MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fproddiv Structured version   Visualization version   GIF version

Theorem fproddiv 15849
Description: The quotient of two finite products. (Contributed by Scott Fenton, 15-Jan-2018.)
Hypotheses
Ref Expression
fprodmul.1 (πœ‘ β†’ 𝐴 ∈ Fin)
fprodmul.2 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐡 ∈ β„‚)
fprodmul.3 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐢 ∈ β„‚)
fproddiv.4 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐢 β‰  0)
Assertion
Ref Expression
fproddiv (πœ‘ β†’ βˆπ‘˜ ∈ 𝐴 (𝐡 / 𝐢) = (βˆπ‘˜ ∈ 𝐴 𝐡 / βˆπ‘˜ ∈ 𝐴 𝐢))
Distinct variable groups:   𝐴,π‘˜   πœ‘,π‘˜
Allowed substitution hints:   𝐡(π‘˜)   𝐢(π‘˜)

Proof of Theorem fproddiv
Dummy variables 𝑓 π‘š 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1div1e1 11850 . . . . 5 (1 / 1) = 1
21eqcomi 2742 . . . 4 1 = (1 / 1)
3 prodeq1 15797 . . . . 5 (𝐴 = βˆ… β†’ βˆπ‘˜ ∈ 𝐴 (𝐡 / 𝐢) = βˆπ‘˜ ∈ βˆ… (𝐡 / 𝐢))
4 prod0 15831 . . . . 5 βˆπ‘˜ ∈ βˆ… (𝐡 / 𝐢) = 1
53, 4eqtrdi 2789 . . . 4 (𝐴 = βˆ… β†’ βˆπ‘˜ ∈ 𝐴 (𝐡 / 𝐢) = 1)
6 prodeq1 15797 . . . . . 6 (𝐴 = βˆ… β†’ βˆπ‘˜ ∈ 𝐴 𝐡 = βˆπ‘˜ ∈ βˆ… 𝐡)
7 prod0 15831 . . . . . 6 βˆπ‘˜ ∈ βˆ… 𝐡 = 1
86, 7eqtrdi 2789 . . . . 5 (𝐴 = βˆ… β†’ βˆπ‘˜ ∈ 𝐴 𝐡 = 1)
9 prodeq1 15797 . . . . . 6 (𝐴 = βˆ… β†’ βˆπ‘˜ ∈ 𝐴 𝐢 = βˆπ‘˜ ∈ βˆ… 𝐢)
10 prod0 15831 . . . . . 6 βˆπ‘˜ ∈ βˆ… 𝐢 = 1
119, 10eqtrdi 2789 . . . . 5 (𝐴 = βˆ… β†’ βˆπ‘˜ ∈ 𝐴 𝐢 = 1)
128, 11oveq12d 7376 . . . 4 (𝐴 = βˆ… β†’ (βˆπ‘˜ ∈ 𝐴 𝐡 / βˆπ‘˜ ∈ 𝐴 𝐢) = (1 / 1))
132, 5, 123eqtr4a 2799 . . 3 (𝐴 = βˆ… β†’ βˆπ‘˜ ∈ 𝐴 (𝐡 / 𝐢) = (βˆπ‘˜ ∈ 𝐴 𝐡 / βˆπ‘˜ ∈ 𝐴 𝐢))
1413a1i 11 . 2 (πœ‘ β†’ (𝐴 = βˆ… β†’ βˆπ‘˜ ∈ 𝐴 (𝐡 / 𝐢) = (βˆπ‘˜ ∈ 𝐴 𝐡 / βˆπ‘˜ ∈ 𝐴 𝐢)))
15 simprl 770 . . . . . . . . 9 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ (β™―β€˜π΄) ∈ β„•)
16 nnuz 12811 . . . . . . . . 9 β„• = (β„€β‰₯β€˜1)
1715, 16eleqtrdi 2844 . . . . . . . 8 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ (β™―β€˜π΄) ∈ (β„€β‰₯β€˜1))
18 fprodmul.2 . . . . . . . . . . 11 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐡 ∈ β„‚)
1918fmpttd 7064 . . . . . . . . . 10 (πœ‘ β†’ (π‘˜ ∈ 𝐴 ↦ 𝐡):π΄βŸΆβ„‚)
20 f1of 6785 . . . . . . . . . . 11 (𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴 β†’ 𝑓:(1...(β™―β€˜π΄))⟢𝐴)
2120adantl 483 . . . . . . . . . 10 (((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴) β†’ 𝑓:(1...(β™―β€˜π΄))⟢𝐴)
22 fco 6693 . . . . . . . . . 10 (((π‘˜ ∈ 𝐴 ↦ 𝐡):π΄βŸΆβ„‚ ∧ 𝑓:(1...(β™―β€˜π΄))⟢𝐴) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ 𝑓):(1...(β™―β€˜π΄))βŸΆβ„‚)
2319, 21, 22syl2an 597 . . . . . . . . 9 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ 𝑓):(1...(β™―β€˜π΄))βŸΆβ„‚)
2423ffvelcdmda 7036 . . . . . . . 8 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(β™―β€˜π΄))) β†’ (((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ 𝑓)β€˜π‘›) ∈ β„‚)
25 fprodmul.3 . . . . . . . . . . 11 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐢 ∈ β„‚)
2625fmpttd 7064 . . . . . . . . . 10 (πœ‘ β†’ (π‘˜ ∈ 𝐴 ↦ 𝐢):π΄βŸΆβ„‚)
27 fco 6693 . . . . . . . . . 10 (((π‘˜ ∈ 𝐴 ↦ 𝐢):π΄βŸΆβ„‚ ∧ 𝑓:(1...(β™―β€˜π΄))⟢𝐴) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐢) ∘ 𝑓):(1...(β™―β€˜π΄))βŸΆβ„‚)
2826, 21, 27syl2an 597 . . . . . . . . 9 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐢) ∘ 𝑓):(1...(β™―β€˜π΄))βŸΆβ„‚)
2928ffvelcdmda 7036 . . . . . . . 8 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(β™―β€˜π΄))) β†’ (((π‘˜ ∈ 𝐴 ↦ 𝐢) ∘ 𝑓)β€˜π‘›) ∈ β„‚)
30 simprr 772 . . . . . . . . . . 11 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)
3130, 20syl 17 . . . . . . . . . 10 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ 𝑓:(1...(β™―β€˜π΄))⟢𝐴)
32 fvco3 6941 . . . . . . . . . 10 ((𝑓:(1...(β™―β€˜π΄))⟢𝐴 ∧ 𝑛 ∈ (1...(β™―β€˜π΄))) β†’ (((π‘˜ ∈ 𝐴 ↦ 𝐢) ∘ 𝑓)β€˜π‘›) = ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜(π‘“β€˜π‘›)))
3331, 32sylan 581 . . . . . . . . 9 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(β™―β€˜π΄))) β†’ (((π‘˜ ∈ 𝐴 ↦ 𝐢) ∘ 𝑓)β€˜π‘›) = ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜(π‘“β€˜π‘›)))
3431ffvelcdmda 7036 . . . . . . . . . 10 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(β™―β€˜π΄))) β†’ (π‘“β€˜π‘›) ∈ 𝐴)
35 simpr 486 . . . . . . . . . . . . . 14 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ π‘˜ ∈ 𝐴)
36 eqid 2733 . . . . . . . . . . . . . . 15 (π‘˜ ∈ 𝐴 ↦ 𝐢) = (π‘˜ ∈ 𝐴 ↦ 𝐢)
3736fvmpt2 6960 . . . . . . . . . . . . . 14 ((π‘˜ ∈ 𝐴 ∧ 𝐢 ∈ β„‚) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘˜) = 𝐢)
3835, 25, 37syl2anc 585 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘˜) = 𝐢)
39 fproddiv.4 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐢 β‰  0)
4038, 39eqnetrd 3008 . . . . . . . . . . . 12 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘˜) β‰  0)
4140ralrimiva 3140 . . . . . . . . . . 11 (πœ‘ β†’ βˆ€π‘˜ ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘˜) β‰  0)
4241ad2antrr 725 . . . . . . . . . 10 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(β™―β€˜π΄))) β†’ βˆ€π‘˜ ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘˜) β‰  0)
43 nffvmpt1 6854 . . . . . . . . . . . 12 β„²π‘˜((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜(π‘“β€˜π‘›))
44 nfcv 2904 . . . . . . . . . . . 12 β„²π‘˜0
4543, 44nfne 3042 . . . . . . . . . . 11 β„²π‘˜((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜(π‘“β€˜π‘›)) β‰  0
46 fveq2 6843 . . . . . . . . . . . 12 (π‘˜ = (π‘“β€˜π‘›) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘˜) = ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜(π‘“β€˜π‘›)))
4746neeq1d 3000 . . . . . . . . . . 11 (π‘˜ = (π‘“β€˜π‘›) β†’ (((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘˜) β‰  0 ↔ ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜(π‘“β€˜π‘›)) β‰  0))
4845, 47rspc 3568 . . . . . . . . . 10 ((π‘“β€˜π‘›) ∈ 𝐴 β†’ (βˆ€π‘˜ ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘˜) β‰  0 β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜(π‘“β€˜π‘›)) β‰  0))
4934, 42, 48sylc 65 . . . . . . . . 9 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(β™―β€˜π΄))) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜(π‘“β€˜π‘›)) β‰  0)
5033, 49eqnetrd 3008 . . . . . . . 8 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(β™―β€˜π΄))) β†’ (((π‘˜ ∈ 𝐴 ↦ 𝐢) ∘ 𝑓)β€˜π‘›) β‰  0)
5118, 25, 39divcld 11936 . . . . . . . . . . . . . 14 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ (𝐡 / 𝐢) ∈ β„‚)
52 eqid 2733 . . . . . . . . . . . . . . 15 (π‘˜ ∈ 𝐴 ↦ (𝐡 / 𝐢)) = (π‘˜ ∈ 𝐴 ↦ (𝐡 / 𝐢))
5352fvmpt2 6960 . . . . . . . . . . . . . 14 ((π‘˜ ∈ 𝐴 ∧ (𝐡 / 𝐢) ∈ β„‚) β†’ ((π‘˜ ∈ 𝐴 ↦ (𝐡 / 𝐢))β€˜π‘˜) = (𝐡 / 𝐢))
5435, 51, 53syl2anc 585 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ ((π‘˜ ∈ 𝐴 ↦ (𝐡 / 𝐢))β€˜π‘˜) = (𝐡 / 𝐢))
55 eqid 2733 . . . . . . . . . . . . . . . 16 (π‘˜ ∈ 𝐴 ↦ 𝐡) = (π‘˜ ∈ 𝐴 ↦ 𝐡)
5655fvmpt2 6960 . . . . . . . . . . . . . . 15 ((π‘˜ ∈ 𝐴 ∧ 𝐡 ∈ β„‚) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘˜) = 𝐡)
5735, 18, 56syl2anc 585 . . . . . . . . . . . . . 14 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘˜) = 𝐡)
5857, 38oveq12d 7376 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ (((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘˜) / ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘˜)) = (𝐡 / 𝐢))
5954, 58eqtr4d 2776 . . . . . . . . . . . 12 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ ((π‘˜ ∈ 𝐴 ↦ (𝐡 / 𝐢))β€˜π‘˜) = (((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘˜) / ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘˜)))
6059ralrimiva 3140 . . . . . . . . . . 11 (πœ‘ β†’ βˆ€π‘˜ ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ (𝐡 / 𝐢))β€˜π‘˜) = (((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘˜) / ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘˜)))
6160ad2antrr 725 . . . . . . . . . 10 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(β™―β€˜π΄))) β†’ βˆ€π‘˜ ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ (𝐡 / 𝐢))β€˜π‘˜) = (((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘˜) / ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘˜)))
62 nffvmpt1 6854 . . . . . . . . . . . 12 β„²π‘˜((π‘˜ ∈ 𝐴 ↦ (𝐡 / 𝐢))β€˜(π‘“β€˜π‘›))
63 nffvmpt1 6854 . . . . . . . . . . . . 13 β„²π‘˜((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(π‘“β€˜π‘›))
64 nfcv 2904 . . . . . . . . . . . . 13 β„²π‘˜ /
6563, 64, 43nfov 7388 . . . . . . . . . . . 12 β„²π‘˜(((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(π‘“β€˜π‘›)) / ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜(π‘“β€˜π‘›)))
6662, 65nfeq 2917 . . . . . . . . . . 11 β„²π‘˜((π‘˜ ∈ 𝐴 ↦ (𝐡 / 𝐢))β€˜(π‘“β€˜π‘›)) = (((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(π‘“β€˜π‘›)) / ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜(π‘“β€˜π‘›)))
67 fveq2 6843 . . . . . . . . . . . 12 (π‘˜ = (π‘“β€˜π‘›) β†’ ((π‘˜ ∈ 𝐴 ↦ (𝐡 / 𝐢))β€˜π‘˜) = ((π‘˜ ∈ 𝐴 ↦ (𝐡 / 𝐢))β€˜(π‘“β€˜π‘›)))
68 fveq2 6843 . . . . . . . . . . . . 13 (π‘˜ = (π‘“β€˜π‘›) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘˜) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(π‘“β€˜π‘›)))
6968, 46oveq12d 7376 . . . . . . . . . . . 12 (π‘˜ = (π‘“β€˜π‘›) β†’ (((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘˜) / ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘˜)) = (((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(π‘“β€˜π‘›)) / ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜(π‘“β€˜π‘›))))
7067, 69eqeq12d 2749 . . . . . . . . . . 11 (π‘˜ = (π‘“β€˜π‘›) β†’ (((π‘˜ ∈ 𝐴 ↦ (𝐡 / 𝐢))β€˜π‘˜) = (((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘˜) / ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘˜)) ↔ ((π‘˜ ∈ 𝐴 ↦ (𝐡 / 𝐢))β€˜(π‘“β€˜π‘›)) = (((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(π‘“β€˜π‘›)) / ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜(π‘“β€˜π‘›)))))
7166, 70rspc 3568 . . . . . . . . . 10 ((π‘“β€˜π‘›) ∈ 𝐴 β†’ (βˆ€π‘˜ ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ (𝐡 / 𝐢))β€˜π‘˜) = (((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘˜) / ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘˜)) β†’ ((π‘˜ ∈ 𝐴 ↦ (𝐡 / 𝐢))β€˜(π‘“β€˜π‘›)) = (((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(π‘“β€˜π‘›)) / ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜(π‘“β€˜π‘›)))))
7234, 61, 71sylc 65 . . . . . . . . 9 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(β™―β€˜π΄))) β†’ ((π‘˜ ∈ 𝐴 ↦ (𝐡 / 𝐢))β€˜(π‘“β€˜π‘›)) = (((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(π‘“β€˜π‘›)) / ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜(π‘“β€˜π‘›))))
73 fvco3 6941 . . . . . . . . . 10 ((𝑓:(1...(β™―β€˜π΄))⟢𝐴 ∧ 𝑛 ∈ (1...(β™―β€˜π΄))) β†’ (((π‘˜ ∈ 𝐴 ↦ (𝐡 / 𝐢)) ∘ 𝑓)β€˜π‘›) = ((π‘˜ ∈ 𝐴 ↦ (𝐡 / 𝐢))β€˜(π‘“β€˜π‘›)))
7431, 73sylan 581 . . . . . . . . 9 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(β™―β€˜π΄))) β†’ (((π‘˜ ∈ 𝐴 ↦ (𝐡 / 𝐢)) ∘ 𝑓)β€˜π‘›) = ((π‘˜ ∈ 𝐴 ↦ (𝐡 / 𝐢))β€˜(π‘“β€˜π‘›)))
75 fvco3 6941 . . . . . . . . . . 11 ((𝑓:(1...(β™―β€˜π΄))⟢𝐴 ∧ 𝑛 ∈ (1...(β™―β€˜π΄))) β†’ (((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ 𝑓)β€˜π‘›) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(π‘“β€˜π‘›)))
7631, 75sylan 581 . . . . . . . . . 10 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(β™―β€˜π΄))) β†’ (((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ 𝑓)β€˜π‘›) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(π‘“β€˜π‘›)))
7776, 33oveq12d 7376 . . . . . . . . 9 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(β™―β€˜π΄))) β†’ ((((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ 𝑓)β€˜π‘›) / (((π‘˜ ∈ 𝐴 ↦ 𝐢) ∘ 𝑓)β€˜π‘›)) = (((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(π‘“β€˜π‘›)) / ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜(π‘“β€˜π‘›))))
7872, 74, 773eqtr4d 2783 . . . . . . . 8 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(β™―β€˜π΄))) β†’ (((π‘˜ ∈ 𝐴 ↦ (𝐡 / 𝐢)) ∘ 𝑓)β€˜π‘›) = ((((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ 𝑓)β€˜π‘›) / (((π‘˜ ∈ 𝐴 ↦ 𝐢) ∘ 𝑓)β€˜π‘›)))
7917, 24, 29, 50, 78prodfdiv 15786 . . . . . . 7 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ (seq1( Β· , ((π‘˜ ∈ 𝐴 ↦ (𝐡 / 𝐢)) ∘ 𝑓))β€˜(β™―β€˜π΄)) = ((seq1( Β· , ((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ 𝑓))β€˜(β™―β€˜π΄)) / (seq1( Β· , ((π‘˜ ∈ 𝐴 ↦ 𝐢) ∘ 𝑓))β€˜(β™―β€˜π΄))))
80 fveq2 6843 . . . . . . . 8 (π‘š = (π‘“β€˜π‘›) β†’ ((π‘˜ ∈ 𝐴 ↦ (𝐡 / 𝐢))β€˜π‘š) = ((π‘˜ ∈ 𝐴 ↦ (𝐡 / 𝐢))β€˜(π‘“β€˜π‘›)))
8151fmpttd 7064 . . . . . . . . . 10 (πœ‘ β†’ (π‘˜ ∈ 𝐴 ↦ (𝐡 / 𝐢)):π΄βŸΆβ„‚)
8281adantr 482 . . . . . . . . 9 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ (π‘˜ ∈ 𝐴 ↦ (𝐡 / 𝐢)):π΄βŸΆβ„‚)
8382ffvelcdmda 7036 . . . . . . . 8 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ π‘š ∈ 𝐴) β†’ ((π‘˜ ∈ 𝐴 ↦ (𝐡 / 𝐢))β€˜π‘š) ∈ β„‚)
8480, 15, 30, 83, 74fprod 15829 . . . . . . 7 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ βˆπ‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ (𝐡 / 𝐢))β€˜π‘š) = (seq1( Β· , ((π‘˜ ∈ 𝐴 ↦ (𝐡 / 𝐢)) ∘ 𝑓))β€˜(β™―β€˜π΄)))
85 fveq2 6843 . . . . . . . . 9 (π‘š = (π‘“β€˜π‘›) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘š) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(π‘“β€˜π‘›)))
8619adantr 482 . . . . . . . . . 10 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ (π‘˜ ∈ 𝐴 ↦ 𝐡):π΄βŸΆβ„‚)
8786ffvelcdmda 7036 . . . . . . . . 9 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ π‘š ∈ 𝐴) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘š) ∈ β„‚)
8885, 15, 30, 87, 76fprod 15829 . . . . . . . 8 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ βˆπ‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘š) = (seq1( Β· , ((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ 𝑓))β€˜(β™―β€˜π΄)))
89 fveq2 6843 . . . . . . . . 9 (π‘š = (π‘“β€˜π‘›) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘š) = ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜(π‘“β€˜π‘›)))
9026adantr 482 . . . . . . . . . 10 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ (π‘˜ ∈ 𝐴 ↦ 𝐢):π΄βŸΆβ„‚)
9190ffvelcdmda 7036 . . . . . . . . 9 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ π‘š ∈ 𝐴) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘š) ∈ β„‚)
9289, 15, 30, 91, 33fprod 15829 . . . . . . . 8 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ βˆπ‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘š) = (seq1( Β· , ((π‘˜ ∈ 𝐴 ↦ 𝐢) ∘ 𝑓))β€˜(β™―β€˜π΄)))
9388, 92oveq12d 7376 . . . . . . 7 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ (βˆπ‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘š) / βˆπ‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘š)) = ((seq1( Β· , ((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ 𝑓))β€˜(β™―β€˜π΄)) / (seq1( Β· , ((π‘˜ ∈ 𝐴 ↦ 𝐢) ∘ 𝑓))β€˜(β™―β€˜π΄))))
9479, 84, 933eqtr4d 2783 . . . . . 6 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ βˆπ‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ (𝐡 / 𝐢))β€˜π‘š) = (βˆπ‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘š) / βˆπ‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘š)))
95 prodfc 15833 . . . . . 6 βˆπ‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ (𝐡 / 𝐢))β€˜π‘š) = βˆπ‘˜ ∈ 𝐴 (𝐡 / 𝐢)
96 prodfc 15833 . . . . . . 7 βˆπ‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘š) = βˆπ‘˜ ∈ 𝐴 𝐡
97 prodfc 15833 . . . . . . 7 βˆπ‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘š) = βˆπ‘˜ ∈ 𝐴 𝐢
9896, 97oveq12i 7370 . . . . . 6 (βˆπ‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘š) / βˆπ‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ 𝐢)β€˜π‘š)) = (βˆπ‘˜ ∈ 𝐴 𝐡 / βˆπ‘˜ ∈ 𝐴 𝐢)
9994, 95, 983eqtr3g 2796 . . . . 5 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ βˆπ‘˜ ∈ 𝐴 (𝐡 / 𝐢) = (βˆπ‘˜ ∈ 𝐴 𝐡 / βˆπ‘˜ ∈ 𝐴 𝐢))
10099expr 458 . . . 4 ((πœ‘ ∧ (β™―β€˜π΄) ∈ β„•) β†’ (𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴 β†’ βˆπ‘˜ ∈ 𝐴 (𝐡 / 𝐢) = (βˆπ‘˜ ∈ 𝐴 𝐡 / βˆπ‘˜ ∈ 𝐴 𝐢)))
101100exlimdv 1937 . . 3 ((πœ‘ ∧ (β™―β€˜π΄) ∈ β„•) β†’ (βˆƒπ‘“ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴 β†’ βˆπ‘˜ ∈ 𝐴 (𝐡 / 𝐢) = (βˆπ‘˜ ∈ 𝐴 𝐡 / βˆπ‘˜ ∈ 𝐴 𝐢)))
102101expimpd 455 . 2 (πœ‘ β†’ (((β™―β€˜π΄) ∈ β„• ∧ βˆƒπ‘“ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴) β†’ βˆπ‘˜ ∈ 𝐴 (𝐡 / 𝐢) = (βˆπ‘˜ ∈ 𝐴 𝐡 / βˆπ‘˜ ∈ 𝐴 𝐢)))
103 fprodmul.1 . . 3 (πœ‘ β†’ 𝐴 ∈ Fin)
104 fz1f1o 15600 . . 3 (𝐴 ∈ Fin β†’ (𝐴 = βˆ… ∨ ((β™―β€˜π΄) ∈ β„• ∧ βˆƒπ‘“ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)))
105103, 104syl 17 . 2 (πœ‘ β†’ (𝐴 = βˆ… ∨ ((β™―β€˜π΄) ∈ β„• ∧ βˆƒπ‘“ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)))
10614, 102, 105mpjaod 859 1 (πœ‘ β†’ βˆπ‘˜ ∈ 𝐴 (𝐡 / 𝐢) = (βˆπ‘˜ ∈ 𝐴 𝐡 / βˆπ‘˜ ∈ 𝐴 𝐢))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   ∨ wo 846   = wceq 1542  βˆƒwex 1782   ∈ wcel 2107   β‰  wne 2940  βˆ€wral 3061  βˆ…c0 4283   ↦ cmpt 5189   ∘ ccom 5638  βŸΆwf 6493  β€“1-1-ontoβ†’wf1o 6496  β€˜cfv 6497  (class class class)co 7358  Fincfn 8886  β„‚cc 11054  0cc0 11056  1c1 11057   Β· cmul 11061   / cdiv 11817  β„•cn 12158  β„€β‰₯cuz 12768  ...cfz 13430  seqcseq 13912  β™―chash 14236  βˆcprod 15793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-inf2 9582  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133  ax-pre-sup 11134
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-int 4909  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-se 5590  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-isom 6506  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-1o 8413  df-er 8651  df-en 8887  df-dom 8888  df-sdom 8889  df-fin 8890  df-sup 9383  df-oi 9451  df-card 9880  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-div 11818  df-nn 12159  df-2 12221  df-3 12222  df-n0 12419  df-z 12505  df-uz 12769  df-rp 12921  df-fz 13431  df-fzo 13574  df-seq 13913  df-exp 13974  df-hash 14237  df-cj 14990  df-re 14991  df-im 14992  df-sqrt 15126  df-abs 15127  df-clim 15376  df-prod 15794
This theorem is referenced by:  fproddivf  15875  bcprod  34367
  Copyright terms: Public domain W3C validator