊢ -(1 + 1)
= (-1 − 1) |
134 | 131, 133 | eqtri 2767 |
. . . . . 6
⊢ -2 = (-1
− 1) |
135 | 4 | simpld 495 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -2 < 𝑁) |
136 | 134, 135 | eqbrtrrid 5111 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-1 − 1) < 𝑁) |
137 | | neg1z 12365 |
. . . . . 6
⊢ -1 ∈
ℤ |
138 | | zlem1lt 12381 |
. . . . . 6
⊢ ((-1
∈ ℤ ∧ 𝑁
∈ ℤ) → (-1 ≤ 𝑁 ↔ (-1 − 1) < 𝑁)) |
139 | 137, 9, 138 | sylancr 587 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-1 ≤ 𝑁 ↔ (-1 − 1) < 𝑁)) |
140 | 136, 139 | mpbird 256 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -1 ≤ 𝑁) |
141 | | neg1rr 12097 |
. . . . 5
⊢ -1 ∈
ℝ |
142 | | leloe 11070 |
. . . . 5
⊢ ((-1
∈ ℝ ∧ 𝑁
∈ ℝ) → (-1 ≤ 𝑁 ↔ (-1 < 𝑁 ∨ -1 = 𝑁))) |
143 | 141, 21, 142 | sylancr 587 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-1 ≤ 𝑁 ↔ (-1 < 𝑁 ∨ -1 = 𝑁))) |
144 | 140, 143 | mpbid 231 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-1 < 𝑁 ∨ -1 = 𝑁)) |
145 | 94, 129, 144 | mpjaodan 956 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑇 = -(i · π) ∨ 𝑇 = (i · π))) |
146 | 3 | ovexi 7318 |
. . 3
⊢ 𝑇 ∈ V |
147 | 146 | elpr 4585 |
. 2
⊢ (𝑇 ∈ {-(i · π), (i
· π)} ↔ (𝑇 =
-(i · π) ∨ 𝑇 =
(i · π))) |
148 | 145, 147 | sylibr 233 |
1
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑇 ∈ {-(i · π), (i ·
π)}) |