MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fproddiv Structured version   Visualization version   GIF version

Theorem fproddiv 15947
Description: The quotient of two finite products. (Contributed by Scott Fenton, 15-Jan-2018.)
Hypotheses
Ref Expression
fprodmul.1 (πœ‘ β†’ 𝐴 ∈ Fin)
fprodmul.2 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐡 ∈ β„‚)
fprodmul.3 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐢 ∈ β„‚)
fproddiv.4 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐢 β‰  0)
Assertion
Ref Expression
fproddiv (πœ‘ β†’ βˆπ‘˜ ∈ 𝐴 (𝐡 / 𝐢) = (βˆπ‘˜ ∈ 𝐴 𝐡 / βˆπ‘˜ ∈ 𝐴 𝐢))
Distinct variable groups:   𝐴,π‘˜   πœ‘,π‘˜
Allowed substitution hints:   𝐡(π‘˜)   𝐢(π‘˜)

Proof of Theorem fproddiv
Dummy variables 𝑓 π‘š 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1div1e1 11944 . . . . 5 (1 / 1) = 1
21eqcomi 2737 . . . 4 1 = (1 / 1)
3 prodeq1 15895 . . . . 5 (𝐴 = βˆ… β†’ βˆπ‘˜ ∈ 𝐴 (𝐡 / 𝐢) = βˆπ‘˜ ∈ βˆ… (𝐡 / 𝐢))
4 prod0 15929 . . . . 5 βˆπ‘˜ ∈ βˆ… (𝐡 / 𝐢) = 1
53, 4eqtrdi 2784 . . . 4 (𝐴 = βˆ… β†’ βˆπ‘˜ ∈ 𝐴 (𝐡 / 𝐢) = 1)
6 prodeq1 15895 . . . . . 6 (𝐴 = βˆ… β†’ βˆπ‘˜ ∈ 𝐴 𝐡 = βˆπ‘˜ ∈ βˆ… 𝐡)
7 prod0 15929 . . . . . 6 βˆπ‘˜ ∈ βˆ… 𝐡 = 1
86, 7eqtrdi 2784 . . . . 5 (𝐴 = βˆ… β†’ βˆπ‘˜ ∈ 𝐴 𝐡 = 1)
9 prodeq1 15895 . . . . . 6 (𝐴 = βˆ… β†’ βˆπ‘˜ ∈ 𝐴 𝐢 = βˆπ‘˜ ∈ βˆ… 𝐢)
10 prod0 15929 . . . . . 6 βˆπ‘˜ ∈ βˆ… 𝐢 = 1
119, 10eqtrdi 2784 . . . . 5 (𝐴 = βˆ… β†’ βˆπ‘˜ ∈ 𝐴 𝐢 = 1)
128, 11oveq12d 7444 . . . 4 (𝐴 = βˆ… β†’ (βˆπ‘˜ ∈ 𝐴 𝐡 / βˆπ‘˜ ∈ 𝐴 𝐢) = (1 / 1))
132, 5, 123eqtr4a 2794 . . 3 (𝐴 = βˆ… β†’ βˆπ‘˜ ∈ 𝐴 (𝐡 / 𝐢) = (βˆπ‘˜ ∈ 𝐴 𝐡 / βˆπ‘˜ ∈ 𝐴 𝐢))
1413a1i 11 . 2 (πœ‘ β†’ (𝐴 = βˆ… β†’ βˆπ‘˜ ∈ 𝐴 (𝐡 / 𝐢) = (βˆπ‘˜ ∈ 𝐴 𝐡 / βˆπ‘˜ ∈ 𝐴 𝐢)))
15 simprl 769 . . . . . . . . 9 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ (β™―β€˜π΄) ∈ β„•)
16 nnuz 12905 . . . . . . . . 9 β„• = (β„€β‰₯β€˜1)
1715, 16eleqtrdi 2839 . . . . . . . 8 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ (β™―β€˜π΄) ∈ (β„€β‰₯β€˜1))
18 fprodmul.2 . . . . . . . . . . 11 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐡 ∈ β„‚)
1918fmpttd 7130 . . . . . . . . . 10 (πœ‘ β†’ (π‘˜ ∈ 𝐴 ↦ 𝐡):π΄βŸΆβ„‚)
20 f1of 6844 . . . . . . . . . . 11 (𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴 β†’ 𝑓:(1...(β™―β€˜π΄))⟢𝐴)
2120adantl 480 . . . . . . . . . 10 (((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴) β†’ 𝑓:(1...(β™―β€˜π΄))⟢𝐴)
22 fco 6752 . . . . . . . . . 10 (((π‘˜ ∈ 𝐴 ↦ 𝐡):π΄βŸΆβ„‚ ∧ 𝑓:(1...(β™―β€˜π΄))⟢𝐴) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ 𝑓):(1...(β™―β€˜π΄))βŸΆβ„‚)
2319, 21, 22syl2an 594 . . . . . . . . 9 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ 𝑓):(1...(β™―β€˜π΄))βŸΆβ„‚)
2423ffvelcdmda 7099 . . . . . . . 8 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(β™―β€˜π΄))) β†’ (((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ 𝑓)β€˜π‘›) ∈ β„‚)
25 fprodmul.3 . . . . . . . . . . 11 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐢 ∈ β„‚)
2625fmpttd 7130 . . . . . . . . . 10 (πœ‘ β†’ (π‘˜ ∈ 𝐴 ↦ 𝐢):π΄βŸΆβ„‚)
27 fco 6752 . . . . . . . . . 10 (((π‘˜ ∈ 𝐴 ↦ 𝐢):π΄βŸΆβ„‚ ∧ 𝑓:(1...(β™―β€˜π΄))⟢𝐴) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐢) ∘ 𝑓):(1...(β™―β€˜π΄))βŸΆβ„‚)
2826, 21, 27syl2an 594 . . . . . . . . 9 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐢) ∘ 𝑓):(1...(β™―β€˜π΄))βŸΆβ„‚)
2928ffvelcdmda 7099 . . . . . . . 8 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(β™―β€˜π΄))) β†’ (((π‘˜ ∈ 𝐴 ↦ 𝐢) ∘ 𝑓)β€˜π‘›) ∈ β„‚)
30 simprr 771 . . . . . . . . . . 11 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)
3130, 20syl 17 . . . . . . . . . 10 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ 𝑓:(1...(β™―β€˜π΄))⟢𝐴)
32 fvco3 7002 . . . . . . . . . 10 ((𝑓:(1...(β™―β€˜π΄))⟢𝐴 ∧ 𝑛 ∈ (1...(β™―β€˜π΄))) β†’ (((π‘˜ ∈ 𝐴 ↦ 𝐢) ∘ 𝑓)β€˜π‘›) = ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜(π‘“β€˜π‘›)))
3331, 32sylan 578 . . . . . . . . 9 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(β™―β€˜π΄))) β†’ (((π‘˜ ∈ 𝐴 ↦ 𝐢) ∘ 𝑓)β€˜π‘›) = ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜(π‘“β€˜π‘›)))
3431ffvelcdmda 7099 . . . . . . . . . 10 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(β™―β€˜π΄))) β†’ (π‘“β€˜π‘›) ∈ 𝐴)
35 simpr 483 . . . . . . . . . . . . . 14 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ π‘˜ ∈ 𝐴)
36 eqid 2728 . . . . . . . . . . . . . . 15 (π‘˜ ∈ 𝐴 ↦ 𝐢) = (π‘˜ ∈ 𝐴 ↦ 𝐢)
3736fvmpt2 7021 . . . . . . . . . . . . . 14 ((π‘˜ ∈ 𝐴 ∧ 𝐢 ∈ β„‚) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘˜) = 𝐢)
3835, 25, 37syl2anc 582 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘˜) = 𝐢)
39 fproddiv.4 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐢 β‰  0)
4038, 39eqnetrd 3005 . . . . . . . . . . . 12 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘˜) β‰  0)
4140ralrimiva 3143 . . . . . . . . . . 11 (πœ‘ β†’ βˆ€π‘˜ ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘˜) β‰  0)
4241ad2antrr 724 . . . . . . . . . 10 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(β™―β€˜π΄))) β†’ βˆ€π‘˜ ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘˜) β‰  0)
43 nffvmpt1 6913 . . . . . . . . . . . 12 β„²π‘˜((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜(π‘“β€˜π‘›))
44 nfcv 2899 . . . . . . . . . . . 12 β„²π‘˜0
4543, 44nfne 3040 . . . . . . . . . . 11 β„²π‘˜((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜(π‘“β€˜π‘›)) β‰  0
46 fveq2 6902 . . . . . . . . . . . 12 (π‘˜ = (π‘“β€˜π‘›) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘˜) = ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜(π‘“β€˜π‘›)))
4746neeq1d 2997 . . . . . . . . . . 11 (π‘˜ = (π‘“β€˜π‘›) β†’ (((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘˜) β‰  0 ↔ ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜(π‘“β€˜π‘›)) β‰  0))
4845, 47rspc 3599 . . . . . . . . . 10 ((π‘“β€˜π‘›) ∈ 𝐴 β†’ (βˆ€π‘˜ ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘˜) β‰  0 β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜(π‘“β€˜π‘›)) β‰  0))
4934, 42, 48sylc 65 . . . . . . . . 9 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(β™―β€˜π΄))) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜(π‘“β€˜π‘›)) β‰  0)
5033, 49eqnetrd 3005 . . . . . . . 8 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(β™―β€˜π΄))) β†’ (((π‘˜ ∈ 𝐴 ↦ 𝐢) ∘ 𝑓)β€˜π‘›) β‰  0)
5118, 25, 39divcld 12030 . . . . . . . . . . . . . 14 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ (𝐡 / 𝐢) ∈ β„‚)
52 eqid 2728 . . . . . . . . . . . . . . 15 (π‘˜ ∈ 𝐴 ↦ (𝐡 / 𝐢)) = (π‘˜ ∈ 𝐴 ↦ (𝐡 / 𝐢))
5352fvmpt2 7021 . . . . . . . . . . . . . 14 ((π‘˜ ∈ 𝐴 ∧ (𝐡 / 𝐢) ∈ β„‚) β†’ ((π‘˜ ∈ 𝐴 ↦ (𝐡 / 𝐢))β€˜π‘˜) = (𝐡 / 𝐢))
5435, 51, 53syl2anc 582 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ ((π‘˜ ∈ 𝐴 ↦ (𝐡 / 𝐢))β€˜π‘˜) = (𝐡 / 𝐢))
55 eqid 2728 . . . . . . . . . . . . . . . 16 (π‘˜ ∈ 𝐴 ↦ 𝐡) = (π‘˜ ∈ 𝐴 ↦ 𝐡)
5655fvmpt2 7021 . . . . . . . . . . . . . . 15 ((π‘˜ ∈ 𝐴 ∧ 𝐡 ∈ β„‚) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘˜) = 𝐡)
5735, 18, 56syl2anc 582 . . . . . . . . . . . . . 14 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘˜) = 𝐡)
5857, 38oveq12d 7444 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ (((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘˜) / ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘˜)) = (𝐡 / 𝐢))
5954, 58eqtr4d 2771 . . . . . . . . . . . 12 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ ((π‘˜ ∈ 𝐴 ↦ (𝐡 / 𝐢))β€˜π‘˜) = (((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘˜) / ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘˜)))
6059ralrimiva 3143 . . . . . . . . . . 11 (πœ‘ β†’ βˆ€π‘˜ ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ (𝐡 / 𝐢))β€˜π‘˜) = (((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘˜) / ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘˜)))
6160ad2antrr 724 . . . . . . . . . 10 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(β™―β€˜π΄))) β†’ βˆ€π‘˜ ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ (𝐡 / 𝐢))β€˜π‘˜) = (((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘˜) / ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘˜)))
62 nffvmpt1 6913 . . . . . . . . . . . 12 β„²π‘˜((π‘˜ ∈ 𝐴 ↦ (𝐡 / 𝐢))β€˜(π‘“β€˜π‘›))
63 nffvmpt1 6913 . . . . . . . . . . . . 13 β„²π‘˜((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(π‘“β€˜π‘›))
64 nfcv 2899 . . . . . . . . . . . . 13 β„²π‘˜ /
6563, 64, 43nfov 7456 . . . . . . . . . . . 12 β„²π‘˜(((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(π‘“β€˜π‘›)) / ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜(π‘“β€˜π‘›)))
6662, 65nfeq 2913 . . . . . . . . . . 11 β„²π‘˜((π‘˜ ∈ 𝐴 ↦ (𝐡 / 𝐢))β€˜(π‘“β€˜π‘›)) = (((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(π‘“β€˜π‘›)) / ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜(π‘“β€˜π‘›)))
67 fveq2 6902 . . . . . . . . . . . 12 (π‘˜ = (π‘“β€˜π‘›) β†’ ((π‘˜ ∈ 𝐴 ↦ (𝐡 / 𝐢))β€˜π‘˜) = ((π‘˜ ∈ 𝐴 ↦ (𝐡 / 𝐢))β€˜(π‘“β€˜π‘›)))
68 fveq2 6902 . . . . . . . . . . . . 13 (π‘˜ = (π‘“β€˜π‘›) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘˜) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(π‘“β€˜π‘›)))
6968, 46oveq12d 7444 . . . . . . . . . . . 12 (π‘˜ = (π‘“β€˜π‘›) β†’ (((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘˜) / ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘˜)) = (((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(π‘“β€˜π‘›)) / ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜(π‘“β€˜π‘›))))
7067, 69eqeq12d 2744 . . . . . . . . . . 11 (π‘˜ = (π‘“β€˜π‘›) β†’ (((π‘˜ ∈ 𝐴 ↦ (𝐡 / 𝐢))β€˜π‘˜) = (((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘˜) / ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘˜)) ↔ ((π‘˜ ∈ 𝐴 ↦ (𝐡 / 𝐢))β€˜(π‘“β€˜π‘›)) = (((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(π‘“β€˜π‘›)) / ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜(π‘“β€˜π‘›)))))
7166, 70rspc 3599 . . . . . . . . . 10 ((π‘“β€˜π‘›) ∈ 𝐴 β†’ (βˆ€π‘˜ ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ (𝐡 / 𝐢))β€˜π‘˜) = (((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘˜) / ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘˜)) β†’ ((π‘˜ ∈ 𝐴 ↦ (𝐡 / 𝐢))β€˜(π‘“β€˜π‘›)) = (((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(π‘“β€˜π‘›)) / ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜(π‘“β€˜π‘›)))))
7234, 61, 71sylc 65 . . . . . . . . 9 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(β™―β€˜π΄))) β†’ ((π‘˜ ∈ 𝐴 ↦ (𝐡 / 𝐢))β€˜(π‘“β€˜π‘›)) = (((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(π‘“β€˜π‘›)) / ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜(π‘“β€˜π‘›))))
73 fvco3 7002 . . . . . . . . . 10 ((𝑓:(1...(β™―β€˜π΄))⟢𝐴 ∧ 𝑛 ∈ (1...(β™―β€˜π΄))) β†’ (((π‘˜ ∈ 𝐴 ↦ (𝐡 / 𝐢)) ∘ 𝑓)β€˜π‘›) = ((π‘˜ ∈ 𝐴 ↦ (𝐡 / 𝐢))β€˜(π‘“β€˜π‘›)))
7431, 73sylan 578 . . . . . . . . 9 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(β™―β€˜π΄))) β†’ (((π‘˜ ∈ 𝐴 ↦ (𝐡 / 𝐢)) ∘ 𝑓)β€˜π‘›) = ((π‘˜ ∈ 𝐴 ↦ (𝐡 / 𝐢))β€˜(π‘“β€˜π‘›)))
75 fvco3 7002 . . . . . . . . . . 11 ((𝑓:(1...(β™―β€˜π΄))⟢𝐴 ∧ 𝑛 ∈ (1...(β™―β€˜π΄))) β†’ (((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ 𝑓)β€˜π‘›) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(π‘“β€˜π‘›)))
7631, 75sylan 578 . . . . . . . . . 10 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(β™―β€˜π΄))) β†’ (((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ 𝑓)β€˜π‘›) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(π‘“β€˜π‘›)))
7776, 33oveq12d 7444 . . . . . . . . 9 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(β™―β€˜π΄))) β†’ ((((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ 𝑓)β€˜π‘›) / (((π‘˜ ∈ 𝐴 ↦ 𝐢) ∘ 𝑓)β€˜π‘›)) = (((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(π‘“β€˜π‘›)) / ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜(π‘“β€˜π‘›))))
7872, 74, 773eqtr4d 2778 . . . . . . . 8 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(β™―β€˜π΄))) β†’ (((π‘˜ ∈ 𝐴 ↦ (𝐡 / 𝐢)) ∘ 𝑓)β€˜π‘›) = ((((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ 𝑓)β€˜π‘›) / (((π‘˜ ∈ 𝐴 ↦ 𝐢) ∘ 𝑓)β€˜π‘›)))
7917, 24, 29, 50, 78prodfdiv 15884 . . . . . . 7 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ (seq1( Β· , ((π‘˜ ∈ 𝐴 ↦ (𝐡 / 𝐢)) ∘ 𝑓))β€˜(β™―β€˜π΄)) = ((seq1( Β· , ((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ 𝑓))β€˜(β™―β€˜π΄)) / (seq1( Β· , ((π‘˜ ∈ 𝐴 ↦ 𝐢) ∘ 𝑓))β€˜(β™―β€˜π΄))))
80 fveq2 6902 . . . . . . . 8 (π‘š = (π‘“β€˜π‘›) β†’ ((π‘˜ ∈ 𝐴 ↦ (𝐡 / 𝐢))β€˜π‘š) = ((π‘˜ ∈ 𝐴 ↦ (𝐡 / 𝐢))β€˜(π‘“β€˜π‘›)))
8151fmpttd 7130 . . . . . . . . . 10 (πœ‘ β†’ (π‘˜ ∈ 𝐴 ↦ (𝐡 / 𝐢)):π΄βŸΆβ„‚)
8281adantr 479 . . . . . . . . 9 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ (π‘˜ ∈ 𝐴 ↦ (𝐡 / 𝐢)):π΄βŸΆβ„‚)
8382ffvelcdmda 7099 . . . . . . . 8 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ π‘š ∈ 𝐴) β†’ ((π‘˜ ∈ 𝐴 ↦ (𝐡 / 𝐢))β€˜π‘š) ∈ β„‚)
8480, 15, 30, 83, 74fprod 15927 . . . . . . 7 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ βˆπ‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ (𝐡 / 𝐢))β€˜π‘š) = (seq1( Β· , ((π‘˜ ∈ 𝐴 ↦ (𝐡 / 𝐢)) ∘ 𝑓))β€˜(β™―β€˜π΄)))
85 fveq2 6902 . . . . . . . . 9 (π‘š = (π‘“β€˜π‘›) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘š) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(π‘“β€˜π‘›)))
8619adantr 479 . . . . . . . . . 10 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ (π‘˜ ∈ 𝐴 ↦ 𝐡):π΄βŸΆβ„‚)
8786ffvelcdmda 7099 . . . . . . . . 9 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ π‘š ∈ 𝐴) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘š) ∈ β„‚)
8885, 15, 30, 87, 76fprod 15927 . . . . . . . 8 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ βˆπ‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘š) = (seq1( Β· , ((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ 𝑓))β€˜(β™―β€˜π΄)))
89 fveq2 6902 . . . . . . . . 9 (π‘š = (π‘“β€˜π‘›) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘š) = ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜(π‘“β€˜π‘›)))
9026adantr 479 . . . . . . . . . 10 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ (π‘˜ ∈ 𝐴 ↦ 𝐢):π΄βŸΆβ„‚)
9190ffvelcdmda 7099 . . . . . . . . 9 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ π‘š ∈ 𝐴) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘š) ∈ β„‚)
9289, 15, 30, 91, 33fprod 15927 . . . . . . . 8 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ βˆπ‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘š) = (seq1( Β· , ((π‘˜ ∈ 𝐴 ↦ 𝐢) ∘ 𝑓))β€˜(β™―β€˜π΄)))
9388, 92oveq12d 7444 . . . . . . 7 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ (βˆπ‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘š) / βˆπ‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘š)) = ((seq1( Β· , ((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ 𝑓))β€˜(β™―β€˜π΄)) / (seq1( Β· , ((π‘˜ ∈ 𝐴 ↦ 𝐢) ∘ 𝑓))β€˜(β™―β€˜π΄))))
9479, 84, 933eqtr4d 2778 . . . . . 6 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ βˆπ‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ (𝐡 / 𝐢))β€˜π‘š) = (βˆπ‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘š) / βˆπ‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘š)))
95 prodfc 15931 . . . . . 6 βˆπ‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ (𝐡 / 𝐢))β€˜π‘š) = βˆπ‘˜ ∈ 𝐴 (𝐡 / 𝐢)
96 prodfc 15931 . . . . . . 7 βˆπ‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘š) = βˆπ‘˜ ∈ 𝐴 𝐡
97 prodfc 15931 . . . . . . 7 βˆπ‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘š) = βˆπ‘˜ ∈ 𝐴 𝐢
9896, 97oveq12i 7438 . . . . . 6 (βˆπ‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘š) / βˆπ‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘š)) = (βˆπ‘˜ ∈ 𝐴 𝐡 / βˆπ‘˜ ∈ 𝐴 𝐢)
9994, 95, 983eqtr3g 2791 . . . . 5 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ βˆπ‘˜ ∈ 𝐴 (𝐡 / 𝐢) = (βˆπ‘˜ ∈ 𝐴 𝐡 / βˆπ‘˜ ∈ 𝐴 𝐢))
10099expr 455 . . . 4 ((πœ‘ ∧ (β™―β€˜π΄) ∈ β„•) β†’ (𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴 β†’ βˆπ‘˜ ∈ 𝐴 (𝐡 / 𝐢) = (βˆπ‘˜ ∈ 𝐴 𝐡 / βˆπ‘˜ ∈ 𝐴 𝐢)))
101100exlimdv 1928 . . 3 ((πœ‘ ∧ (β™―β€˜π΄) ∈ β„•) β†’ (βˆƒπ‘“ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴 β†’ βˆπ‘˜ ∈ 𝐴 (𝐡 / 𝐢) = (βˆπ‘˜ ∈ 𝐴 𝐡 / βˆπ‘˜ ∈ 𝐴 𝐢)))
102101expimpd 452 . 2 (πœ‘ β†’ (((β™―β€˜π΄) ∈ β„• ∧ βˆƒπ‘“ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴) β†’ βˆπ‘˜ ∈ 𝐴 (𝐡 / 𝐢) = (βˆπ‘˜ ∈ 𝐴 𝐡 / βˆπ‘˜ ∈ 𝐴 𝐢)))
103 fprodmul.1 . . 3 (πœ‘ β†’ 𝐴 ∈ Fin)
104 fz1f1o 15698 . . 3 (𝐴 ∈ Fin β†’ (𝐴 = βˆ… ∨ ((β™―β€˜π΄) ∈ β„• ∧ βˆƒπ‘“ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)))
105103, 104syl 17 . 2 (πœ‘ β†’ (𝐴 = βˆ… ∨ ((β™―β€˜π΄) ∈ β„• ∧ βˆƒπ‘“ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)))
10614, 102, 105mpjaod 858 1 (πœ‘ β†’ βˆπ‘˜ ∈ 𝐴 (𝐡 / 𝐢) = (βˆπ‘˜ ∈ 𝐴 𝐡 / βˆπ‘˜ ∈ 𝐴 𝐢))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   ∨ wo 845   = wceq 1533  βˆƒwex 1773   ∈ wcel 2098   β‰  wne 2937  βˆ€wral 3058  βˆ…c0 4326   ↦ cmpt 5235   ∘ ccom 5686  βŸΆwf 6549  β€“1-1-ontoβ†’wf1o 6552  β€˜cfv 6553  (class class class)co 7426  Fincfn 8972  β„‚cc 11146  0cc0 11148  1c1 11149   Β· cmul 11153   / cdiv 11911  β„•cn 12252  β„€β‰₯cuz 12862  ...cfz 13526  seqcseq 14008  β™―chash 14331  βˆcprod 15891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7748  ax-inf2 9674  ax-cnex 11204  ax-resscn 11205  ax-1cn 11206  ax-icn 11207  ax-addcl 11208  ax-addrcl 11209  ax-mulcl 11210  ax-mulrcl 11211  ax-mulcom 11212  ax-addass 11213  ax-mulass 11214  ax-distr 11215  ax-i2m1 11216  ax-1ne0 11217  ax-1rid 11218  ax-rnegex 11219  ax-rrecex 11220  ax-cnre 11221  ax-pre-lttri 11222  ax-pre-lttrn 11223  ax-pre-ltadd 11224  ax-pre-mulgt0 11225  ax-pre-sup 11226
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-isom 6562  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7879  df-1st 8001  df-2nd 8002  df-frecs 8295  df-wrecs 8326  df-recs 8400  df-rdg 8439  df-1o 8495  df-er 8733  df-en 8973  df-dom 8974  df-sdom 8975  df-fin 8976  df-sup 9475  df-oi 9543  df-card 9972  df-pnf 11290  df-mnf 11291  df-xr 11292  df-ltxr 11293  df-le 11294  df-sub 11486  df-neg 11487  df-div 11912  df-nn 12253  df-2 12315  df-3 12316  df-n0 12513  df-z 12599  df-uz 12863  df-rp 13017  df-fz 13527  df-fzo 13670  df-seq 14009  df-exp 14069  df-hash 14332  df-cj 15088  df-re 15089  df-im 15090  df-sqrt 15224  df-abs 15225  df-clim 15474  df-prod 15892
This theorem is referenced by:  fproddivf  15973  bcprod  35373
  Copyright terms: Public domain W3C validator