MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sincos4thpi Structured version   Visualization version   GIF version

Theorem sincos4thpi 26479
Description: The sine and cosine of π / 4. (Contributed by Paul Chapman, 25-Jan-2008.)
Assertion
Ref Expression
sincos4thpi ((sin‘(π / 4)) = (1 / (√‘2)) ∧ (cos‘(π / 4)) = (1 / (√‘2)))

Proof of Theorem sincos4thpi
StepHypRef Expression
1 halfcn 12460 . . . . . . . . . 10 (1 / 2) ∈ ℂ
2 ax-1cn 11192 . . . . . . . . . . 11 1 ∈ ℂ
3 2halves 12464 . . . . . . . . . . 11 (1 ∈ ℂ → ((1 / 2) + (1 / 2)) = 1)
42, 3ax-mp 5 . . . . . . . . . 10 ((1 / 2) + (1 / 2)) = 1
5 sincosq1eq 26478 . . . . . . . . . 10 (((1 / 2) ∈ ℂ ∧ (1 / 2) ∈ ℂ ∧ ((1 / 2) + (1 / 2)) = 1) → (sin‘((1 / 2) · (π / 2))) = (cos‘((1 / 2) · (π / 2))))
61, 1, 4, 5mp3an 1463 . . . . . . . . 9 (sin‘((1 / 2) · (π / 2))) = (cos‘((1 / 2) · (π / 2)))
76oveq2i 7421 . . . . . . . 8 ((sin‘((1 / 2) · (π / 2))) · (sin‘((1 / 2) · (π / 2)))) = ((sin‘((1 / 2) · (π / 2))) · (cos‘((1 / 2) · (π / 2))))
87oveq2i 7421 . . . . . . 7 (2 · ((sin‘((1 / 2) · (π / 2))) · (sin‘((1 / 2) · (π / 2))))) = (2 · ((sin‘((1 / 2) · (π / 2))) · (cos‘((1 / 2) · (π / 2)))))
9 2cn 12320 . . . . . . . . . . . 12 2 ∈ ℂ
10 pire 26423 . . . . . . . . . . . . 13 π ∈ ℝ
1110recni 11254 . . . . . . . . . . . 12 π ∈ ℂ
12 2ne0 12349 . . . . . . . . . . . 12 2 ≠ 0
132, 9, 11, 9, 12, 12divmuldivi 12006 . . . . . . . . . . 11 ((1 / 2) · (π / 2)) = ((1 · π) / (2 · 2))
1411mullidi 11245 . . . . . . . . . . . 12 (1 · π) = π
15 2t2e4 12409 . . . . . . . . . . . 12 (2 · 2) = 4
1614, 15oveq12i 7422 . . . . . . . . . . 11 ((1 · π) / (2 · 2)) = (π / 4)
1713, 16eqtri 2759 . . . . . . . . . 10 ((1 / 2) · (π / 2)) = (π / 4)
1817fveq2i 6884 . . . . . . . . 9 (sin‘((1 / 2) · (π / 2))) = (sin‘(π / 4))
1918, 18oveq12i 7422 . . . . . . . 8 ((sin‘((1 / 2) · (π / 2))) · (sin‘((1 / 2) · (π / 2)))) = ((sin‘(π / 4)) · (sin‘(π / 4)))
2019oveq2i 7421 . . . . . . 7 (2 · ((sin‘((1 / 2) · (π / 2))) · (sin‘((1 / 2) · (π / 2))))) = (2 · ((sin‘(π / 4)) · (sin‘(π / 4))))
219, 12recidi 11977 . . . . . . . . . . 11 (2 · (1 / 2)) = 1
2221oveq1i 7420 . . . . . . . . . 10 ((2 · (1 / 2)) · (π / 2)) = (1 · (π / 2))
23 2re 12319 . . . . . . . . . . . . 13 2 ∈ ℝ
2410, 23, 12redivcli 12013 . . . . . . . . . . . 12 (π / 2) ∈ ℝ
2524recni 11254 . . . . . . . . . . 11 (π / 2) ∈ ℂ
269, 1, 25mulassi 11251 . . . . . . . . . 10 ((2 · (1 / 2)) · (π / 2)) = (2 · ((1 / 2) · (π / 2)))
2725mullidi 11245 . . . . . . . . . 10 (1 · (π / 2)) = (π / 2)
2822, 26, 273eqtr3i 2767 . . . . . . . . 9 (2 · ((1 / 2) · (π / 2))) = (π / 2)
2928fveq2i 6884 . . . . . . . 8 (sin‘(2 · ((1 / 2) · (π / 2)))) = (sin‘(π / 2))
301, 25mulcli 11247 . . . . . . . . 9 ((1 / 2) · (π / 2)) ∈ ℂ
31 sin2t 16200 . . . . . . . . 9 (((1 / 2) · (π / 2)) ∈ ℂ → (sin‘(2 · ((1 / 2) · (π / 2)))) = (2 · ((sin‘((1 / 2) · (π / 2))) · (cos‘((1 / 2) · (π / 2))))))
3230, 31ax-mp 5 . . . . . . . 8 (sin‘(2 · ((1 / 2) · (π / 2)))) = (2 · ((sin‘((1 / 2) · (π / 2))) · (cos‘((1 / 2) · (π / 2)))))
33 sinhalfpi 26434 . . . . . . . 8 (sin‘(π / 2)) = 1
3429, 32, 333eqtr3i 2767 . . . . . . 7 (2 · ((sin‘((1 / 2) · (π / 2))) · (cos‘((1 / 2) · (π / 2))))) = 1
358, 20, 343eqtr3i 2767 . . . . . 6 (2 · ((sin‘(π / 4)) · (sin‘(π / 4)))) = 1
3635fveq2i 6884 . . . . 5 (√‘(2 · ((sin‘(π / 4)) · (sin‘(π / 4))))) = (√‘1)
37 4re 12329 . . . . . . . . 9 4 ∈ ℝ
38 4ne0 12353 . . . . . . . . 9 4 ≠ 0
3910, 37, 38redivcli 12013 . . . . . . . 8 (π / 4) ∈ ℝ
40 resincl 16163 . . . . . . . 8 ((π / 4) ∈ ℝ → (sin‘(π / 4)) ∈ ℝ)
4139, 40ax-mp 5 . . . . . . 7 (sin‘(π / 4)) ∈ ℝ
4241, 41remulcli 11256 . . . . . 6 ((sin‘(π / 4)) · (sin‘(π / 4))) ∈ ℝ
43 0le2 12347 . . . . . 6 0 ≤ 2
4441msqge0i 11780 . . . . . 6 0 ≤ ((sin‘(π / 4)) · (sin‘(π / 4)))
4523, 42, 43, 44sqrtmulii 15410 . . . . 5 (√‘(2 · ((sin‘(π / 4)) · (sin‘(π / 4))))) = ((√‘2) · (√‘((sin‘(π / 4)) · (sin‘(π / 4)))))
46 sqrt1 15295 . . . . 5 (√‘1) = 1
4736, 45, 463eqtr3ri 2768 . . . 4 1 = ((√‘2) · (√‘((sin‘(π / 4)) · (sin‘(π / 4)))))
4842sqrtcli 15395 . . . . . . 7 (0 ≤ ((sin‘(π / 4)) · (sin‘(π / 4))) → (√‘((sin‘(π / 4)) · (sin‘(π / 4)))) ∈ ℝ)
4944, 48ax-mp 5 . . . . . 6 (√‘((sin‘(π / 4)) · (sin‘(π / 4)))) ∈ ℝ
5049recni 11254 . . . . 5 (√‘((sin‘(π / 4)) · (sin‘(π / 4)))) ∈ ℂ
51 sqrt2re 16273 . . . . . . 7 (√‘2) ∈ ℝ
5251recni 11254 . . . . . 6 (√‘2) ∈ ℂ
53 sqrt00 15287 . . . . . . . . 9 ((2 ∈ ℝ ∧ 0 ≤ 2) → ((√‘2) = 0 ↔ 2 = 0))
5423, 43, 53mp2an 692 . . . . . . . 8 ((√‘2) = 0 ↔ 2 = 0)
5554necon3bii 2985 . . . . . . 7 ((√‘2) ≠ 0 ↔ 2 ≠ 0)
5612, 55mpbir 231 . . . . . 6 (√‘2) ≠ 0
5752, 56pm3.2i 470 . . . . 5 ((√‘2) ∈ ℂ ∧ (√‘2) ≠ 0)
58 divmul2 11905 . . . . 5 ((1 ∈ ℂ ∧ (√‘((sin‘(π / 4)) · (sin‘(π / 4)))) ∈ ℂ ∧ ((√‘2) ∈ ℂ ∧ (√‘2) ≠ 0)) → ((1 / (√‘2)) = (√‘((sin‘(π / 4)) · (sin‘(π / 4)))) ↔ 1 = ((√‘2) · (√‘((sin‘(π / 4)) · (sin‘(π / 4)))))))
592, 50, 57, 58mp3an 1463 . . . 4 ((1 / (√‘2)) = (√‘((sin‘(π / 4)) · (sin‘(π / 4)))) ↔ 1 = ((√‘2) · (√‘((sin‘(π / 4)) · (sin‘(π / 4))))))
6047, 59mpbir 231 . . 3 (1 / (√‘2)) = (√‘((sin‘(π / 4)) · (sin‘(π / 4))))
61 0re 11242 . . . . 5 0 ∈ ℝ
62 pipos 26425 . . . . . . . 8 0 < π
63 4pos 12352 . . . . . . . 8 0 < 4
6410, 37, 62, 63divgt0ii 12164 . . . . . . 7 0 < (π / 4)
65 1re 11240 . . . . . . . 8 1 ∈ ℝ
66 pigt2lt4 26421 . . . . . . . . . . 11 (2 < π ∧ π < 4)
6766simpri 485 . . . . . . . . . 10 π < 4
6810, 37, 37, 63ltdiv1ii 12176 . . . . . . . . . 10 (π < 4 ↔ (π / 4) < (4 / 4))
6967, 68mpbi 230 . . . . . . . . 9 (π / 4) < (4 / 4)
7037recni 11254 . . . . . . . . . 10 4 ∈ ℂ
7170, 38dividi 11979 . . . . . . . . 9 (4 / 4) = 1
7269, 71breqtri 5149 . . . . . . . 8 (π / 4) < 1
7339, 65, 72ltleii 11363 . . . . . . 7 (π / 4) ≤ 1
74 0xr 11287 . . . . . . . 8 0 ∈ ℝ*
75 elioc2 13431 . . . . . . . 8 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → ((π / 4) ∈ (0(,]1) ↔ ((π / 4) ∈ ℝ ∧ 0 < (π / 4) ∧ (π / 4) ≤ 1)))
7674, 65, 75mp2an 692 . . . . . . 7 ((π / 4) ∈ (0(,]1) ↔ ((π / 4) ∈ ℝ ∧ 0 < (π / 4) ∧ (π / 4) ≤ 1))
7739, 64, 73, 76mpbir3an 1342 . . . . . 6 (π / 4) ∈ (0(,]1)
78 sin01gt0 16213 . . . . . 6 ((π / 4) ∈ (0(,]1) → 0 < (sin‘(π / 4)))
7977, 78ax-mp 5 . . . . 5 0 < (sin‘(π / 4))
8061, 41, 79ltleii 11363 . . . 4 0 ≤ (sin‘(π / 4))
8141sqrtmsqi 15397 . . . 4 (0 ≤ (sin‘(π / 4)) → (√‘((sin‘(π / 4)) · (sin‘(π / 4)))) = (sin‘(π / 4)))
8280, 81ax-mp 5 . . 3 (√‘((sin‘(π / 4)) · (sin‘(π / 4)))) = (sin‘(π / 4))
8360, 82eqtr2i 2760 . 2 (sin‘(π / 4)) = (1 / (√‘2))
8460, 82eqtri 2759 . . 3 (1 / (√‘2)) = (sin‘(π / 4))
8517fveq2i 6884 . . . 4 (cos‘((1 / 2) · (π / 2))) = (cos‘(π / 4))
866, 18, 853eqtr3i 2767 . . 3 (sin‘(π / 4)) = (cos‘(π / 4))
8784, 86eqtr2i 2760 . 2 (cos‘(π / 4)) = (1 / (√‘2))
8883, 87pm3.2i 470 1 ((sin‘(π / 4)) = (1 / (√‘2)) ∧ (cos‘(π / 4)) = (1 / (√‘2)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933   class class class wbr 5124  cfv 6536  (class class class)co 7410  cc 11132  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139  *cxr 11273   < clt 11274  cle 11275   / cdiv 11899  2c2 12300  4c4 12302  (,]cioc 13368  csqrt 15257  sincsin 16084  cosccos 16085  πcpi 16087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ioc 13372  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-seq 14025  df-exp 14085  df-fac 14297  df-bc 14326  df-hash 14354  df-shft 15091  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-limsup 15492  df-clim 15509  df-rlim 15510  df-sum 15708  df-ef 16088  df-sin 16090  df-cos 16091  df-pi 16093  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-xrs 17521  df-qtop 17526  df-imas 17527  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19768  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-fbas 21317  df-fg 21318  df-cnfld 21321  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-lp 23079  df-perf 23080  df-cn 23170  df-cnp 23171  df-haus 23258  df-tx 23505  df-hmeo 23698  df-fil 23789  df-fm 23881  df-flim 23882  df-flf 23883  df-xms 24264  df-ms 24265  df-tms 24266  df-cncf 24827  df-limc 25824  df-dv 25825
This theorem is referenced by:  tan4thpi  26480  tan4thpiOLD  26481
  Copyright terms: Public domain W3C validator