MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ang180lem3 Structured version   Visualization version   GIF version

Theorem ang180lem3 26721
Description: Lemma for ang180 26724. Since ang180lem1 26719 shows that 𝑁 is an integer and ang180lem2 26720 shows that 𝑁 is strictly between -2 and 1, it follows that 𝑁 ∈ {-1, 0}, and these two cases correspond to the two possible values for 𝑇. (Contributed by Mario Carneiro, 23-Sep-2014.)
Hypotheses
Ref Expression
ang.1 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
ang180lem1.2 𝑇 = (((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴))
ang180lem1.3 𝑁 = (((𝑇 / i) / (2 · π)) − (1 / 2))
Assertion
Ref Expression
ang180lem3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑇 ∈ {-(i · π), (i · π)})
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝑇(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem ang180lem3
StepHypRef Expression
1 ang180lem1.3 . . . . . . . . . 10 𝑁 = (((𝑇 / i) / (2 · π)) − (1 / 2))
2 ang.1 . . . . . . . . . . . . . . . 16 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
3 ang180lem1.2 . . . . . . . . . . . . . . . 16 𝑇 = (((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴))
42, 3, 1ang180lem2 26720 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-2 < 𝑁𝑁 < 1))
54simprd 495 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑁 < 1)
6 1e0p1 12691 . . . . . . . . . . . . . 14 1 = (0 + 1)
75, 6breqtrdi 5148 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑁 < (0 + 1))
82, 3, 1ang180lem1 26719 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑁 ∈ ℤ ∧ (𝑇 / i) ∈ ℝ))
98simpld 494 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑁 ∈ ℤ)
10 0z 12540 . . . . . . . . . . . . . 14 0 ∈ ℤ
11 zleltp1 12584 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑁 ≤ 0 ↔ 𝑁 < (0 + 1)))
129, 10, 11sylancl 586 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑁 ≤ 0 ↔ 𝑁 < (0 + 1)))
137, 12mpbird 257 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑁 ≤ 0)
1413adantr 480 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → 𝑁 ≤ 0)
15 zlem1lt 12585 . . . . . . . . . . . . . 14 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ≤ 𝑁 ↔ (0 − 1) < 𝑁))
1610, 9, 15sylancr 587 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (0 ≤ 𝑁 ↔ (0 − 1) < 𝑁))
17 df-neg 11408 . . . . . . . . . . . . . 14 -1 = (0 − 1)
1817breq1i 5114 . . . . . . . . . . . . 13 (-1 < 𝑁 ↔ (0 − 1) < 𝑁)
1916, 18bitr4di 289 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (0 ≤ 𝑁 ↔ -1 < 𝑁))
2019biimpar 477 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → 0 ≤ 𝑁)
219zred 12638 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑁 ∈ ℝ)
2221adantr 480 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → 𝑁 ∈ ℝ)
23 0re 11176 . . . . . . . . . . . 12 0 ∈ ℝ
24 letri3 11259 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 0 ∈ ℝ) → (𝑁 = 0 ↔ (𝑁 ≤ 0 ∧ 0 ≤ 𝑁)))
2522, 23, 24sylancl 586 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → (𝑁 = 0 ↔ (𝑁 ≤ 0 ∧ 0 ≤ 𝑁)))
2614, 20, 25mpbir2and 713 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → 𝑁 = 0)
271, 26eqtr3id 2778 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → (((𝑇 / i) / (2 · π)) − (1 / 2)) = 0)
28 ax-1cn 11126 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℂ
29 simp1 1136 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝐴 ∈ ℂ)
30 subcl 11420 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 − 𝐴) ∈ ℂ)
3128, 29, 30sylancr 587 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 − 𝐴) ∈ ℂ)
32 simp3 1138 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝐴 ≠ 1)
3332necomd 2980 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 1 ≠ 𝐴)
34 subeq0 11448 . . . . . . . . . . . . . . . . . . . . 21 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 − 𝐴) = 0 ↔ 1 = 𝐴))
3528, 29, 34sylancr 587 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((1 − 𝐴) = 0 ↔ 1 = 𝐴))
3635necon3bid 2969 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((1 − 𝐴) ≠ 0 ↔ 1 ≠ 𝐴))
3733, 36mpbird 257 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 − 𝐴) ≠ 0)
3831, 37reccld 11951 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 / (1 − 𝐴)) ∈ ℂ)
3931, 37recne0d 11952 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 / (1 − 𝐴)) ≠ 0)
4038, 39logcld 26479 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (log‘(1 / (1 − 𝐴))) ∈ ℂ)
41 subcl 11420 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 − 1) ∈ ℂ)
4229, 28, 41sylancl 586 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝐴 − 1) ∈ ℂ)
43 simp2 1137 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝐴 ≠ 0)
4442, 29, 43divcld 11958 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) / 𝐴) ∈ ℂ)
45 subeq0 11448 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 − 1) = 0 ↔ 𝐴 = 1))
4629, 28, 45sylancl 586 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) = 0 ↔ 𝐴 = 1))
4746necon3bid 2969 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) ≠ 0 ↔ 𝐴 ≠ 1))
4832, 47mpbird 257 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝐴 − 1) ≠ 0)
4942, 29, 48, 43divne0d 11974 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) / 𝐴) ≠ 0)
5044, 49logcld 26479 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (log‘((𝐴 − 1) / 𝐴)) ∈ ℂ)
5140, 50addcld 11193 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) ∈ ℂ)
52 logcl 26477 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ)
53523adant3 1132 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (log‘𝐴) ∈ ℂ)
5451, 53addcld 11193 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴)) ∈ ℂ)
553, 54eqeltrid 2832 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑇 ∈ ℂ)
56 ax-icn 11127 . . . . . . . . . . . . . 14 i ∈ ℂ
5756a1i 11 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → i ∈ ℂ)
58 ine0 11613 . . . . . . . . . . . . . 14 i ≠ 0
5958a1i 11 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → i ≠ 0)
6055, 57, 59divcld 11958 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑇 / i) ∈ ℂ)
61 2cn 12261 . . . . . . . . . . . . . 14 2 ∈ ℂ
62 picn 26367 . . . . . . . . . . . . . 14 π ∈ ℂ
6361, 62mulcli 11181 . . . . . . . . . . . . 13 (2 · π) ∈ ℂ
6463a1i 11 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (2 · π) ∈ ℂ)
65 2ne0 12290 . . . . . . . . . . . . . 14 2 ≠ 0
66 pire 26366 . . . . . . . . . . . . . . 15 π ∈ ℝ
67 pipos 26368 . . . . . . . . . . . . . . 15 0 < π
6866, 67gt0ne0ii 11714 . . . . . . . . . . . . . 14 π ≠ 0
6961, 62, 65, 68mulne0i 11821 . . . . . . . . . . . . 13 (2 · π) ≠ 0
7069a1i 11 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (2 · π) ≠ 0)
7160, 64, 70divcld 11958 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 / i) / (2 · π)) ∈ ℂ)
7271adantr 480 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → ((𝑇 / i) / (2 · π)) ∈ ℂ)
73 halfcn 12396 . . . . . . . . . 10 (1 / 2) ∈ ℂ
74 subeq0 11448 . . . . . . . . . 10 ((((𝑇 / i) / (2 · π)) ∈ ℂ ∧ (1 / 2) ∈ ℂ) → ((((𝑇 / i) / (2 · π)) − (1 / 2)) = 0 ↔ ((𝑇 / i) / (2 · π)) = (1 / 2)))
7572, 73, 74sylancl 586 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → ((((𝑇 / i) / (2 · π)) − (1 / 2)) = 0 ↔ ((𝑇 / i) / (2 · π)) = (1 / 2)))
7627, 75mpbid 232 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → ((𝑇 / i) / (2 · π)) = (1 / 2))
7760adantr 480 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → (𝑇 / i) ∈ ℂ)
7863a1i 11 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → (2 · π) ∈ ℂ)
7973a1i 11 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → (1 / 2) ∈ ℂ)
8069a1i 11 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → (2 · π) ≠ 0)
8177, 78, 79, 80divmuld 11980 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → (((𝑇 / i) / (2 · π)) = (1 / 2) ↔ ((2 · π) · (1 / 2)) = (𝑇 / i)))
8276, 81mpbid 232 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → ((2 · π) · (1 / 2)) = (𝑇 / i))
8363, 61, 65divreci 11927 . . . . . . . 8 ((2 · π) / 2) = ((2 · π) · (1 / 2))
8462, 61, 65divcan3i 11928 . . . . . . . 8 ((2 · π) / 2) = π
8583, 84eqtr3i 2754 . . . . . . 7 ((2 · π) · (1 / 2)) = π
8682, 85eqtr3di 2779 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → (𝑇 / i) = π)
8755adantr 480 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → 𝑇 ∈ ℂ)
8856a1i 11 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → i ∈ ℂ)
8962a1i 11 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → π ∈ ℂ)
9058a1i 11 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → i ≠ 0)
9187, 88, 89, 90divmuld 11980 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → ((𝑇 / i) = π ↔ (i · π) = 𝑇))
9286, 91mpbid 232 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → (i · π) = 𝑇)
9392eqcomd 2735 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → 𝑇 = (i · π))
9493olcd 874 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → (𝑇 = -(i · π) ∨ 𝑇 = (i · π)))
9562, 56mulneg1i 11624 . . . . . . 7 (-π · i) = -(π · i)
9662, 56mulcomi 11182 . . . . . . . 8 (π · i) = (i · π)
9796negeqi 11414 . . . . . . 7 -(π · i) = -(i · π)
9895, 97eqtri 2752 . . . . . 6 (-π · i) = -(i · π)
9973, 63mulneg1i 11624 . . . . . . . . . 10 (-(1 / 2) · (2 · π)) = -((1 / 2) · (2 · π))
10028, 61, 65divcan1i 11926 . . . . . . . . . . . . 13 ((1 / 2) · 2) = 1
101100oveq1i 7397 . . . . . . . . . . . 12 (((1 / 2) · 2) · π) = (1 · π)
10273, 61, 62mulassi 11185 . . . . . . . . . . . 12 (((1 / 2) · 2) · π) = ((1 / 2) · (2 · π))
10362mullidi 11179 . . . . . . . . . . . 12 (1 · π) = π
104101, 102, 1033eqtr3i 2760 . . . . . . . . . . 11 ((1 / 2) · (2 · π)) = π
105104negeqi 11414 . . . . . . . . . 10 -((1 / 2) · (2 · π)) = -π
10699, 105eqtri 2752 . . . . . . . . 9 (-(1 / 2) · (2 · π)) = -π
10728, 73negsubdii 11507 . . . . . . . . . . . . 13 -(1 − (1 / 2)) = (-1 + (1 / 2))
108 1mhlfehlf 12401 . . . . . . . . . . . . . 14 (1 − (1 / 2)) = (1 / 2)
109108negeqi 11414 . . . . . . . . . . . . 13 -(1 − (1 / 2)) = -(1 / 2)
110107, 109eqtr3i 2754 . . . . . . . . . . . 12 (-1 + (1 / 2)) = -(1 / 2)
111 simpr 484 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → -1 = 𝑁)
112111, 1eqtrdi 2780 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → -1 = (((𝑇 / i) / (2 · π)) − (1 / 2)))
113112oveq1d 7402 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → (-1 + (1 / 2)) = ((((𝑇 / i) / (2 · π)) − (1 / 2)) + (1 / 2)))
114110, 113eqtr3id 2778 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → -(1 / 2) = ((((𝑇 / i) / (2 · π)) − (1 / 2)) + (1 / 2)))
115 npcan 11430 . . . . . . . . . . . . 13 ((((𝑇 / i) / (2 · π)) ∈ ℂ ∧ (1 / 2) ∈ ℂ) → ((((𝑇 / i) / (2 · π)) − (1 / 2)) + (1 / 2)) = ((𝑇 / i) / (2 · π)))
11671, 73, 115sylancl 586 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((((𝑇 / i) / (2 · π)) − (1 / 2)) + (1 / 2)) = ((𝑇 / i) / (2 · π)))
117116adantr 480 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → ((((𝑇 / i) / (2 · π)) − (1 / 2)) + (1 / 2)) = ((𝑇 / i) / (2 · π)))
118114, 117eqtrd 2764 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → -(1 / 2) = ((𝑇 / i) / (2 · π)))
119118oveq1d 7402 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → (-(1 / 2) · (2 · π)) = (((𝑇 / i) / (2 · π)) · (2 · π)))
120106, 119eqtr3id 2778 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → -π = (((𝑇 / i) / (2 · π)) · (2 · π)))
12160, 64, 70divcan1d 11959 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((𝑇 / i) / (2 · π)) · (2 · π)) = (𝑇 / i))
122121adantr 480 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → (((𝑇 / i) / (2 · π)) · (2 · π)) = (𝑇 / i))
123120, 122eqtrd 2764 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → -π = (𝑇 / i))
124123oveq1d 7402 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → (-π · i) = ((𝑇 / i) · i))
12598, 124eqtr3id 2778 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → -(i · π) = ((𝑇 / i) · i))
12655, 57, 59divcan1d 11959 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 / i) · i) = 𝑇)
127126adantr 480 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → ((𝑇 / i) · i) = 𝑇)
128125, 127eqtr2d 2765 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → 𝑇 = -(i · π))
129128orcd 873 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → (𝑇 = -(i · π) ∨ 𝑇 = (i · π)))
130 df-2 12249 . . . . . . . 8 2 = (1 + 1)
131130negeqi 11414 . . . . . . 7 -2 = -(1 + 1)
132 negdi2 11480 . . . . . . . 8 ((1 ∈ ℂ ∧ 1 ∈ ℂ) → -(1 + 1) = (-1 − 1))
13328, 28, 132mp2an 692 . . . . . . 7 -(1 + 1) = (-1 − 1)
134131, 133eqtri 2752 . . . . . 6 -2 = (-1 − 1)
1354simpld 494 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -2 < 𝑁)
136134, 135eqbrtrrid 5143 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-1 − 1) < 𝑁)
137 neg1z 12569 . . . . . 6 -1 ∈ ℤ
138 zlem1lt 12585 . . . . . 6 ((-1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-1 ≤ 𝑁 ↔ (-1 − 1) < 𝑁))
139137, 9, 138sylancr 587 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-1 ≤ 𝑁 ↔ (-1 − 1) < 𝑁))
140136, 139mpbird 257 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -1 ≤ 𝑁)
141 neg1rr 12172 . . . . 5 -1 ∈ ℝ
142 leloe 11260 . . . . 5 ((-1 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (-1 ≤ 𝑁 ↔ (-1 < 𝑁 ∨ -1 = 𝑁)))
143141, 21, 142sylancr 587 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-1 ≤ 𝑁 ↔ (-1 < 𝑁 ∨ -1 = 𝑁)))
144140, 143mpbid 232 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-1 < 𝑁 ∨ -1 = 𝑁))
14594, 129, 144mpjaodan 960 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑇 = -(i · π) ∨ 𝑇 = (i · π)))
1463ovexi 7421 . . 3 𝑇 ∈ V
147146elpr 4614 . 2 (𝑇 ∈ {-(i · π), (i · π)} ↔ (𝑇 = -(i · π) ∨ 𝑇 = (i · π)))
148145, 147sylibr 234 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑇 ∈ {-(i · π), (i · π)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cdif 3911  {csn 4589  {cpr 4591   class class class wbr 5107  cfv 6511  (class class class)co 7387  cmpo 7389  cc 11066  cr 11067  0cc0 11068  1c1 11069  ici 11070   + caddc 11071   · cmul 11073   < clt 11208  cle 11209  cmin 11405  -cneg 11406   / cdiv 11835  2c2 12241  cz 12529  cim 15064  πcpi 16032  logclog 26463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-pi 16038  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768  df-log 26465
This theorem is referenced by:  ang180lem4  26722
  Copyright terms: Public domain W3C validator