![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mulassnni | Structured version Visualization version GIF version |
Description: Associative law for multiplication. (Contributed by metakunt, 25-Apr-2024.) |
Ref | Expression |
---|---|
mulassnni.1 | ⊢ 𝐴 ∈ ℕ |
mulassnni.2 | ⊢ 𝐵 ∈ ℕ |
mulassnni.3 | ⊢ 𝐶 ∈ ℕ |
Ref | Expression |
---|---|
mulassnni | ⊢ ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulassnni.1 | . . 3 ⊢ 𝐴 ∈ ℕ | |
2 | 1 | nncni 12297 | . 2 ⊢ 𝐴 ∈ ℂ |
3 | mulassnni.2 | . . 3 ⊢ 𝐵 ∈ ℕ | |
4 | 3 | nncni 12297 | . 2 ⊢ 𝐵 ∈ ℂ |
5 | mulassnni.3 | . . 3 ⊢ 𝐶 ∈ ℕ | |
6 | 5 | nncni 12297 | . 2 ⊢ 𝐶 ∈ ℂ |
7 | 2, 4, 6 | mulassi 11295 | 1 ⊢ ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 (class class class)co 7443 · cmul 11183 ℕcn 12287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7764 ax-1cn 11236 ax-addcl 11238 ax-mulass 11244 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5650 df-we 5652 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-rn 5706 df-res 5707 df-ima 5708 df-pred 6327 df-ord 6393 df-on 6394 df-lim 6395 df-suc 6396 df-iota 6520 df-fun 6570 df-fn 6571 df-f 6572 df-f1 6573 df-fo 6574 df-f1o 6575 df-fv 6576 df-ov 7446 df-om 7898 df-2nd 8025 df-frecs 8316 df-wrecs 8347 df-recs 8421 df-rdg 8460 df-nn 12288 |
This theorem is referenced by: 420lcm8e840 41961 |
Copyright terms: Public domain | W3C validator |