![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > stoweidlem58 | Structured version Visualization version GIF version |
Description: This theorem proves Lemma 2 in [BrosowskiDeutsh] p. 91. Here D is used to represent the set A of Lemma 2, because here the variable A is used for the subalgebra of functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
stoweidlem58.1 | β’ β²π‘π· |
stoweidlem58.2 | β’ β²π‘π |
stoweidlem58.3 | β’ β²π‘π |
stoweidlem58.4 | β’ πΎ = (topGenβran (,)) |
stoweidlem58.5 | β’ π = βͺ π½ |
stoweidlem58.6 | β’ πΆ = (π½ Cn πΎ) |
stoweidlem58.7 | β’ (π β π½ β Comp) |
stoweidlem58.8 | β’ (π β π΄ β πΆ) |
stoweidlem58.9 | β’ ((π β§ π β π΄ β§ π β π΄) β (π‘ β π β¦ ((πβπ‘) + (πβπ‘))) β π΄) |
stoweidlem58.10 | β’ ((π β§ π β π΄ β§ π β π΄) β (π‘ β π β¦ ((πβπ‘) Β· (πβπ‘))) β π΄) |
stoweidlem58.11 | β’ ((π β§ π β β) β (π‘ β π β¦ π) β π΄) |
stoweidlem58.12 | β’ ((π β§ (π β π β§ π‘ β π β§ π β π‘)) β βπ β π΄ (πβπ) β (πβπ‘)) |
stoweidlem58.13 | β’ (π β π΅ β (Clsdβπ½)) |
stoweidlem58.14 | β’ (π β π· β (Clsdβπ½)) |
stoweidlem58.15 | β’ (π β (π΅ β© π·) = β ) |
stoweidlem58.16 | β’ π = (π β π΅) |
stoweidlem58.17 | β’ (π β πΈ β β+) |
stoweidlem58.18 | β’ (π β πΈ < (1 / 3)) |
Ref | Expression |
---|---|
stoweidlem58 | β’ (π β βπ₯ β π΄ (βπ‘ β π (0 β€ (π₯βπ‘) β§ (π₯βπ‘) β€ 1) β§ βπ‘ β π· (π₯βπ‘) < πΈ β§ βπ‘ β π΅ (1 β πΈ) < (π₯βπ‘))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stoweidlem58.1 | . . 3 β’ β²π‘π· | |
2 | stoweidlem58.3 | . . . 4 β’ β²π‘π | |
3 | 1 | nfeq1 2913 | . . . 4 β’ β²π‘ π· = β |
4 | 2, 3 | nfan 1895 | . . 3 β’ β²π‘(π β§ π· = β ) |
5 | eqid 2727 | . . 3 β’ (π‘ β π β¦ 1) = (π‘ β π β¦ 1) | |
6 | stoweidlem58.5 | . . 3 β’ π = βͺ π½ | |
7 | stoweidlem58.11 | . . . 4 β’ ((π β§ π β β) β (π‘ β π β¦ π) β π΄) | |
8 | 7 | adantlr 714 | . . 3 β’ (((π β§ π· = β ) β§ π β β) β (π‘ β π β¦ π) β π΄) |
9 | stoweidlem58.13 | . . . 4 β’ (π β π΅ β (Clsdβπ½)) | |
10 | 9 | adantr 480 | . . 3 β’ ((π β§ π· = β ) β π΅ β (Clsdβπ½)) |
11 | stoweidlem58.17 | . . . 4 β’ (π β πΈ β β+) | |
12 | 11 | adantr 480 | . . 3 β’ ((π β§ π· = β ) β πΈ β β+) |
13 | simpr 484 | . . 3 β’ ((π β§ π· = β ) β π· = β ) | |
14 | 1, 4, 5, 6, 8, 10, 12, 13 | stoweidlem18 45319 | . 2 β’ ((π β§ π· = β ) β βπ₯ β π΄ (βπ‘ β π (0 β€ (π₯βπ‘) β§ (π₯βπ‘) β€ 1) β§ βπ‘ β π· (π₯βπ‘) < πΈ β§ βπ‘ β π΅ (1 β πΈ) < (π₯βπ‘))) |
15 | stoweidlem58.2 | . . 3 β’ β²π‘π | |
16 | nfcv 2898 | . . . . 5 β’ β²π‘β | |
17 | 1, 16 | nfne 3038 | . . . 4 β’ β²π‘ π· β β |
18 | 2, 17 | nfan 1895 | . . 3 β’ β²π‘(π β§ π· β β ) |
19 | eqid 2727 | . . 3 β’ {β β π΄ β£ βπ‘ β π (0 β€ (ββπ‘) β§ (ββπ‘) β€ 1)} = {β β π΄ β£ βπ‘ β π (0 β€ (ββπ‘) β§ (ββπ‘) β€ 1)} | |
20 | eqid 2727 | . . 3 β’ {π€ β π½ β£ βπ β β+ ββ β π΄ (βπ‘ β π (0 β€ (ββπ‘) β§ (ββπ‘) β€ 1) β§ βπ‘ β π€ (ββπ‘) < π β§ βπ‘ β (π β π)(1 β π) < (ββπ‘))} = {π€ β π½ β£ βπ β β+ ββ β π΄ (βπ‘ β π (0 β€ (ββπ‘) β§ (ββπ‘) β€ 1) β§ βπ‘ β π€ (ββπ‘) < π β§ βπ‘ β (π β π)(1 β π) < (ββπ‘))} | |
21 | stoweidlem58.4 | . . 3 β’ πΎ = (topGenβran (,)) | |
22 | stoweidlem58.6 | . . 3 β’ πΆ = (π½ Cn πΎ) | |
23 | stoweidlem58.16 | . . 3 β’ π = (π β π΅) | |
24 | stoweidlem58.7 | . . . 4 β’ (π β π½ β Comp) | |
25 | 24 | adantr 480 | . . 3 β’ ((π β§ π· β β ) β π½ β Comp) |
26 | stoweidlem58.8 | . . . 4 β’ (π β π΄ β πΆ) | |
27 | 26 | adantr 480 | . . 3 β’ ((π β§ π· β β ) β π΄ β πΆ) |
28 | stoweidlem58.9 | . . . 4 β’ ((π β§ π β π΄ β§ π β π΄) β (π‘ β π β¦ ((πβπ‘) + (πβπ‘))) β π΄) | |
29 | 28 | 3adant1r 1175 | . . 3 β’ (((π β§ π· β β ) β§ π β π΄ β§ π β π΄) β (π‘ β π β¦ ((πβπ‘) + (πβπ‘))) β π΄) |
30 | stoweidlem58.10 | . . . 4 β’ ((π β§ π β π΄ β§ π β π΄) β (π‘ β π β¦ ((πβπ‘) Β· (πβπ‘))) β π΄) | |
31 | 30 | 3adant1r 1175 | . . 3 β’ (((π β§ π· β β ) β§ π β π΄ β§ π β π΄) β (π‘ β π β¦ ((πβπ‘) Β· (πβπ‘))) β π΄) |
32 | 7 | adantlr 714 | . . 3 β’ (((π β§ π· β β ) β§ π β β) β (π‘ β π β¦ π) β π΄) |
33 | stoweidlem58.12 | . . . 4 β’ ((π β§ (π β π β§ π‘ β π β§ π β π‘)) β βπ β π΄ (πβπ) β (πβπ‘)) | |
34 | 33 | adantlr 714 | . . 3 β’ (((π β§ π· β β ) β§ (π β π β§ π‘ β π β§ π β π‘)) β βπ β π΄ (πβπ) β (πβπ‘)) |
35 | 9 | adantr 480 | . . 3 β’ ((π β§ π· β β ) β π΅ β (Clsdβπ½)) |
36 | stoweidlem58.14 | . . . 4 β’ (π β π· β (Clsdβπ½)) | |
37 | 36 | adantr 480 | . . 3 β’ ((π β§ π· β β ) β π· β (Clsdβπ½)) |
38 | stoweidlem58.15 | . . . 4 β’ (π β (π΅ β© π·) = β ) | |
39 | 38 | adantr 480 | . . 3 β’ ((π β§ π· β β ) β (π΅ β© π·) = β ) |
40 | simpr 484 | . . 3 β’ ((π β§ π· β β ) β π· β β ) | |
41 | 11 | adantr 480 | . . 3 β’ ((π β§ π· β β ) β πΈ β β+) |
42 | stoweidlem58.18 | . . . 4 β’ (π β πΈ < (1 / 3)) | |
43 | 42 | adantr 480 | . . 3 β’ ((π β§ π· β β ) β πΈ < (1 / 3)) |
44 | 1, 15, 18, 19, 20, 21, 6, 22, 23, 25, 27, 29, 31, 32, 34, 35, 37, 39, 40, 41, 43 | stoweidlem57 45358 | . 2 β’ ((π β§ π· β β ) β βπ₯ β π΄ (βπ‘ β π (0 β€ (π₯βπ‘) β§ (π₯βπ‘) β€ 1) β§ βπ‘ β π· (π₯βπ‘) < πΈ β§ βπ‘ β π΅ (1 β πΈ) < (π₯βπ‘))) |
45 | 14, 44 | pm2.61dane 3024 | 1 β’ (π β βπ₯ β π΄ (βπ‘ β π (0 β€ (π₯βπ‘) β§ (π₯βπ‘) β€ 1) β§ βπ‘ β π· (π₯βπ‘) < πΈ β§ βπ‘ β π΅ (1 β πΈ) < (π₯βπ‘))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1085 = wceq 1534 β²wnf 1778 β wcel 2099 β²wnfc 2878 β wne 2935 βwral 3056 βwrex 3065 {crab 3427 β cdif 3941 β© cin 3943 β wss 3944 β c0 4318 βͺ cuni 4903 class class class wbr 5142 β¦ cmpt 5225 ran crn 5673 βcfv 6542 (class class class)co 7414 βcr 11123 0cc0 11124 1c1 11125 + caddc 11127 Β· cmul 11129 < clt 11264 β€ cle 11265 β cmin 11460 / cdiv 11887 3c3 12284 β+crp 12992 (,)cioo 13342 topGenctg 17404 Clsdccld 22894 Cn ccn 23102 Compccmp 23264 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-inf2 9650 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 ax-pre-sup 11202 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7677 df-om 7863 df-1st 7985 df-2nd 7986 df-supp 8158 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-2o 8479 df-er 8716 df-map 8836 df-pm 8837 df-ixp 8906 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-fsupp 9376 df-fi 9420 df-sup 9451 df-inf 9452 df-oi 9519 df-card 9948 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-div 11888 df-nn 12229 df-2 12291 df-3 12292 df-4 12293 df-5 12294 df-6 12295 df-7 12296 df-8 12297 df-9 12298 df-n0 12489 df-z 12575 df-dec 12694 df-uz 12839 df-q 12949 df-rp 12993 df-xneg 13110 df-xadd 13111 df-xmul 13112 df-ioo 13346 df-ico 13348 df-icc 13349 df-fz 13503 df-fzo 13646 df-fl 13775 df-seq 13985 df-exp 14045 df-hash 14308 df-cj 15064 df-re 15065 df-im 15066 df-sqrt 15200 df-abs 15201 df-clim 15450 df-rlim 15451 df-sum 15651 df-struct 17101 df-sets 17118 df-slot 17136 df-ndx 17148 df-base 17166 df-ress 17195 df-plusg 17231 df-mulr 17232 df-starv 17233 df-sca 17234 df-vsca 17235 df-ip 17236 df-tset 17237 df-ple 17238 df-ds 17240 df-unif 17241 df-hom 17242 df-cco 17243 df-rest 17389 df-topn 17390 df-0g 17408 df-gsum 17409 df-topgen 17410 df-pt 17411 df-prds 17414 df-xrs 17469 df-qtop 17474 df-imas 17475 df-xps 17477 df-mre 17551 df-mrc 17552 df-acs 17554 df-mgm 18585 df-sgrp 18664 df-mnd 18680 df-submnd 18726 df-mulg 19008 df-cntz 19252 df-cmn 19721 df-psmet 21251 df-xmet 21252 df-met 21253 df-bl 21254 df-mopn 21255 df-cnfld 21260 df-top 22770 df-topon 22787 df-topsp 22809 df-bases 22823 df-cld 22897 df-cn 23105 df-cnp 23106 df-cmp 23265 df-tx 23440 df-hmeo 23633 df-xms 24200 df-ms 24201 df-tms 24202 |
This theorem is referenced by: stoweidlem59 45360 |
Copyright terms: Public domain | W3C validator |