MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sincos4thpi Structured version   Visualization version   GIF version

Theorem sincos4thpi 26403
Description: The sine and cosine of π / 4. (Contributed by Paul Chapman, 25-Jan-2008.)
Assertion
Ref Expression
sincos4thpi ((sin‘(π / 4)) = (1 / (√‘2)) ∧ (cos‘(π / 4)) = (1 / (√‘2)))

Proof of Theorem sincos4thpi
StepHypRef Expression
1 halfcn 12431 . . . . . . . . . 10 (1 / 2) ∈ ℂ
2 ax-1cn 11170 . . . . . . . . . . 11 1 ∈ ℂ
3 2halves 12444 . . . . . . . . . . 11 (1 ∈ ℂ → ((1 / 2) + (1 / 2)) = 1)
42, 3ax-mp 5 . . . . . . . . . 10 ((1 / 2) + (1 / 2)) = 1
5 sincosq1eq 26402 . . . . . . . . . 10 (((1 / 2) ∈ ℂ ∧ (1 / 2) ∈ ℂ ∧ ((1 / 2) + (1 / 2)) = 1) → (sin‘((1 / 2) · (π / 2))) = (cos‘((1 / 2) · (π / 2))))
61, 1, 4, 5mp3an 1457 . . . . . . . . 9 (sin‘((1 / 2) · (π / 2))) = (cos‘((1 / 2) · (π / 2)))
76oveq2i 7416 . . . . . . . 8 ((sin‘((1 / 2) · (π / 2))) · (sin‘((1 / 2) · (π / 2)))) = ((sin‘((1 / 2) · (π / 2))) · (cos‘((1 / 2) · (π / 2))))
87oveq2i 7416 . . . . . . 7 (2 · ((sin‘((1 / 2) · (π / 2))) · (sin‘((1 / 2) · (π / 2))))) = (2 · ((sin‘((1 / 2) · (π / 2))) · (cos‘((1 / 2) · (π / 2)))))
9 2cn 12291 . . . . . . . . . . . 12 2 ∈ ℂ
10 pire 26348 . . . . . . . . . . . . 13 π ∈ ℝ
1110recni 11232 . . . . . . . . . . . 12 π ∈ ℂ
12 2ne0 12320 . . . . . . . . . . . 12 2 ≠ 0
132, 9, 11, 9, 12, 12divmuldivi 11978 . . . . . . . . . . 11 ((1 / 2) · (π / 2)) = ((1 · π) / (2 · 2))
1411mullidi 11223 . . . . . . . . . . . 12 (1 · π) = π
15 2t2e4 12380 . . . . . . . . . . . 12 (2 · 2) = 4
1614, 15oveq12i 7417 . . . . . . . . . . 11 ((1 · π) / (2 · 2)) = (π / 4)
1713, 16eqtri 2754 . . . . . . . . . 10 ((1 / 2) · (π / 2)) = (π / 4)
1817fveq2i 6888 . . . . . . . . 9 (sin‘((1 / 2) · (π / 2))) = (sin‘(π / 4))
1918, 18oveq12i 7417 . . . . . . . 8 ((sin‘((1 / 2) · (π / 2))) · (sin‘((1 / 2) · (π / 2)))) = ((sin‘(π / 4)) · (sin‘(π / 4)))
2019oveq2i 7416 . . . . . . 7 (2 · ((sin‘((1 / 2) · (π / 2))) · (sin‘((1 / 2) · (π / 2))))) = (2 · ((sin‘(π / 4)) · (sin‘(π / 4))))
219, 12recidi 11949 . . . . . . . . . . 11 (2 · (1 / 2)) = 1
2221oveq1i 7415 . . . . . . . . . 10 ((2 · (1 / 2)) · (π / 2)) = (1 · (π / 2))
23 2re 12290 . . . . . . . . . . . . 13 2 ∈ ℝ
2410, 23, 12redivcli 11985 . . . . . . . . . . . 12 (π / 2) ∈ ℝ
2524recni 11232 . . . . . . . . . . 11 (π / 2) ∈ ℂ
269, 1, 25mulassi 11229 . . . . . . . . . 10 ((2 · (1 / 2)) · (π / 2)) = (2 · ((1 / 2) · (π / 2)))
2725mullidi 11223 . . . . . . . . . 10 (1 · (π / 2)) = (π / 2)
2822, 26, 273eqtr3i 2762 . . . . . . . . 9 (2 · ((1 / 2) · (π / 2))) = (π / 2)
2928fveq2i 6888 . . . . . . . 8 (sin‘(2 · ((1 / 2) · (π / 2)))) = (sin‘(π / 2))
301, 25mulcli 11225 . . . . . . . . 9 ((1 / 2) · (π / 2)) ∈ ℂ
31 sin2t 16127 . . . . . . . . 9 (((1 / 2) · (π / 2)) ∈ ℂ → (sin‘(2 · ((1 / 2) · (π / 2)))) = (2 · ((sin‘((1 / 2) · (π / 2))) · (cos‘((1 / 2) · (π / 2))))))
3230, 31ax-mp 5 . . . . . . . 8 (sin‘(2 · ((1 / 2) · (π / 2)))) = (2 · ((sin‘((1 / 2) · (π / 2))) · (cos‘((1 / 2) · (π / 2)))))
33 sinhalfpi 26358 . . . . . . . 8 (sin‘(π / 2)) = 1
3429, 32, 333eqtr3i 2762 . . . . . . 7 (2 · ((sin‘((1 / 2) · (π / 2))) · (cos‘((1 / 2) · (π / 2))))) = 1
358, 20, 343eqtr3i 2762 . . . . . 6 (2 · ((sin‘(π / 4)) · (sin‘(π / 4)))) = 1
3635fveq2i 6888 . . . . 5 (√‘(2 · ((sin‘(π / 4)) · (sin‘(π / 4))))) = (√‘1)
37 4re 12300 . . . . . . . . 9 4 ∈ ℝ
38 4ne0 12324 . . . . . . . . 9 4 ≠ 0
3910, 37, 38redivcli 11985 . . . . . . . 8 (π / 4) ∈ ℝ
40 resincl 16090 . . . . . . . 8 ((π / 4) ∈ ℝ → (sin‘(π / 4)) ∈ ℝ)
4139, 40ax-mp 5 . . . . . . 7 (sin‘(π / 4)) ∈ ℝ
4241, 41remulcli 11234 . . . . . 6 ((sin‘(π / 4)) · (sin‘(π / 4))) ∈ ℝ
43 0le2 12318 . . . . . 6 0 ≤ 2
4441msqge0i 11756 . . . . . 6 0 ≤ ((sin‘(π / 4)) · (sin‘(π / 4)))
4523, 42, 43, 44sqrtmulii 15339 . . . . 5 (√‘(2 · ((sin‘(π / 4)) · (sin‘(π / 4))))) = ((√‘2) · (√‘((sin‘(π / 4)) · (sin‘(π / 4)))))
46 sqrt1 15224 . . . . 5 (√‘1) = 1
4736, 45, 463eqtr3ri 2763 . . . 4 1 = ((√‘2) · (√‘((sin‘(π / 4)) · (sin‘(π / 4)))))
4842sqrtcli 15324 . . . . . . 7 (0 ≤ ((sin‘(π / 4)) · (sin‘(π / 4))) → (√‘((sin‘(π / 4)) · (sin‘(π / 4)))) ∈ ℝ)
4944, 48ax-mp 5 . . . . . 6 (√‘((sin‘(π / 4)) · (sin‘(π / 4)))) ∈ ℝ
5049recni 11232 . . . . 5 (√‘((sin‘(π / 4)) · (sin‘(π / 4)))) ∈ ℂ
51 sqrt2re 16200 . . . . . . 7 (√‘2) ∈ ℝ
5251recni 11232 . . . . . 6 (√‘2) ∈ ℂ
53 sqrt00 15216 . . . . . . . . 9 ((2 ∈ ℝ ∧ 0 ≤ 2) → ((√‘2) = 0 ↔ 2 = 0))
5423, 43, 53mp2an 689 . . . . . . . 8 ((√‘2) = 0 ↔ 2 = 0)
5554necon3bii 2987 . . . . . . 7 ((√‘2) ≠ 0 ↔ 2 ≠ 0)
5612, 55mpbir 230 . . . . . 6 (√‘2) ≠ 0
5752, 56pm3.2i 470 . . . . 5 ((√‘2) ∈ ℂ ∧ (√‘2) ≠ 0)
58 divmul2 11880 . . . . 5 ((1 ∈ ℂ ∧ (√‘((sin‘(π / 4)) · (sin‘(π / 4)))) ∈ ℂ ∧ ((√‘2) ∈ ℂ ∧ (√‘2) ≠ 0)) → ((1 / (√‘2)) = (√‘((sin‘(π / 4)) · (sin‘(π / 4)))) ↔ 1 = ((√‘2) · (√‘((sin‘(π / 4)) · (sin‘(π / 4)))))))
592, 50, 57, 58mp3an 1457 . . . 4 ((1 / (√‘2)) = (√‘((sin‘(π / 4)) · (sin‘(π / 4)))) ↔ 1 = ((√‘2) · (√‘((sin‘(π / 4)) · (sin‘(π / 4))))))
6047, 59mpbir 230 . . 3 (1 / (√‘2)) = (√‘((sin‘(π / 4)) · (sin‘(π / 4))))
61 0re 11220 . . . . 5 0 ∈ ℝ
62 pipos 26350 . . . . . . . 8 0 < π
63 4pos 12323 . . . . . . . 8 0 < 4
6410, 37, 62, 63divgt0ii 12135 . . . . . . 7 0 < (π / 4)
65 1re 11218 . . . . . . . 8 1 ∈ ℝ
66 pigt2lt4 26346 . . . . . . . . . . 11 (2 < π ∧ π < 4)
6766simpri 485 . . . . . . . . . 10 π < 4
6810, 37, 37, 63ltdiv1ii 12147 . . . . . . . . . 10 (π < 4 ↔ (π / 4) < (4 / 4))
6967, 68mpbi 229 . . . . . . . . 9 (π / 4) < (4 / 4)
7037recni 11232 . . . . . . . . . 10 4 ∈ ℂ
7170, 38dividi 11951 . . . . . . . . 9 (4 / 4) = 1
7269, 71breqtri 5166 . . . . . . . 8 (π / 4) < 1
7339, 65, 72ltleii 11341 . . . . . . 7 (π / 4) ≤ 1
74 0xr 11265 . . . . . . . 8 0 ∈ ℝ*
75 elioc2 13393 . . . . . . . 8 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → ((π / 4) ∈ (0(,]1) ↔ ((π / 4) ∈ ℝ ∧ 0 < (π / 4) ∧ (π / 4) ≤ 1)))
7674, 65, 75mp2an 689 . . . . . . 7 ((π / 4) ∈ (0(,]1) ↔ ((π / 4) ∈ ℝ ∧ 0 < (π / 4) ∧ (π / 4) ≤ 1))
7739, 64, 73, 76mpbir3an 1338 . . . . . 6 (π / 4) ∈ (0(,]1)
78 sin01gt0 16140 . . . . . 6 ((π / 4) ∈ (0(,]1) → 0 < (sin‘(π / 4)))
7977, 78ax-mp 5 . . . . 5 0 < (sin‘(π / 4))
8061, 41, 79ltleii 11341 . . . 4 0 ≤ (sin‘(π / 4))
8141sqrtmsqi 15326 . . . 4 (0 ≤ (sin‘(π / 4)) → (√‘((sin‘(π / 4)) · (sin‘(π / 4)))) = (sin‘(π / 4)))
8280, 81ax-mp 5 . . 3 (√‘((sin‘(π / 4)) · (sin‘(π / 4)))) = (sin‘(π / 4))
8360, 82eqtr2i 2755 . 2 (sin‘(π / 4)) = (1 / (√‘2))
8460, 82eqtri 2754 . . 3 (1 / (√‘2)) = (sin‘(π / 4))
8517fveq2i 6888 . . . 4 (cos‘((1 / 2) · (π / 2))) = (cos‘(π / 4))
866, 18, 853eqtr3i 2762 . . 3 (sin‘(π / 4)) = (cos‘(π / 4))
8784, 86eqtr2i 2755 . 2 (cos‘(π / 4)) = (1 / (√‘2))
8883, 87pm3.2i 470 1 ((sin‘(π / 4)) = (1 / (√‘2)) ∧ (cos‘(π / 4)) = (1 / (√‘2)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098  wne 2934   class class class wbr 5141  cfv 6537  (class class class)co 7405  cc 11110  cr 11111  0cc0 11112  1c1 11113   + caddc 11115   · cmul 11117  *cxr 11251   < clt 11252  cle 11253   / cdiv 11875  2c2 12271  4c4 12273  (,]cioc 13331  csqrt 15186  sincsin 16013  cosccos 16014  πcpi 16016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-inf2 9638  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190  ax-addf 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-isom 6546  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7667  df-om 7853  df-1st 7974  df-2nd 7975  df-supp 8147  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-2o 8468  df-er 8705  df-map 8824  df-pm 8825  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fsupp 9364  df-fi 9408  df-sup 9439  df-inf 9440  df-oi 9507  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-z 12563  df-dec 12682  df-uz 12827  df-q 12937  df-rp 12981  df-xneg 13098  df-xadd 13099  df-xmul 13100  df-ioo 13334  df-ioc 13335  df-ico 13336  df-icc 13337  df-fz 13491  df-fzo 13634  df-fl 13763  df-seq 13973  df-exp 14033  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15020  df-cj 15052  df-re 15053  df-im 15054  df-sqrt 15188  df-abs 15189  df-limsup 15421  df-clim 15438  df-rlim 15439  df-sum 15639  df-ef 16017  df-sin 16019  df-cos 16020  df-pi 16022  df-struct 17089  df-sets 17106  df-slot 17124  df-ndx 17136  df-base 17154  df-ress 17183  df-plusg 17219  df-mulr 17220  df-starv 17221  df-sca 17222  df-vsca 17223  df-ip 17224  df-tset 17225  df-ple 17226  df-ds 17228  df-unif 17229  df-hom 17230  df-cco 17231  df-rest 17377  df-topn 17378  df-0g 17396  df-gsum 17397  df-topgen 17398  df-pt 17399  df-prds 17402  df-xrs 17457  df-qtop 17462  df-imas 17463  df-xps 17465  df-mre 17539  df-mrc 17540  df-acs 17542  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-submnd 18714  df-mulg 18996  df-cntz 19233  df-cmn 19702  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-fbas 21237  df-fg 21238  df-cnfld 21241  df-top 22751  df-topon 22768  df-topsp 22790  df-bases 22804  df-cld 22878  df-ntr 22879  df-cls 22880  df-nei 22957  df-lp 22995  df-perf 22996  df-cn 23086  df-cnp 23087  df-haus 23174  df-tx 23421  df-hmeo 23614  df-fil 23705  df-fm 23797  df-flim 23798  df-flf 23799  df-xms 24181  df-ms 24182  df-tms 24183  df-cncf 24753  df-limc 25750  df-dv 25751
This theorem is referenced by:  tan4thpi  26404
  Copyright terms: Public domain W3C validator