| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > decbin0 | Structured version Visualization version GIF version | ||
| Description: Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| decbin.1 | ⊢ 𝐴 ∈ ℕ0 |
| Ref | Expression |
|---|---|
| decbin0 | ⊢ (4 · 𝐴) = (2 · (2 · 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2t2e4 12352 | . . 3 ⊢ (2 · 2) = 4 | |
| 2 | 1 | oveq1i 7400 | . 2 ⊢ ((2 · 2) · 𝐴) = (4 · 𝐴) |
| 3 | 2cn 12268 | . . 3 ⊢ 2 ∈ ℂ | |
| 4 | decbin.1 | . . . 4 ⊢ 𝐴 ∈ ℕ0 | |
| 5 | 4 | nn0cni 12461 | . . 3 ⊢ 𝐴 ∈ ℂ |
| 6 | 3, 3, 5 | mulassi 11192 | . 2 ⊢ ((2 · 2) · 𝐴) = (2 · (2 · 𝐴)) |
| 7 | 2, 6 | eqtr3i 2755 | 1 ⊢ (4 · 𝐴) = (2 · (2 · 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7390 · cmul 11080 2c2 12248 4c4 12250 ℕ0cn0 12449 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-mulcl 11137 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1rid 11145 ax-cnre 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-n0 12450 |
| This theorem is referenced by: decbin2 12797 |
| Copyright terms: Public domain | W3C validator |