![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > decbin0 | Structured version Visualization version GIF version |
Description: Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
decbin.1 | ⊢ 𝐴 ∈ ℕ0 |
Ref | Expression |
---|---|
decbin0 | ⊢ (4 · 𝐴) = (2 · (2 · 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2t2e4 12437 | . . 3 ⊢ (2 · 2) = 4 | |
2 | 1 | oveq1i 7448 | . 2 ⊢ ((2 · 2) · 𝐴) = (4 · 𝐴) |
3 | 2cn 12348 | . . 3 ⊢ 2 ∈ ℂ | |
4 | decbin.1 | . . . 4 ⊢ 𝐴 ∈ ℕ0 | |
5 | 4 | nn0cni 12545 | . . 3 ⊢ 𝐴 ∈ ℂ |
6 | 3, 3, 5 | mulassi 11279 | . 2 ⊢ ((2 · 2) · 𝐴) = (2 · (2 · 𝐴)) |
7 | 2, 6 | eqtr3i 2767 | 1 ⊢ (4 · 𝐴) = (2 · (2 · 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 (class class class)co 7438 · cmul 11167 2c2 12328 4c4 12330 ℕ0cn0 12533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 ax-un 7761 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-mulcl 11224 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1rid 11232 ax-cnre 11235 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-ov 7441 df-om 7895 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-nn 12274 df-2 12336 df-3 12337 df-4 12338 df-n0 12534 |
This theorem is referenced by: decbin2 12881 decexp2 17118 |
Copyright terms: Public domain | W3C validator |