MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sincos4thpi Structured version   Visualization version   GIF version

Theorem sincos4thpi 26452
Description: The sine and cosine of π / 4. (Contributed by Paul Chapman, 25-Jan-2008.)
Assertion
Ref Expression
sincos4thpi ((sin‘(π / 4)) = (1 / (√‘2)) ∧ (cos‘(π / 4)) = (1 / (√‘2)))

Proof of Theorem sincos4thpi
StepHypRef Expression
1 halfcn 12344 . . . . . . . . . 10 (1 / 2) ∈ ℂ
2 ax-1cn 11073 . . . . . . . . . . 11 1 ∈ ℂ
3 2halves 12348 . . . . . . . . . . 11 (1 ∈ ℂ → ((1 / 2) + (1 / 2)) = 1)
42, 3ax-mp 5 . . . . . . . . . 10 ((1 / 2) + (1 / 2)) = 1
5 sincosq1eq 26451 . . . . . . . . . 10 (((1 / 2) ∈ ℂ ∧ (1 / 2) ∈ ℂ ∧ ((1 / 2) + (1 / 2)) = 1) → (sin‘((1 / 2) · (π / 2))) = (cos‘((1 / 2) · (π / 2))))
61, 1, 4, 5mp3an 1463 . . . . . . . . 9 (sin‘((1 / 2) · (π / 2))) = (cos‘((1 / 2) · (π / 2)))
76oveq2i 7365 . . . . . . . 8 ((sin‘((1 / 2) · (π / 2))) · (sin‘((1 / 2) · (π / 2)))) = ((sin‘((1 / 2) · (π / 2))) · (cos‘((1 / 2) · (π / 2))))
87oveq2i 7365 . . . . . . 7 (2 · ((sin‘((1 / 2) · (π / 2))) · (sin‘((1 / 2) · (π / 2))))) = (2 · ((sin‘((1 / 2) · (π / 2))) · (cos‘((1 / 2) · (π / 2)))))
9 2cn 12209 . . . . . . . . . . . 12 2 ∈ ℂ
10 pire 26396 . . . . . . . . . . . . 13 π ∈ ℝ
1110recni 11135 . . . . . . . . . . . 12 π ∈ ℂ
12 2ne0 12238 . . . . . . . . . . . 12 2 ≠ 0
132, 9, 11, 9, 12, 12divmuldivi 11890 . . . . . . . . . . 11 ((1 / 2) · (π / 2)) = ((1 · π) / (2 · 2))
1411mullidi 11126 . . . . . . . . . . . 12 (1 · π) = π
15 2t2e4 12293 . . . . . . . . . . . 12 (2 · 2) = 4
1614, 15oveq12i 7366 . . . . . . . . . . 11 ((1 · π) / (2 · 2)) = (π / 4)
1713, 16eqtri 2756 . . . . . . . . . 10 ((1 / 2) · (π / 2)) = (π / 4)
1817fveq2i 6833 . . . . . . . . 9 (sin‘((1 / 2) · (π / 2))) = (sin‘(π / 4))
1918, 18oveq12i 7366 . . . . . . . 8 ((sin‘((1 / 2) · (π / 2))) · (sin‘((1 / 2) · (π / 2)))) = ((sin‘(π / 4)) · (sin‘(π / 4)))
2019oveq2i 7365 . . . . . . 7 (2 · ((sin‘((1 / 2) · (π / 2))) · (sin‘((1 / 2) · (π / 2))))) = (2 · ((sin‘(π / 4)) · (sin‘(π / 4))))
219, 12recidi 11861 . . . . . . . . . . 11 (2 · (1 / 2)) = 1
2221oveq1i 7364 . . . . . . . . . 10 ((2 · (1 / 2)) · (π / 2)) = (1 · (π / 2))
23 2re 12208 . . . . . . . . . . . . 13 2 ∈ ℝ
2410, 23, 12redivcli 11897 . . . . . . . . . . . 12 (π / 2) ∈ ℝ
2524recni 11135 . . . . . . . . . . 11 (π / 2) ∈ ℂ
269, 1, 25mulassi 11132 . . . . . . . . . 10 ((2 · (1 / 2)) · (π / 2)) = (2 · ((1 / 2) · (π / 2)))
2725mullidi 11126 . . . . . . . . . 10 (1 · (π / 2)) = (π / 2)
2822, 26, 273eqtr3i 2764 . . . . . . . . 9 (2 · ((1 / 2) · (π / 2))) = (π / 2)
2928fveq2i 6833 . . . . . . . 8 (sin‘(2 · ((1 / 2) · (π / 2)))) = (sin‘(π / 2))
301, 25mulcli 11128 . . . . . . . . 9 ((1 / 2) · (π / 2)) ∈ ℂ
31 sin2t 16090 . . . . . . . . 9 (((1 / 2) · (π / 2)) ∈ ℂ → (sin‘(2 · ((1 / 2) · (π / 2)))) = (2 · ((sin‘((1 / 2) · (π / 2))) · (cos‘((1 / 2) · (π / 2))))))
3230, 31ax-mp 5 . . . . . . . 8 (sin‘(2 · ((1 / 2) · (π / 2)))) = (2 · ((sin‘((1 / 2) · (π / 2))) · (cos‘((1 / 2) · (π / 2)))))
33 sinhalfpi 26407 . . . . . . . 8 (sin‘(π / 2)) = 1
3429, 32, 333eqtr3i 2764 . . . . . . 7 (2 · ((sin‘((1 / 2) · (π / 2))) · (cos‘((1 / 2) · (π / 2))))) = 1
358, 20, 343eqtr3i 2764 . . . . . 6 (2 · ((sin‘(π / 4)) · (sin‘(π / 4)))) = 1
3635fveq2i 6833 . . . . 5 (√‘(2 · ((sin‘(π / 4)) · (sin‘(π / 4))))) = (√‘1)
37 4re 12218 . . . . . . . . 9 4 ∈ ℝ
38 4ne0 12242 . . . . . . . . 9 4 ≠ 0
3910, 37, 38redivcli 11897 . . . . . . . 8 (π / 4) ∈ ℝ
40 resincl 16053 . . . . . . . 8 ((π / 4) ∈ ℝ → (sin‘(π / 4)) ∈ ℝ)
4139, 40ax-mp 5 . . . . . . 7 (sin‘(π / 4)) ∈ ℝ
4241, 41remulcli 11137 . . . . . 6 ((sin‘(π / 4)) · (sin‘(π / 4))) ∈ ℝ
43 0le2 12236 . . . . . 6 0 ≤ 2
4441msqge0i 11664 . . . . . 6 0 ≤ ((sin‘(π / 4)) · (sin‘(π / 4)))
4523, 42, 43, 44sqrtmulii 15298 . . . . 5 (√‘(2 · ((sin‘(π / 4)) · (sin‘(π / 4))))) = ((√‘2) · (√‘((sin‘(π / 4)) · (sin‘(π / 4)))))
46 sqrt1 15182 . . . . 5 (√‘1) = 1
4736, 45, 463eqtr3ri 2765 . . . 4 1 = ((√‘2) · (√‘((sin‘(π / 4)) · (sin‘(π / 4)))))
4842sqrtcli 15283 . . . . . . 7 (0 ≤ ((sin‘(π / 4)) · (sin‘(π / 4))) → (√‘((sin‘(π / 4)) · (sin‘(π / 4)))) ∈ ℝ)
4944, 48ax-mp 5 . . . . . 6 (√‘((sin‘(π / 4)) · (sin‘(π / 4)))) ∈ ℝ
5049recni 11135 . . . . 5 (√‘((sin‘(π / 4)) · (sin‘(π / 4)))) ∈ ℂ
51 sqrt2re 16163 . . . . . . 7 (√‘2) ∈ ℝ
5251recni 11135 . . . . . 6 (√‘2) ∈ ℂ
53 sqrt00 15174 . . . . . . . . 9 ((2 ∈ ℝ ∧ 0 ≤ 2) → ((√‘2) = 0 ↔ 2 = 0))
5423, 43, 53mp2an 692 . . . . . . . 8 ((√‘2) = 0 ↔ 2 = 0)
5554necon3bii 2981 . . . . . . 7 ((√‘2) ≠ 0 ↔ 2 ≠ 0)
5612, 55mpbir 231 . . . . . 6 (√‘2) ≠ 0
5752, 56pm3.2i 470 . . . . 5 ((√‘2) ∈ ℂ ∧ (√‘2) ≠ 0)
58 divmul2 11789 . . . . 5 ((1 ∈ ℂ ∧ (√‘((sin‘(π / 4)) · (sin‘(π / 4)))) ∈ ℂ ∧ ((√‘2) ∈ ℂ ∧ (√‘2) ≠ 0)) → ((1 / (√‘2)) = (√‘((sin‘(π / 4)) · (sin‘(π / 4)))) ↔ 1 = ((√‘2) · (√‘((sin‘(π / 4)) · (sin‘(π / 4)))))))
592, 50, 57, 58mp3an 1463 . . . 4 ((1 / (√‘2)) = (√‘((sin‘(π / 4)) · (sin‘(π / 4)))) ↔ 1 = ((√‘2) · (√‘((sin‘(π / 4)) · (sin‘(π / 4))))))
6047, 59mpbir 231 . . 3 (1 / (√‘2)) = (√‘((sin‘(π / 4)) · (sin‘(π / 4))))
61 0re 11123 . . . . 5 0 ∈ ℝ
62 pipos 26398 . . . . . . . 8 0 < π
63 4pos 12241 . . . . . . . 8 0 < 4
6410, 37, 62, 63divgt0ii 12048 . . . . . . 7 0 < (π / 4)
65 1re 11121 . . . . . . . 8 1 ∈ ℝ
66 pigt2lt4 26394 . . . . . . . . . . 11 (2 < π ∧ π < 4)
6766simpri 485 . . . . . . . . . 10 π < 4
6810, 37, 37, 63ltdiv1ii 12060 . . . . . . . . . 10 (π < 4 ↔ (π / 4) < (4 / 4))
6967, 68mpbi 230 . . . . . . . . 9 (π / 4) < (4 / 4)
7037recni 11135 . . . . . . . . . 10 4 ∈ ℂ
7170, 38dividi 11863 . . . . . . . . 9 (4 / 4) = 1
7269, 71breqtri 5120 . . . . . . . 8 (π / 4) < 1
7339, 65, 72ltleii 11245 . . . . . . 7 (π / 4) ≤ 1
74 0xr 11168 . . . . . . . 8 0 ∈ ℝ*
75 elioc2 13313 . . . . . . . 8 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → ((π / 4) ∈ (0(,]1) ↔ ((π / 4) ∈ ℝ ∧ 0 < (π / 4) ∧ (π / 4) ≤ 1)))
7674, 65, 75mp2an 692 . . . . . . 7 ((π / 4) ∈ (0(,]1) ↔ ((π / 4) ∈ ℝ ∧ 0 < (π / 4) ∧ (π / 4) ≤ 1))
7739, 64, 73, 76mpbir3an 1342 . . . . . 6 (π / 4) ∈ (0(,]1)
78 sin01gt0 16103 . . . . . 6 ((π / 4) ∈ (0(,]1) → 0 < (sin‘(π / 4)))
7977, 78ax-mp 5 . . . . 5 0 < (sin‘(π / 4))
8061, 41, 79ltleii 11245 . . . 4 0 ≤ (sin‘(π / 4))
8141sqrtmsqi 15285 . . . 4 (0 ≤ (sin‘(π / 4)) → (√‘((sin‘(π / 4)) · (sin‘(π / 4)))) = (sin‘(π / 4)))
8280, 81ax-mp 5 . . 3 (√‘((sin‘(π / 4)) · (sin‘(π / 4)))) = (sin‘(π / 4))
8360, 82eqtr2i 2757 . 2 (sin‘(π / 4)) = (1 / (√‘2))
8460, 82eqtri 2756 . . 3 (1 / (√‘2)) = (sin‘(π / 4))
8517fveq2i 6833 . . . 4 (cos‘((1 / 2) · (π / 2))) = (cos‘(π / 4))
866, 18, 853eqtr3i 2764 . . 3 (sin‘(π / 4)) = (cos‘(π / 4))
8784, 86eqtr2i 2757 . 2 (cos‘(π / 4)) = (1 / (√‘2))
8883, 87pm3.2i 470 1 ((sin‘(π / 4)) = (1 / (√‘2)) ∧ (cos‘(π / 4)) = (1 / (√‘2)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929   class class class wbr 5095  cfv 6488  (class class class)co 7354  cc 11013  cr 11014  0cc0 11015  1c1 11016   + caddc 11018   · cmul 11020  *cxr 11154   < clt 11155  cle 11156   / cdiv 11783  2c2 12189  4c4 12191  (,]cioc 13250  csqrt 15144  sincsin 15974  cosccos 15975  πcpi 15977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-inf2 9540  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-pre-sup 11093  ax-addf 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-of 7618  df-om 7805  df-1st 7929  df-2nd 7930  df-supp 8099  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-2o 8394  df-er 8630  df-map 8760  df-pm 8761  df-ixp 8830  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-fsupp 9255  df-fi 9304  df-sup 9335  df-inf 9336  df-oi 9405  df-card 9841  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-nn 12135  df-2 12197  df-3 12198  df-4 12199  df-5 12200  df-6 12201  df-7 12202  df-8 12203  df-9 12204  df-n0 12391  df-z 12478  df-dec 12597  df-uz 12741  df-q 12851  df-rp 12895  df-xneg 13015  df-xadd 13016  df-xmul 13017  df-ioo 13253  df-ioc 13254  df-ico 13255  df-icc 13256  df-fz 13412  df-fzo 13559  df-fl 13700  df-seq 13913  df-exp 13973  df-fac 14185  df-bc 14214  df-hash 14242  df-shft 14978  df-cj 15010  df-re 15011  df-im 15012  df-sqrt 15146  df-abs 15147  df-limsup 15382  df-clim 15399  df-rlim 15400  df-sum 15598  df-ef 15978  df-sin 15980  df-cos 15981  df-pi 15983  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17125  df-ress 17146  df-plusg 17178  df-mulr 17179  df-starv 17180  df-sca 17181  df-vsca 17182  df-ip 17183  df-tset 17184  df-ple 17185  df-ds 17187  df-unif 17188  df-hom 17189  df-cco 17190  df-rest 17330  df-topn 17331  df-0g 17349  df-gsum 17350  df-topgen 17351  df-pt 17352  df-prds 17355  df-xrs 17410  df-qtop 17415  df-imas 17416  df-xps 17418  df-mre 17492  df-mrc 17493  df-acs 17495  df-mgm 18552  df-sgrp 18631  df-mnd 18647  df-submnd 18696  df-mulg 18985  df-cntz 19233  df-cmn 19698  df-psmet 21287  df-xmet 21288  df-met 21289  df-bl 21290  df-mopn 21291  df-fbas 21292  df-fg 21293  df-cnfld 21296  df-top 22812  df-topon 22829  df-topsp 22851  df-bases 22864  df-cld 22937  df-ntr 22938  df-cls 22939  df-nei 23016  df-lp 23054  df-perf 23055  df-cn 23145  df-cnp 23146  df-haus 23233  df-tx 23480  df-hmeo 23673  df-fil 23764  df-fm 23856  df-flim 23857  df-flf 23858  df-xms 24238  df-ms 24239  df-tms 24240  df-cncf 24801  df-limc 25797  df-dv 25798
This theorem is referenced by:  tan4thpi  26453  tan4thpiOLD  26454
  Copyright terms: Public domain W3C validator