MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fproddiv Structured version   Visualization version   GIF version

Theorem fproddiv 15868
Description: The quotient of two finite products. (Contributed by Scott Fenton, 15-Jan-2018.)
Hypotheses
Ref Expression
fprodmul.1 (𝜑𝐴 ∈ Fin)
fprodmul.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fprodmul.3 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
fproddiv.4 ((𝜑𝑘𝐴) → 𝐶 ≠ 0)
Assertion
Ref Expression
fproddiv (𝜑 → ∏𝑘𝐴 (𝐵 / 𝐶) = (∏𝑘𝐴 𝐵 / ∏𝑘𝐴 𝐶))
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem fproddiv
Dummy variables 𝑓 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1div1e1 11812 . . . . 5 (1 / 1) = 1
21eqcomi 2740 . . . 4 1 = (1 / 1)
3 prodeq1 15814 . . . . 5 (𝐴 = ∅ → ∏𝑘𝐴 (𝐵 / 𝐶) = ∏𝑘 ∈ ∅ (𝐵 / 𝐶))
4 prod0 15850 . . . . 5 𝑘 ∈ ∅ (𝐵 / 𝐶) = 1
53, 4eqtrdi 2782 . . . 4 (𝐴 = ∅ → ∏𝑘𝐴 (𝐵 / 𝐶) = 1)
6 prodeq1 15814 . . . . . 6 (𝐴 = ∅ → ∏𝑘𝐴 𝐵 = ∏𝑘 ∈ ∅ 𝐵)
7 prod0 15850 . . . . . 6 𝑘 ∈ ∅ 𝐵 = 1
86, 7eqtrdi 2782 . . . . 5 (𝐴 = ∅ → ∏𝑘𝐴 𝐵 = 1)
9 prodeq1 15814 . . . . . 6 (𝐴 = ∅ → ∏𝑘𝐴 𝐶 = ∏𝑘 ∈ ∅ 𝐶)
10 prod0 15850 . . . . . 6 𝑘 ∈ ∅ 𝐶 = 1
119, 10eqtrdi 2782 . . . . 5 (𝐴 = ∅ → ∏𝑘𝐴 𝐶 = 1)
128, 11oveq12d 7364 . . . 4 (𝐴 = ∅ → (∏𝑘𝐴 𝐵 / ∏𝑘𝐴 𝐶) = (1 / 1))
132, 5, 123eqtr4a 2792 . . 3 (𝐴 = ∅ → ∏𝑘𝐴 (𝐵 / 𝐶) = (∏𝑘𝐴 𝐵 / ∏𝑘𝐴 𝐶))
1413a1i 11 . 2 (𝜑 → (𝐴 = ∅ → ∏𝑘𝐴 (𝐵 / 𝐶) = (∏𝑘𝐴 𝐵 / ∏𝑘𝐴 𝐶)))
15 simprl 770 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (♯‘𝐴) ∈ ℕ)
16 nnuz 12775 . . . . . . . . 9 ℕ = (ℤ‘1)
1715, 16eleqtrdi 2841 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (♯‘𝐴) ∈ (ℤ‘1))
18 fprodmul.2 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
1918fmpttd 7048 . . . . . . . . . 10 (𝜑 → (𝑘𝐴𝐵):𝐴⟶ℂ)
20 f1of 6763 . . . . . . . . . . 11 (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑓:(1...(♯‘𝐴))⟶𝐴)
2120adantl 481 . . . . . . . . . 10 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → 𝑓:(1...(♯‘𝐴))⟶𝐴)
22 fco 6675 . . . . . . . . . 10 (((𝑘𝐴𝐵):𝐴⟶ℂ ∧ 𝑓:(1...(♯‘𝐴))⟶𝐴) → ((𝑘𝐴𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
2319, 21, 22syl2an 596 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ((𝑘𝐴𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
2423ffvelcdmda 7017 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) ∈ ℂ)
25 fprodmul.3 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
2625fmpttd 7048 . . . . . . . . . 10 (𝜑 → (𝑘𝐴𝐶):𝐴⟶ℂ)
27 fco 6675 . . . . . . . . . 10 (((𝑘𝐴𝐶):𝐴⟶ℂ ∧ 𝑓:(1...(♯‘𝐴))⟶𝐴) → ((𝑘𝐴𝐶) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
2826, 21, 27syl2an 596 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ((𝑘𝐴𝐶) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
2928ffvelcdmda 7017 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛) ∈ ℂ)
30 simprr 772 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)
3130, 20syl 17 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))⟶𝐴)
32 fvco3 6921 . . . . . . . . . 10 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐶)‘(𝑓𝑛)))
3331, 32sylan 580 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐶)‘(𝑓𝑛)))
3431ffvelcdmda 7017 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (𝑓𝑛) ∈ 𝐴)
35 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → 𝑘𝐴)
36 eqid 2731 . . . . . . . . . . . . . . 15 (𝑘𝐴𝐶) = (𝑘𝐴𝐶)
3736fvmpt2 6940 . . . . . . . . . . . . . 14 ((𝑘𝐴𝐶 ∈ ℂ) → ((𝑘𝐴𝐶)‘𝑘) = 𝐶)
3835, 25, 37syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → ((𝑘𝐴𝐶)‘𝑘) = 𝐶)
39 fproddiv.4 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → 𝐶 ≠ 0)
4038, 39eqnetrd 2995 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → ((𝑘𝐴𝐶)‘𝑘) ≠ 0)
4140ralrimiva 3124 . . . . . . . . . . 11 (𝜑 → ∀𝑘𝐴 ((𝑘𝐴𝐶)‘𝑘) ≠ 0)
4241ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ∀𝑘𝐴 ((𝑘𝐴𝐶)‘𝑘) ≠ 0)
43 nffvmpt1 6833 . . . . . . . . . . . 12 𝑘((𝑘𝐴𝐶)‘(𝑓𝑛))
44 nfcv 2894 . . . . . . . . . . . 12 𝑘0
4543, 44nfne 3029 . . . . . . . . . . 11 𝑘((𝑘𝐴𝐶)‘(𝑓𝑛)) ≠ 0
46 fveq2 6822 . . . . . . . . . . . 12 (𝑘 = (𝑓𝑛) → ((𝑘𝐴𝐶)‘𝑘) = ((𝑘𝐴𝐶)‘(𝑓𝑛)))
4746neeq1d 2987 . . . . . . . . . . 11 (𝑘 = (𝑓𝑛) → (((𝑘𝐴𝐶)‘𝑘) ≠ 0 ↔ ((𝑘𝐴𝐶)‘(𝑓𝑛)) ≠ 0))
4845, 47rspc 3565 . . . . . . . . . 10 ((𝑓𝑛) ∈ 𝐴 → (∀𝑘𝐴 ((𝑘𝐴𝐶)‘𝑘) ≠ 0 → ((𝑘𝐴𝐶)‘(𝑓𝑛)) ≠ 0))
4934, 42, 48sylc 65 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ((𝑘𝐴𝐶)‘(𝑓𝑛)) ≠ 0)
5033, 49eqnetrd 2995 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛) ≠ 0)
5118, 25, 39divcld 11897 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → (𝐵 / 𝐶) ∈ ℂ)
52 eqid 2731 . . . . . . . . . . . . . . 15 (𝑘𝐴 ↦ (𝐵 / 𝐶)) = (𝑘𝐴 ↦ (𝐵 / 𝐶))
5352fvmpt2 6940 . . . . . . . . . . . . . 14 ((𝑘𝐴 ∧ (𝐵 / 𝐶) ∈ ℂ) → ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘𝑘) = (𝐵 / 𝐶))
5435, 51, 53syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘𝑘) = (𝐵 / 𝐶))
55 eqid 2731 . . . . . . . . . . . . . . . 16 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
5655fvmpt2 6940 . . . . . . . . . . . . . . 15 ((𝑘𝐴𝐵 ∈ ℂ) → ((𝑘𝐴𝐵)‘𝑘) = 𝐵)
5735, 18, 56syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → ((𝑘𝐴𝐵)‘𝑘) = 𝐵)
5857, 38oveq12d 7364 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → (((𝑘𝐴𝐵)‘𝑘) / ((𝑘𝐴𝐶)‘𝑘)) = (𝐵 / 𝐶))
5954, 58eqtr4d 2769 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘𝑘) = (((𝑘𝐴𝐵)‘𝑘) / ((𝑘𝐴𝐶)‘𝑘)))
6059ralrimiva 3124 . . . . . . . . . . 11 (𝜑 → ∀𝑘𝐴 ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘𝑘) = (((𝑘𝐴𝐵)‘𝑘) / ((𝑘𝐴𝐶)‘𝑘)))
6160ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ∀𝑘𝐴 ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘𝑘) = (((𝑘𝐴𝐵)‘𝑘) / ((𝑘𝐴𝐶)‘𝑘)))
62 nffvmpt1 6833 . . . . . . . . . . . 12 𝑘((𝑘𝐴 ↦ (𝐵 / 𝐶))‘(𝑓𝑛))
63 nffvmpt1 6833 . . . . . . . . . . . . 13 𝑘((𝑘𝐴𝐵)‘(𝑓𝑛))
64 nfcv 2894 . . . . . . . . . . . . 13 𝑘 /
6563, 64, 43nfov 7376 . . . . . . . . . . . 12 𝑘(((𝑘𝐴𝐵)‘(𝑓𝑛)) / ((𝑘𝐴𝐶)‘(𝑓𝑛)))
6662, 65nfeq 2908 . . . . . . . . . . 11 𝑘((𝑘𝐴 ↦ (𝐵 / 𝐶))‘(𝑓𝑛)) = (((𝑘𝐴𝐵)‘(𝑓𝑛)) / ((𝑘𝐴𝐶)‘(𝑓𝑛)))
67 fveq2 6822 . . . . . . . . . . . 12 (𝑘 = (𝑓𝑛) → ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘𝑘) = ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘(𝑓𝑛)))
68 fveq2 6822 . . . . . . . . . . . . 13 (𝑘 = (𝑓𝑛) → ((𝑘𝐴𝐵)‘𝑘) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
6968, 46oveq12d 7364 . . . . . . . . . . . 12 (𝑘 = (𝑓𝑛) → (((𝑘𝐴𝐵)‘𝑘) / ((𝑘𝐴𝐶)‘𝑘)) = (((𝑘𝐴𝐵)‘(𝑓𝑛)) / ((𝑘𝐴𝐶)‘(𝑓𝑛))))
7067, 69eqeq12d 2747 . . . . . . . . . . 11 (𝑘 = (𝑓𝑛) → (((𝑘𝐴 ↦ (𝐵 / 𝐶))‘𝑘) = (((𝑘𝐴𝐵)‘𝑘) / ((𝑘𝐴𝐶)‘𝑘)) ↔ ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘(𝑓𝑛)) = (((𝑘𝐴𝐵)‘(𝑓𝑛)) / ((𝑘𝐴𝐶)‘(𝑓𝑛)))))
7166, 70rspc 3565 . . . . . . . . . 10 ((𝑓𝑛) ∈ 𝐴 → (∀𝑘𝐴 ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘𝑘) = (((𝑘𝐴𝐵)‘𝑘) / ((𝑘𝐴𝐶)‘𝑘)) → ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘(𝑓𝑛)) = (((𝑘𝐴𝐵)‘(𝑓𝑛)) / ((𝑘𝐴𝐶)‘(𝑓𝑛)))))
7234, 61, 71sylc 65 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘(𝑓𝑛)) = (((𝑘𝐴𝐵)‘(𝑓𝑛)) / ((𝑘𝐴𝐶)‘(𝑓𝑛))))
73 fvco3 6921 . . . . . . . . . 10 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴 ↦ (𝐵 / 𝐶)) ∘ 𝑓)‘𝑛) = ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘(𝑓𝑛)))
7431, 73sylan 580 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴 ↦ (𝐵 / 𝐶)) ∘ 𝑓)‘𝑛) = ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘(𝑓𝑛)))
75 fvco3 6921 . . . . . . . . . . 11 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
7631, 75sylan 580 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
7776, 33oveq12d 7364 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ((((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) / (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛)) = (((𝑘𝐴𝐵)‘(𝑓𝑛)) / ((𝑘𝐴𝐶)‘(𝑓𝑛))))
7872, 74, 773eqtr4d 2776 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴 ↦ (𝐵 / 𝐶)) ∘ 𝑓)‘𝑛) = ((((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) / (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛)))
7917, 24, 29, 50, 78prodfdiv 15803 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (seq1( · , ((𝑘𝐴 ↦ (𝐵 / 𝐶)) ∘ 𝑓))‘(♯‘𝐴)) = ((seq1( · , ((𝑘𝐴𝐵) ∘ 𝑓))‘(♯‘𝐴)) / (seq1( · , ((𝑘𝐴𝐶) ∘ 𝑓))‘(♯‘𝐴))))
80 fveq2 6822 . . . . . . . 8 (𝑚 = (𝑓𝑛) → ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘𝑚) = ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘(𝑓𝑛)))
8151fmpttd 7048 . . . . . . . . . 10 (𝜑 → (𝑘𝐴 ↦ (𝐵 / 𝐶)):𝐴⟶ℂ)
8281adantr 480 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴 ↦ (𝐵 / 𝐶)):𝐴⟶ℂ)
8382ffvelcdmda 7017 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘𝑚) ∈ ℂ)
8480, 15, 30, 83, 74fprod 15848 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ∏𝑚𝐴 ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘𝑚) = (seq1( · , ((𝑘𝐴 ↦ (𝐵 / 𝐶)) ∘ 𝑓))‘(♯‘𝐴)))
85 fveq2 6822 . . . . . . . . 9 (𝑚 = (𝑓𝑛) → ((𝑘𝐴𝐵)‘𝑚) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
8619adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴𝐵):𝐴⟶ℂ)
8786ffvelcdmda 7017 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐵)‘𝑚) ∈ ℂ)
8885, 15, 30, 87, 76fprod 15848 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ∏𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = (seq1( · , ((𝑘𝐴𝐵) ∘ 𝑓))‘(♯‘𝐴)))
89 fveq2 6822 . . . . . . . . 9 (𝑚 = (𝑓𝑛) → ((𝑘𝐴𝐶)‘𝑚) = ((𝑘𝐴𝐶)‘(𝑓𝑛)))
9026adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴𝐶):𝐴⟶ℂ)
9190ffvelcdmda 7017 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐶)‘𝑚) ∈ ℂ)
9289, 15, 30, 91, 33fprod 15848 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = (seq1( · , ((𝑘𝐴𝐶) ∘ 𝑓))‘(♯‘𝐴)))
9388, 92oveq12d 7364 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (∏𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) / ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚)) = ((seq1( · , ((𝑘𝐴𝐵) ∘ 𝑓))‘(♯‘𝐴)) / (seq1( · , ((𝑘𝐴𝐶) ∘ 𝑓))‘(♯‘𝐴))))
9479, 84, 933eqtr4d 2776 . . . . . 6 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ∏𝑚𝐴 ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘𝑚) = (∏𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) / ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚)))
95 prodfc 15852 . . . . . 6 𝑚𝐴 ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘𝑚) = ∏𝑘𝐴 (𝐵 / 𝐶)
96 prodfc 15852 . . . . . . 7 𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = ∏𝑘𝐴 𝐵
97 prodfc 15852 . . . . . . 7 𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = ∏𝑘𝐴 𝐶
9896, 97oveq12i 7358 . . . . . 6 (∏𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) / ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚)) = (∏𝑘𝐴 𝐵 / ∏𝑘𝐴 𝐶)
9994, 95, 983eqtr3g 2789 . . . . 5 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ∏𝑘𝐴 (𝐵 / 𝐶) = (∏𝑘𝐴 𝐵 / ∏𝑘𝐴 𝐶))
10099expr 456 . . . 4 ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) → (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → ∏𝑘𝐴 (𝐵 / 𝐶) = (∏𝑘𝐴 𝐵 / ∏𝑘𝐴 𝐶)))
101100exlimdv 1934 . . 3 ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) → (∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → ∏𝑘𝐴 (𝐵 / 𝐶) = (∏𝑘𝐴 𝐵 / ∏𝑘𝐴 𝐶)))
102101expimpd 453 . 2 (𝜑 → (((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → ∏𝑘𝐴 (𝐵 / 𝐶) = (∏𝑘𝐴 𝐵 / ∏𝑘𝐴 𝐶)))
103 fprodmul.1 . . 3 (𝜑𝐴 ∈ Fin)
104 fz1f1o 15617 . . 3 (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
105103, 104syl 17 . 2 (𝜑 → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
10614, 102, 105mpjaod 860 1 (𝜑 → ∏𝑘𝐴 (𝐵 / 𝐶) = (∏𝑘𝐴 𝐵 / ∏𝑘𝐴 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1541  wex 1780  wcel 2111  wne 2928  wral 3047  c0 4283  cmpt 5172  ccom 5620  wf 6477  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  Fincfn 8869  cc 11004  0cc0 11006  1c1 11007   · cmul 11011   / cdiv 11774  cn 12125  cuz 12732  ...cfz 13407  seqcseq 13908  chash 14237  cprod 15810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-prod 15811
This theorem is referenced by:  fproddivf  15894  bcprod  35780
  Copyright terms: Public domain W3C validator