MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  decbin0 Structured version   Visualization version   GIF version

Theorem decbin0 12821
Description: Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypothesis
Ref Expression
decbin.1 𝐴 ∈ ℕ0
Assertion
Ref Expression
decbin0 (4 · 𝐴) = (2 · (2 · 𝐴))

Proof of Theorem decbin0
StepHypRef Expression
1 2t2e4 12380 . . 3 (2 · 2) = 4
21oveq1i 7415 . 2 ((2 · 2) · 𝐴) = (4 · 𝐴)
3 2cn 12291 . . 3 2 ∈ ℂ
4 decbin.1 . . . 4 𝐴 ∈ ℕ0
54nn0cni 12488 . . 3 𝐴 ∈ ℂ
63, 3, 5mulassi 11229 . 2 ((2 · 2) · 𝐴) = (2 · (2 · 𝐴))
72, 6eqtr3i 2756 1 (4 · 𝐴) = (2 · (2 · 𝐴))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wcel 2098  (class class class)co 7405   · cmul 11117  2c2 12271  4c4 12273  0cn0 12476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7722  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-mulcl 11174  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1rid 11182  ax-cnre 11185
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-ov 7408  df-om 7853  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-n0 12477
This theorem is referenced by:  decbin2  12822  decexp2  17017
  Copyright terms: Public domain W3C validator