MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fproddiv Structured version   Visualization version   GIF version

Theorem fproddiv 15870
Description: The quotient of two finite products. (Contributed by Scott Fenton, 15-Jan-2018.)
Hypotheses
Ref Expression
fprodmul.1 (𝜑𝐴 ∈ Fin)
fprodmul.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fprodmul.3 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
fproddiv.4 ((𝜑𝑘𝐴) → 𝐶 ≠ 0)
Assertion
Ref Expression
fproddiv (𝜑 → ∏𝑘𝐴 (𝐵 / 𝐶) = (∏𝑘𝐴 𝐵 / ∏𝑘𝐴 𝐶))
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem fproddiv
Dummy variables 𝑓 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1div1e1 11819 . . . . 5 (1 / 1) = 1
21eqcomi 2742 . . . 4 1 = (1 / 1)
3 prodeq1 15816 . . . . 5 (𝐴 = ∅ → ∏𝑘𝐴 (𝐵 / 𝐶) = ∏𝑘 ∈ ∅ (𝐵 / 𝐶))
4 prod0 15852 . . . . 5 𝑘 ∈ ∅ (𝐵 / 𝐶) = 1
53, 4eqtrdi 2784 . . . 4 (𝐴 = ∅ → ∏𝑘𝐴 (𝐵 / 𝐶) = 1)
6 prodeq1 15816 . . . . . 6 (𝐴 = ∅ → ∏𝑘𝐴 𝐵 = ∏𝑘 ∈ ∅ 𝐵)
7 prod0 15852 . . . . . 6 𝑘 ∈ ∅ 𝐵 = 1
86, 7eqtrdi 2784 . . . . 5 (𝐴 = ∅ → ∏𝑘𝐴 𝐵 = 1)
9 prodeq1 15816 . . . . . 6 (𝐴 = ∅ → ∏𝑘𝐴 𝐶 = ∏𝑘 ∈ ∅ 𝐶)
10 prod0 15852 . . . . . 6 𝑘 ∈ ∅ 𝐶 = 1
119, 10eqtrdi 2784 . . . . 5 (𝐴 = ∅ → ∏𝑘𝐴 𝐶 = 1)
128, 11oveq12d 7370 . . . 4 (𝐴 = ∅ → (∏𝑘𝐴 𝐵 / ∏𝑘𝐴 𝐶) = (1 / 1))
132, 5, 123eqtr4a 2794 . . 3 (𝐴 = ∅ → ∏𝑘𝐴 (𝐵 / 𝐶) = (∏𝑘𝐴 𝐵 / ∏𝑘𝐴 𝐶))
1413a1i 11 . 2 (𝜑 → (𝐴 = ∅ → ∏𝑘𝐴 (𝐵 / 𝐶) = (∏𝑘𝐴 𝐵 / ∏𝑘𝐴 𝐶)))
15 simprl 770 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (♯‘𝐴) ∈ ℕ)
16 nnuz 12777 . . . . . . . . 9 ℕ = (ℤ‘1)
1715, 16eleqtrdi 2843 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (♯‘𝐴) ∈ (ℤ‘1))
18 fprodmul.2 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
1918fmpttd 7054 . . . . . . . . . 10 (𝜑 → (𝑘𝐴𝐵):𝐴⟶ℂ)
20 f1of 6768 . . . . . . . . . . 11 (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑓:(1...(♯‘𝐴))⟶𝐴)
2120adantl 481 . . . . . . . . . 10 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → 𝑓:(1...(♯‘𝐴))⟶𝐴)
22 fco 6680 . . . . . . . . . 10 (((𝑘𝐴𝐵):𝐴⟶ℂ ∧ 𝑓:(1...(♯‘𝐴))⟶𝐴) → ((𝑘𝐴𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
2319, 21, 22syl2an 596 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ((𝑘𝐴𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
2423ffvelcdmda 7023 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) ∈ ℂ)
25 fprodmul.3 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
2625fmpttd 7054 . . . . . . . . . 10 (𝜑 → (𝑘𝐴𝐶):𝐴⟶ℂ)
27 fco 6680 . . . . . . . . . 10 (((𝑘𝐴𝐶):𝐴⟶ℂ ∧ 𝑓:(1...(♯‘𝐴))⟶𝐴) → ((𝑘𝐴𝐶) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
2826, 21, 27syl2an 596 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ((𝑘𝐴𝐶) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
2928ffvelcdmda 7023 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛) ∈ ℂ)
30 simprr 772 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)
3130, 20syl 17 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))⟶𝐴)
32 fvco3 6927 . . . . . . . . . 10 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐶)‘(𝑓𝑛)))
3331, 32sylan 580 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐶)‘(𝑓𝑛)))
3431ffvelcdmda 7023 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (𝑓𝑛) ∈ 𝐴)
35 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → 𝑘𝐴)
36 eqid 2733 . . . . . . . . . . . . . . 15 (𝑘𝐴𝐶) = (𝑘𝐴𝐶)
3736fvmpt2 6946 . . . . . . . . . . . . . 14 ((𝑘𝐴𝐶 ∈ ℂ) → ((𝑘𝐴𝐶)‘𝑘) = 𝐶)
3835, 25, 37syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → ((𝑘𝐴𝐶)‘𝑘) = 𝐶)
39 fproddiv.4 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → 𝐶 ≠ 0)
4038, 39eqnetrd 2996 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → ((𝑘𝐴𝐶)‘𝑘) ≠ 0)
4140ralrimiva 3125 . . . . . . . . . . 11 (𝜑 → ∀𝑘𝐴 ((𝑘𝐴𝐶)‘𝑘) ≠ 0)
4241ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ∀𝑘𝐴 ((𝑘𝐴𝐶)‘𝑘) ≠ 0)
43 nffvmpt1 6839 . . . . . . . . . . . 12 𝑘((𝑘𝐴𝐶)‘(𝑓𝑛))
44 nfcv 2895 . . . . . . . . . . . 12 𝑘0
4543, 44nfne 3030 . . . . . . . . . . 11 𝑘((𝑘𝐴𝐶)‘(𝑓𝑛)) ≠ 0
46 fveq2 6828 . . . . . . . . . . . 12 (𝑘 = (𝑓𝑛) → ((𝑘𝐴𝐶)‘𝑘) = ((𝑘𝐴𝐶)‘(𝑓𝑛)))
4746neeq1d 2988 . . . . . . . . . . 11 (𝑘 = (𝑓𝑛) → (((𝑘𝐴𝐶)‘𝑘) ≠ 0 ↔ ((𝑘𝐴𝐶)‘(𝑓𝑛)) ≠ 0))
4845, 47rspc 3561 . . . . . . . . . 10 ((𝑓𝑛) ∈ 𝐴 → (∀𝑘𝐴 ((𝑘𝐴𝐶)‘𝑘) ≠ 0 → ((𝑘𝐴𝐶)‘(𝑓𝑛)) ≠ 0))
4934, 42, 48sylc 65 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ((𝑘𝐴𝐶)‘(𝑓𝑛)) ≠ 0)
5033, 49eqnetrd 2996 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛) ≠ 0)
5118, 25, 39divcld 11904 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → (𝐵 / 𝐶) ∈ ℂ)
52 eqid 2733 . . . . . . . . . . . . . . 15 (𝑘𝐴 ↦ (𝐵 / 𝐶)) = (𝑘𝐴 ↦ (𝐵 / 𝐶))
5352fvmpt2 6946 . . . . . . . . . . . . . 14 ((𝑘𝐴 ∧ (𝐵 / 𝐶) ∈ ℂ) → ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘𝑘) = (𝐵 / 𝐶))
5435, 51, 53syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘𝑘) = (𝐵 / 𝐶))
55 eqid 2733 . . . . . . . . . . . . . . . 16 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
5655fvmpt2 6946 . . . . . . . . . . . . . . 15 ((𝑘𝐴𝐵 ∈ ℂ) → ((𝑘𝐴𝐵)‘𝑘) = 𝐵)
5735, 18, 56syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → ((𝑘𝐴𝐵)‘𝑘) = 𝐵)
5857, 38oveq12d 7370 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → (((𝑘𝐴𝐵)‘𝑘) / ((𝑘𝐴𝐶)‘𝑘)) = (𝐵 / 𝐶))
5954, 58eqtr4d 2771 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘𝑘) = (((𝑘𝐴𝐵)‘𝑘) / ((𝑘𝐴𝐶)‘𝑘)))
6059ralrimiva 3125 . . . . . . . . . . 11 (𝜑 → ∀𝑘𝐴 ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘𝑘) = (((𝑘𝐴𝐵)‘𝑘) / ((𝑘𝐴𝐶)‘𝑘)))
6160ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ∀𝑘𝐴 ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘𝑘) = (((𝑘𝐴𝐵)‘𝑘) / ((𝑘𝐴𝐶)‘𝑘)))
62 nffvmpt1 6839 . . . . . . . . . . . 12 𝑘((𝑘𝐴 ↦ (𝐵 / 𝐶))‘(𝑓𝑛))
63 nffvmpt1 6839 . . . . . . . . . . . . 13 𝑘((𝑘𝐴𝐵)‘(𝑓𝑛))
64 nfcv 2895 . . . . . . . . . . . . 13 𝑘 /
6563, 64, 43nfov 7382 . . . . . . . . . . . 12 𝑘(((𝑘𝐴𝐵)‘(𝑓𝑛)) / ((𝑘𝐴𝐶)‘(𝑓𝑛)))
6662, 65nfeq 2909 . . . . . . . . . . 11 𝑘((𝑘𝐴 ↦ (𝐵 / 𝐶))‘(𝑓𝑛)) = (((𝑘𝐴𝐵)‘(𝑓𝑛)) / ((𝑘𝐴𝐶)‘(𝑓𝑛)))
67 fveq2 6828 . . . . . . . . . . . 12 (𝑘 = (𝑓𝑛) → ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘𝑘) = ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘(𝑓𝑛)))
68 fveq2 6828 . . . . . . . . . . . . 13 (𝑘 = (𝑓𝑛) → ((𝑘𝐴𝐵)‘𝑘) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
6968, 46oveq12d 7370 . . . . . . . . . . . 12 (𝑘 = (𝑓𝑛) → (((𝑘𝐴𝐵)‘𝑘) / ((𝑘𝐴𝐶)‘𝑘)) = (((𝑘𝐴𝐵)‘(𝑓𝑛)) / ((𝑘𝐴𝐶)‘(𝑓𝑛))))
7067, 69eqeq12d 2749 . . . . . . . . . . 11 (𝑘 = (𝑓𝑛) → (((𝑘𝐴 ↦ (𝐵 / 𝐶))‘𝑘) = (((𝑘𝐴𝐵)‘𝑘) / ((𝑘𝐴𝐶)‘𝑘)) ↔ ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘(𝑓𝑛)) = (((𝑘𝐴𝐵)‘(𝑓𝑛)) / ((𝑘𝐴𝐶)‘(𝑓𝑛)))))
7166, 70rspc 3561 . . . . . . . . . 10 ((𝑓𝑛) ∈ 𝐴 → (∀𝑘𝐴 ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘𝑘) = (((𝑘𝐴𝐵)‘𝑘) / ((𝑘𝐴𝐶)‘𝑘)) → ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘(𝑓𝑛)) = (((𝑘𝐴𝐵)‘(𝑓𝑛)) / ((𝑘𝐴𝐶)‘(𝑓𝑛)))))
7234, 61, 71sylc 65 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘(𝑓𝑛)) = (((𝑘𝐴𝐵)‘(𝑓𝑛)) / ((𝑘𝐴𝐶)‘(𝑓𝑛))))
73 fvco3 6927 . . . . . . . . . 10 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴 ↦ (𝐵 / 𝐶)) ∘ 𝑓)‘𝑛) = ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘(𝑓𝑛)))
7431, 73sylan 580 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴 ↦ (𝐵 / 𝐶)) ∘ 𝑓)‘𝑛) = ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘(𝑓𝑛)))
75 fvco3 6927 . . . . . . . . . . 11 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
7631, 75sylan 580 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
7776, 33oveq12d 7370 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ((((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) / (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛)) = (((𝑘𝐴𝐵)‘(𝑓𝑛)) / ((𝑘𝐴𝐶)‘(𝑓𝑛))))
7872, 74, 773eqtr4d 2778 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴 ↦ (𝐵 / 𝐶)) ∘ 𝑓)‘𝑛) = ((((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) / (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛)))
7917, 24, 29, 50, 78prodfdiv 15805 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (seq1( · , ((𝑘𝐴 ↦ (𝐵 / 𝐶)) ∘ 𝑓))‘(♯‘𝐴)) = ((seq1( · , ((𝑘𝐴𝐵) ∘ 𝑓))‘(♯‘𝐴)) / (seq1( · , ((𝑘𝐴𝐶) ∘ 𝑓))‘(♯‘𝐴))))
80 fveq2 6828 . . . . . . . 8 (𝑚 = (𝑓𝑛) → ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘𝑚) = ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘(𝑓𝑛)))
8151fmpttd 7054 . . . . . . . . . 10 (𝜑 → (𝑘𝐴 ↦ (𝐵 / 𝐶)):𝐴⟶ℂ)
8281adantr 480 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴 ↦ (𝐵 / 𝐶)):𝐴⟶ℂ)
8382ffvelcdmda 7023 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘𝑚) ∈ ℂ)
8480, 15, 30, 83, 74fprod 15850 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ∏𝑚𝐴 ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘𝑚) = (seq1( · , ((𝑘𝐴 ↦ (𝐵 / 𝐶)) ∘ 𝑓))‘(♯‘𝐴)))
85 fveq2 6828 . . . . . . . . 9 (𝑚 = (𝑓𝑛) → ((𝑘𝐴𝐵)‘𝑚) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
8619adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴𝐵):𝐴⟶ℂ)
8786ffvelcdmda 7023 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐵)‘𝑚) ∈ ℂ)
8885, 15, 30, 87, 76fprod 15850 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ∏𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = (seq1( · , ((𝑘𝐴𝐵) ∘ 𝑓))‘(♯‘𝐴)))
89 fveq2 6828 . . . . . . . . 9 (𝑚 = (𝑓𝑛) → ((𝑘𝐴𝐶)‘𝑚) = ((𝑘𝐴𝐶)‘(𝑓𝑛)))
9026adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴𝐶):𝐴⟶ℂ)
9190ffvelcdmda 7023 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐶)‘𝑚) ∈ ℂ)
9289, 15, 30, 91, 33fprod 15850 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = (seq1( · , ((𝑘𝐴𝐶) ∘ 𝑓))‘(♯‘𝐴)))
9388, 92oveq12d 7370 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (∏𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) / ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚)) = ((seq1( · , ((𝑘𝐴𝐵) ∘ 𝑓))‘(♯‘𝐴)) / (seq1( · , ((𝑘𝐴𝐶) ∘ 𝑓))‘(♯‘𝐴))))
9479, 84, 933eqtr4d 2778 . . . . . 6 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ∏𝑚𝐴 ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘𝑚) = (∏𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) / ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚)))
95 prodfc 15854 . . . . . 6 𝑚𝐴 ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘𝑚) = ∏𝑘𝐴 (𝐵 / 𝐶)
96 prodfc 15854 . . . . . . 7 𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = ∏𝑘𝐴 𝐵
97 prodfc 15854 . . . . . . 7 𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = ∏𝑘𝐴 𝐶
9896, 97oveq12i 7364 . . . . . 6 (∏𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) / ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚)) = (∏𝑘𝐴 𝐵 / ∏𝑘𝐴 𝐶)
9994, 95, 983eqtr3g 2791 . . . . 5 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ∏𝑘𝐴 (𝐵 / 𝐶) = (∏𝑘𝐴 𝐵 / ∏𝑘𝐴 𝐶))
10099expr 456 . . . 4 ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) → (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → ∏𝑘𝐴 (𝐵 / 𝐶) = (∏𝑘𝐴 𝐵 / ∏𝑘𝐴 𝐶)))
101100exlimdv 1934 . . 3 ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) → (∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → ∏𝑘𝐴 (𝐵 / 𝐶) = (∏𝑘𝐴 𝐵 / ∏𝑘𝐴 𝐶)))
102101expimpd 453 . 2 (𝜑 → (((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → ∏𝑘𝐴 (𝐵 / 𝐶) = (∏𝑘𝐴 𝐵 / ∏𝑘𝐴 𝐶)))
103 fprodmul.1 . . 3 (𝜑𝐴 ∈ Fin)
104 fz1f1o 15619 . . 3 (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
105103, 104syl 17 . 2 (𝜑 → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
10614, 102, 105mpjaod 860 1 (𝜑 → ∏𝑘𝐴 (𝐵 / 𝐶) = (∏𝑘𝐴 𝐵 / ∏𝑘𝐴 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1541  wex 1780  wcel 2113  wne 2929  wral 3048  c0 4282  cmpt 5174  ccom 5623  wf 6482  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7352  Fincfn 8875  cc 11011  0cc0 11013  1c1 11014   · cmul 11018   / cdiv 11781  cn 12132  cuz 12738  ...cfz 13409  seqcseq 13910  chash 14239  cprod 15812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-n0 12389  df-z 12476  df-uz 12739  df-rp 12893  df-fz 13410  df-fzo 13557  df-seq 13911  df-exp 13971  df-hash 14240  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-clim 15397  df-prod 15813
This theorem is referenced by:  fproddivf  15896  bcprod  35803
  Copyright terms: Public domain W3C validator