MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fproddiv Structured version   Visualization version   GIF version

Theorem fproddiv 15376
Description: The quotient of two finite products. (Contributed by Scott Fenton, 15-Jan-2018.)
Hypotheses
Ref Expression
fprodmul.1 (𝜑𝐴 ∈ Fin)
fprodmul.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fprodmul.3 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
fproddiv.4 ((𝜑𝑘𝐴) → 𝐶 ≠ 0)
Assertion
Ref Expression
fproddiv (𝜑 → ∏𝑘𝐴 (𝐵 / 𝐶) = (∏𝑘𝐴 𝐵 / ∏𝑘𝐴 𝐶))
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem fproddiv
Dummy variables 𝑓 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1div1e1 11381 . . . . 5 (1 / 1) = 1
21eqcomi 2767 . . . 4 1 = (1 / 1)
3 prodeq1 15324 . . . . 5 (𝐴 = ∅ → ∏𝑘𝐴 (𝐵 / 𝐶) = ∏𝑘 ∈ ∅ (𝐵 / 𝐶))
4 prod0 15358 . . . . 5 𝑘 ∈ ∅ (𝐵 / 𝐶) = 1
53, 4eqtrdi 2809 . . . 4 (𝐴 = ∅ → ∏𝑘𝐴 (𝐵 / 𝐶) = 1)
6 prodeq1 15324 . . . . . 6 (𝐴 = ∅ → ∏𝑘𝐴 𝐵 = ∏𝑘 ∈ ∅ 𝐵)
7 prod0 15358 . . . . . 6 𝑘 ∈ ∅ 𝐵 = 1
86, 7eqtrdi 2809 . . . . 5 (𝐴 = ∅ → ∏𝑘𝐴 𝐵 = 1)
9 prodeq1 15324 . . . . . 6 (𝐴 = ∅ → ∏𝑘𝐴 𝐶 = ∏𝑘 ∈ ∅ 𝐶)
10 prod0 15358 . . . . . 6 𝑘 ∈ ∅ 𝐶 = 1
119, 10eqtrdi 2809 . . . . 5 (𝐴 = ∅ → ∏𝑘𝐴 𝐶 = 1)
128, 11oveq12d 7174 . . . 4 (𝐴 = ∅ → (∏𝑘𝐴 𝐵 / ∏𝑘𝐴 𝐶) = (1 / 1))
132, 5, 123eqtr4a 2819 . . 3 (𝐴 = ∅ → ∏𝑘𝐴 (𝐵 / 𝐶) = (∏𝑘𝐴 𝐵 / ∏𝑘𝐴 𝐶))
1413a1i 11 . 2 (𝜑 → (𝐴 = ∅ → ∏𝑘𝐴 (𝐵 / 𝐶) = (∏𝑘𝐴 𝐵 / ∏𝑘𝐴 𝐶)))
15 simprl 770 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (♯‘𝐴) ∈ ℕ)
16 nnuz 12334 . . . . . . . . 9 ℕ = (ℤ‘1)
1715, 16eleqtrdi 2862 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (♯‘𝐴) ∈ (ℤ‘1))
18 fprodmul.2 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
1918fmpttd 6876 . . . . . . . . . 10 (𝜑 → (𝑘𝐴𝐵):𝐴⟶ℂ)
20 f1of 6607 . . . . . . . . . . 11 (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑓:(1...(♯‘𝐴))⟶𝐴)
2120adantl 485 . . . . . . . . . 10 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → 𝑓:(1...(♯‘𝐴))⟶𝐴)
22 fco 6521 . . . . . . . . . 10 (((𝑘𝐴𝐵):𝐴⟶ℂ ∧ 𝑓:(1...(♯‘𝐴))⟶𝐴) → ((𝑘𝐴𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
2319, 21, 22syl2an 598 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ((𝑘𝐴𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
2423ffvelrnda 6848 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) ∈ ℂ)
25 fprodmul.3 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
2625fmpttd 6876 . . . . . . . . . 10 (𝜑 → (𝑘𝐴𝐶):𝐴⟶ℂ)
27 fco 6521 . . . . . . . . . 10 (((𝑘𝐴𝐶):𝐴⟶ℂ ∧ 𝑓:(1...(♯‘𝐴))⟶𝐴) → ((𝑘𝐴𝐶) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
2826, 21, 27syl2an 598 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ((𝑘𝐴𝐶) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
2928ffvelrnda 6848 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛) ∈ ℂ)
30 simprr 772 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)
3130, 20syl 17 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))⟶𝐴)
32 fvco3 6756 . . . . . . . . . 10 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐶)‘(𝑓𝑛)))
3331, 32sylan 583 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐶)‘(𝑓𝑛)))
3431ffvelrnda 6848 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (𝑓𝑛) ∈ 𝐴)
35 simpr 488 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → 𝑘𝐴)
36 eqid 2758 . . . . . . . . . . . . . . 15 (𝑘𝐴𝐶) = (𝑘𝐴𝐶)
3736fvmpt2 6775 . . . . . . . . . . . . . 14 ((𝑘𝐴𝐶 ∈ ℂ) → ((𝑘𝐴𝐶)‘𝑘) = 𝐶)
3835, 25, 37syl2anc 587 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → ((𝑘𝐴𝐶)‘𝑘) = 𝐶)
39 fproddiv.4 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → 𝐶 ≠ 0)
4038, 39eqnetrd 3018 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → ((𝑘𝐴𝐶)‘𝑘) ≠ 0)
4140ralrimiva 3113 . . . . . . . . . . 11 (𝜑 → ∀𝑘𝐴 ((𝑘𝐴𝐶)‘𝑘) ≠ 0)
4241ad2antrr 725 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ∀𝑘𝐴 ((𝑘𝐴𝐶)‘𝑘) ≠ 0)
43 nffvmpt1 6674 . . . . . . . . . . . 12 𝑘((𝑘𝐴𝐶)‘(𝑓𝑛))
44 nfcv 2919 . . . . . . . . . . . 12 𝑘0
4543, 44nfne 3051 . . . . . . . . . . 11 𝑘((𝑘𝐴𝐶)‘(𝑓𝑛)) ≠ 0
46 fveq2 6663 . . . . . . . . . . . 12 (𝑘 = (𝑓𝑛) → ((𝑘𝐴𝐶)‘𝑘) = ((𝑘𝐴𝐶)‘(𝑓𝑛)))
4746neeq1d 3010 . . . . . . . . . . 11 (𝑘 = (𝑓𝑛) → (((𝑘𝐴𝐶)‘𝑘) ≠ 0 ↔ ((𝑘𝐴𝐶)‘(𝑓𝑛)) ≠ 0))
4845, 47rspc 3531 . . . . . . . . . 10 ((𝑓𝑛) ∈ 𝐴 → (∀𝑘𝐴 ((𝑘𝐴𝐶)‘𝑘) ≠ 0 → ((𝑘𝐴𝐶)‘(𝑓𝑛)) ≠ 0))
4934, 42, 48sylc 65 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ((𝑘𝐴𝐶)‘(𝑓𝑛)) ≠ 0)
5033, 49eqnetrd 3018 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛) ≠ 0)
5118, 25, 39divcld 11467 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → (𝐵 / 𝐶) ∈ ℂ)
52 eqid 2758 . . . . . . . . . . . . . . 15 (𝑘𝐴 ↦ (𝐵 / 𝐶)) = (𝑘𝐴 ↦ (𝐵 / 𝐶))
5352fvmpt2 6775 . . . . . . . . . . . . . 14 ((𝑘𝐴 ∧ (𝐵 / 𝐶) ∈ ℂ) → ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘𝑘) = (𝐵 / 𝐶))
5435, 51, 53syl2anc 587 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘𝑘) = (𝐵 / 𝐶))
55 eqid 2758 . . . . . . . . . . . . . . . 16 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
5655fvmpt2 6775 . . . . . . . . . . . . . . 15 ((𝑘𝐴𝐵 ∈ ℂ) → ((𝑘𝐴𝐵)‘𝑘) = 𝐵)
5735, 18, 56syl2anc 587 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → ((𝑘𝐴𝐵)‘𝑘) = 𝐵)
5857, 38oveq12d 7174 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → (((𝑘𝐴𝐵)‘𝑘) / ((𝑘𝐴𝐶)‘𝑘)) = (𝐵 / 𝐶))
5954, 58eqtr4d 2796 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘𝑘) = (((𝑘𝐴𝐵)‘𝑘) / ((𝑘𝐴𝐶)‘𝑘)))
6059ralrimiva 3113 . . . . . . . . . . 11 (𝜑 → ∀𝑘𝐴 ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘𝑘) = (((𝑘𝐴𝐵)‘𝑘) / ((𝑘𝐴𝐶)‘𝑘)))
6160ad2antrr 725 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ∀𝑘𝐴 ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘𝑘) = (((𝑘𝐴𝐵)‘𝑘) / ((𝑘𝐴𝐶)‘𝑘)))
62 nffvmpt1 6674 . . . . . . . . . . . 12 𝑘((𝑘𝐴 ↦ (𝐵 / 𝐶))‘(𝑓𝑛))
63 nffvmpt1 6674 . . . . . . . . . . . . 13 𝑘((𝑘𝐴𝐵)‘(𝑓𝑛))
64 nfcv 2919 . . . . . . . . . . . . 13 𝑘 /
6563, 64, 43nfov 7186 . . . . . . . . . . . 12 𝑘(((𝑘𝐴𝐵)‘(𝑓𝑛)) / ((𝑘𝐴𝐶)‘(𝑓𝑛)))
6662, 65nfeq 2932 . . . . . . . . . . 11 𝑘((𝑘𝐴 ↦ (𝐵 / 𝐶))‘(𝑓𝑛)) = (((𝑘𝐴𝐵)‘(𝑓𝑛)) / ((𝑘𝐴𝐶)‘(𝑓𝑛)))
67 fveq2 6663 . . . . . . . . . . . 12 (𝑘 = (𝑓𝑛) → ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘𝑘) = ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘(𝑓𝑛)))
68 fveq2 6663 . . . . . . . . . . . . 13 (𝑘 = (𝑓𝑛) → ((𝑘𝐴𝐵)‘𝑘) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
6968, 46oveq12d 7174 . . . . . . . . . . . 12 (𝑘 = (𝑓𝑛) → (((𝑘𝐴𝐵)‘𝑘) / ((𝑘𝐴𝐶)‘𝑘)) = (((𝑘𝐴𝐵)‘(𝑓𝑛)) / ((𝑘𝐴𝐶)‘(𝑓𝑛))))
7067, 69eqeq12d 2774 . . . . . . . . . . 11 (𝑘 = (𝑓𝑛) → (((𝑘𝐴 ↦ (𝐵 / 𝐶))‘𝑘) = (((𝑘𝐴𝐵)‘𝑘) / ((𝑘𝐴𝐶)‘𝑘)) ↔ ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘(𝑓𝑛)) = (((𝑘𝐴𝐵)‘(𝑓𝑛)) / ((𝑘𝐴𝐶)‘(𝑓𝑛)))))
7166, 70rspc 3531 . . . . . . . . . 10 ((𝑓𝑛) ∈ 𝐴 → (∀𝑘𝐴 ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘𝑘) = (((𝑘𝐴𝐵)‘𝑘) / ((𝑘𝐴𝐶)‘𝑘)) → ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘(𝑓𝑛)) = (((𝑘𝐴𝐵)‘(𝑓𝑛)) / ((𝑘𝐴𝐶)‘(𝑓𝑛)))))
7234, 61, 71sylc 65 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘(𝑓𝑛)) = (((𝑘𝐴𝐵)‘(𝑓𝑛)) / ((𝑘𝐴𝐶)‘(𝑓𝑛))))
73 fvco3 6756 . . . . . . . . . 10 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴 ↦ (𝐵 / 𝐶)) ∘ 𝑓)‘𝑛) = ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘(𝑓𝑛)))
7431, 73sylan 583 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴 ↦ (𝐵 / 𝐶)) ∘ 𝑓)‘𝑛) = ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘(𝑓𝑛)))
75 fvco3 6756 . . . . . . . . . . 11 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
7631, 75sylan 583 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
7776, 33oveq12d 7174 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ((((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) / (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛)) = (((𝑘𝐴𝐵)‘(𝑓𝑛)) / ((𝑘𝐴𝐶)‘(𝑓𝑛))))
7872, 74, 773eqtr4d 2803 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴 ↦ (𝐵 / 𝐶)) ∘ 𝑓)‘𝑛) = ((((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) / (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛)))
7917, 24, 29, 50, 78prodfdiv 15313 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (seq1( · , ((𝑘𝐴 ↦ (𝐵 / 𝐶)) ∘ 𝑓))‘(♯‘𝐴)) = ((seq1( · , ((𝑘𝐴𝐵) ∘ 𝑓))‘(♯‘𝐴)) / (seq1( · , ((𝑘𝐴𝐶) ∘ 𝑓))‘(♯‘𝐴))))
80 fveq2 6663 . . . . . . . 8 (𝑚 = (𝑓𝑛) → ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘𝑚) = ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘(𝑓𝑛)))
8151fmpttd 6876 . . . . . . . . . 10 (𝜑 → (𝑘𝐴 ↦ (𝐵 / 𝐶)):𝐴⟶ℂ)
8281adantr 484 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴 ↦ (𝐵 / 𝐶)):𝐴⟶ℂ)
8382ffvelrnda 6848 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘𝑚) ∈ ℂ)
8480, 15, 30, 83, 74fprod 15356 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ∏𝑚𝐴 ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘𝑚) = (seq1( · , ((𝑘𝐴 ↦ (𝐵 / 𝐶)) ∘ 𝑓))‘(♯‘𝐴)))
85 fveq2 6663 . . . . . . . . 9 (𝑚 = (𝑓𝑛) → ((𝑘𝐴𝐵)‘𝑚) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
8619adantr 484 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴𝐵):𝐴⟶ℂ)
8786ffvelrnda 6848 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐵)‘𝑚) ∈ ℂ)
8885, 15, 30, 87, 76fprod 15356 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ∏𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = (seq1( · , ((𝑘𝐴𝐵) ∘ 𝑓))‘(♯‘𝐴)))
89 fveq2 6663 . . . . . . . . 9 (𝑚 = (𝑓𝑛) → ((𝑘𝐴𝐶)‘𝑚) = ((𝑘𝐴𝐶)‘(𝑓𝑛)))
9026adantr 484 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴𝐶):𝐴⟶ℂ)
9190ffvelrnda 6848 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐶)‘𝑚) ∈ ℂ)
9289, 15, 30, 91, 33fprod 15356 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = (seq1( · , ((𝑘𝐴𝐶) ∘ 𝑓))‘(♯‘𝐴)))
9388, 92oveq12d 7174 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (∏𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) / ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚)) = ((seq1( · , ((𝑘𝐴𝐵) ∘ 𝑓))‘(♯‘𝐴)) / (seq1( · , ((𝑘𝐴𝐶) ∘ 𝑓))‘(♯‘𝐴))))
9479, 84, 933eqtr4d 2803 . . . . . 6 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ∏𝑚𝐴 ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘𝑚) = (∏𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) / ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚)))
95 prodfc 15360 . . . . . 6 𝑚𝐴 ((𝑘𝐴 ↦ (𝐵 / 𝐶))‘𝑚) = ∏𝑘𝐴 (𝐵 / 𝐶)
96 prodfc 15360 . . . . . . 7 𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = ∏𝑘𝐴 𝐵
97 prodfc 15360 . . . . . . 7 𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = ∏𝑘𝐴 𝐶
9896, 97oveq12i 7168 . . . . . 6 (∏𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) / ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚)) = (∏𝑘𝐴 𝐵 / ∏𝑘𝐴 𝐶)
9994, 95, 983eqtr3g 2816 . . . . 5 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ∏𝑘𝐴 (𝐵 / 𝐶) = (∏𝑘𝐴 𝐵 / ∏𝑘𝐴 𝐶))
10099expr 460 . . . 4 ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) → (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → ∏𝑘𝐴 (𝐵 / 𝐶) = (∏𝑘𝐴 𝐵 / ∏𝑘𝐴 𝐶)))
101100exlimdv 1934 . . 3 ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) → (∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → ∏𝑘𝐴 (𝐵 / 𝐶) = (∏𝑘𝐴 𝐵 / ∏𝑘𝐴 𝐶)))
102101expimpd 457 . 2 (𝜑 → (((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → ∏𝑘𝐴 (𝐵 / 𝐶) = (∏𝑘𝐴 𝐵 / ∏𝑘𝐴 𝐶)))
103 fprodmul.1 . . 3 (𝜑𝐴 ∈ Fin)
104 fz1f1o 15128 . . 3 (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
105103, 104syl 17 . 2 (𝜑 → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
10614, 102, 105mpjaod 857 1 (𝜑 → ∏𝑘𝐴 (𝐵 / 𝐶) = (∏𝑘𝐴 𝐵 / ∏𝑘𝐴 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 844   = wceq 1538  wex 1781  wcel 2111  wne 2951  wral 3070  c0 4227  cmpt 5116  ccom 5532  wf 6336  1-1-ontowf1o 6339  cfv 6340  (class class class)co 7156  Fincfn 8540  cc 10586  0cc0 10588  1c1 10589   · cmul 10593   / cdiv 11348  cn 11687  cuz 12295  ...cfz 12952  seqcseq 13431  chash 13753  cprod 15320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-inf2 9150  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665  ax-pre-sup 10666
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-isom 6349  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7586  df-1st 7699  df-2nd 7700  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-1o 8118  df-er 8305  df-en 8541  df-dom 8542  df-sdom 8543  df-fin 8544  df-sup 8952  df-oi 9020  df-card 9414  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-div 11349  df-nn 11688  df-2 11750  df-3 11751  df-n0 11948  df-z 12034  df-uz 12296  df-rp 12444  df-fz 12953  df-fzo 13096  df-seq 13432  df-exp 13493  df-hash 13754  df-cj 14519  df-re 14520  df-im 14521  df-sqrt 14655  df-abs 14656  df-clim 14906  df-prod 15321
This theorem is referenced by:  fproddivf  15402  bcprod  33232
  Copyright terms: Public domain W3C validator