![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > stoweidlem58 | Structured version Visualization version GIF version |
Description: This theorem proves Lemma 2 in [BrosowskiDeutsh] p. 91. Here D is used to represent the set A of Lemma 2, because here the variable A is used for the subalgebra of functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
stoweidlem58.1 | β’ β²π‘π· |
stoweidlem58.2 | β’ β²π‘π |
stoweidlem58.3 | β’ β²π‘π |
stoweidlem58.4 | β’ πΎ = (topGenβran (,)) |
stoweidlem58.5 | β’ π = βͺ π½ |
stoweidlem58.6 | β’ πΆ = (π½ Cn πΎ) |
stoweidlem58.7 | β’ (π β π½ β Comp) |
stoweidlem58.8 | β’ (π β π΄ β πΆ) |
stoweidlem58.9 | β’ ((π β§ π β π΄ β§ π β π΄) β (π‘ β π β¦ ((πβπ‘) + (πβπ‘))) β π΄) |
stoweidlem58.10 | β’ ((π β§ π β π΄ β§ π β π΄) β (π‘ β π β¦ ((πβπ‘) Β· (πβπ‘))) β π΄) |
stoweidlem58.11 | β’ ((π β§ π β β) β (π‘ β π β¦ π) β π΄) |
stoweidlem58.12 | β’ ((π β§ (π β π β§ π‘ β π β§ π β π‘)) β βπ β π΄ (πβπ) β (πβπ‘)) |
stoweidlem58.13 | β’ (π β π΅ β (Clsdβπ½)) |
stoweidlem58.14 | β’ (π β π· β (Clsdβπ½)) |
stoweidlem58.15 | β’ (π β (π΅ β© π·) = β ) |
stoweidlem58.16 | β’ π = (π β π΅) |
stoweidlem58.17 | β’ (π β πΈ β β+) |
stoweidlem58.18 | β’ (π β πΈ < (1 / 3)) |
Ref | Expression |
---|---|
stoweidlem58 | β’ (π β βπ₯ β π΄ (βπ‘ β π (0 β€ (π₯βπ‘) β§ (π₯βπ‘) β€ 1) β§ βπ‘ β π· (π₯βπ‘) < πΈ β§ βπ‘ β π΅ (1 β πΈ) < (π₯βπ‘))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stoweidlem58.1 | . . 3 β’ β²π‘π· | |
2 | stoweidlem58.3 | . . . 4 β’ β²π‘π | |
3 | 1 | nfeq1 2919 | . . . 4 β’ β²π‘ π· = β |
4 | 2, 3 | nfan 1903 | . . 3 β’ β²π‘(π β§ π· = β ) |
5 | eqid 2733 | . . 3 β’ (π‘ β π β¦ 1) = (π‘ β π β¦ 1) | |
6 | stoweidlem58.5 | . . 3 β’ π = βͺ π½ | |
7 | stoweidlem58.11 | . . . 4 β’ ((π β§ π β β) β (π‘ β π β¦ π) β π΄) | |
8 | 7 | adantlr 714 | . . 3 β’ (((π β§ π· = β ) β§ π β β) β (π‘ β π β¦ π) β π΄) |
9 | stoweidlem58.13 | . . . 4 β’ (π β π΅ β (Clsdβπ½)) | |
10 | 9 | adantr 482 | . . 3 β’ ((π β§ π· = β ) β π΅ β (Clsdβπ½)) |
11 | stoweidlem58.17 | . . . 4 β’ (π β πΈ β β+) | |
12 | 11 | adantr 482 | . . 3 β’ ((π β§ π· = β ) β πΈ β β+) |
13 | simpr 486 | . . 3 β’ ((π β§ π· = β ) β π· = β ) | |
14 | 1, 4, 5, 6, 8, 10, 12, 13 | stoweidlem18 44734 | . 2 β’ ((π β§ π· = β ) β βπ₯ β π΄ (βπ‘ β π (0 β€ (π₯βπ‘) β§ (π₯βπ‘) β€ 1) β§ βπ‘ β π· (π₯βπ‘) < πΈ β§ βπ‘ β π΅ (1 β πΈ) < (π₯βπ‘))) |
15 | stoweidlem58.2 | . . 3 β’ β²π‘π | |
16 | nfcv 2904 | . . . . 5 β’ β²π‘β | |
17 | 1, 16 | nfne 3044 | . . . 4 β’ β²π‘ π· β β |
18 | 2, 17 | nfan 1903 | . . 3 β’ β²π‘(π β§ π· β β ) |
19 | eqid 2733 | . . 3 β’ {β β π΄ β£ βπ‘ β π (0 β€ (ββπ‘) β§ (ββπ‘) β€ 1)} = {β β π΄ β£ βπ‘ β π (0 β€ (ββπ‘) β§ (ββπ‘) β€ 1)} | |
20 | eqid 2733 | . . 3 β’ {π€ β π½ β£ βπ β β+ ββ β π΄ (βπ‘ β π (0 β€ (ββπ‘) β§ (ββπ‘) β€ 1) β§ βπ‘ β π€ (ββπ‘) < π β§ βπ‘ β (π β π)(1 β π) < (ββπ‘))} = {π€ β π½ β£ βπ β β+ ββ β π΄ (βπ‘ β π (0 β€ (ββπ‘) β§ (ββπ‘) β€ 1) β§ βπ‘ β π€ (ββπ‘) < π β§ βπ‘ β (π β π)(1 β π) < (ββπ‘))} | |
21 | stoweidlem58.4 | . . 3 β’ πΎ = (topGenβran (,)) | |
22 | stoweidlem58.6 | . . 3 β’ πΆ = (π½ Cn πΎ) | |
23 | stoweidlem58.16 | . . 3 β’ π = (π β π΅) | |
24 | stoweidlem58.7 | . . . 4 β’ (π β π½ β Comp) | |
25 | 24 | adantr 482 | . . 3 β’ ((π β§ π· β β ) β π½ β Comp) |
26 | stoweidlem58.8 | . . . 4 β’ (π β π΄ β πΆ) | |
27 | 26 | adantr 482 | . . 3 β’ ((π β§ π· β β ) β π΄ β πΆ) |
28 | stoweidlem58.9 | . . . 4 β’ ((π β§ π β π΄ β§ π β π΄) β (π‘ β π β¦ ((πβπ‘) + (πβπ‘))) β π΄) | |
29 | 28 | 3adant1r 1178 | . . 3 β’ (((π β§ π· β β ) β§ π β π΄ β§ π β π΄) β (π‘ β π β¦ ((πβπ‘) + (πβπ‘))) β π΄) |
30 | stoweidlem58.10 | . . . 4 β’ ((π β§ π β π΄ β§ π β π΄) β (π‘ β π β¦ ((πβπ‘) Β· (πβπ‘))) β π΄) | |
31 | 30 | 3adant1r 1178 | . . 3 β’ (((π β§ π· β β ) β§ π β π΄ β§ π β π΄) β (π‘ β π β¦ ((πβπ‘) Β· (πβπ‘))) β π΄) |
32 | 7 | adantlr 714 | . . 3 β’ (((π β§ π· β β ) β§ π β β) β (π‘ β π β¦ π) β π΄) |
33 | stoweidlem58.12 | . . . 4 β’ ((π β§ (π β π β§ π‘ β π β§ π β π‘)) β βπ β π΄ (πβπ) β (πβπ‘)) | |
34 | 33 | adantlr 714 | . . 3 β’ (((π β§ π· β β ) β§ (π β π β§ π‘ β π β§ π β π‘)) β βπ β π΄ (πβπ) β (πβπ‘)) |
35 | 9 | adantr 482 | . . 3 β’ ((π β§ π· β β ) β π΅ β (Clsdβπ½)) |
36 | stoweidlem58.14 | . . . 4 β’ (π β π· β (Clsdβπ½)) | |
37 | 36 | adantr 482 | . . 3 β’ ((π β§ π· β β ) β π· β (Clsdβπ½)) |
38 | stoweidlem58.15 | . . . 4 β’ (π β (π΅ β© π·) = β ) | |
39 | 38 | adantr 482 | . . 3 β’ ((π β§ π· β β ) β (π΅ β© π·) = β ) |
40 | simpr 486 | . . 3 β’ ((π β§ π· β β ) β π· β β ) | |
41 | 11 | adantr 482 | . . 3 β’ ((π β§ π· β β ) β πΈ β β+) |
42 | stoweidlem58.18 | . . . 4 β’ (π β πΈ < (1 / 3)) | |
43 | 42 | adantr 482 | . . 3 β’ ((π β§ π· β β ) β πΈ < (1 / 3)) |
44 | 1, 15, 18, 19, 20, 21, 6, 22, 23, 25, 27, 29, 31, 32, 34, 35, 37, 39, 40, 41, 43 | stoweidlem57 44773 | . 2 β’ ((π β§ π· β β ) β βπ₯ β π΄ (βπ‘ β π (0 β€ (π₯βπ‘) β§ (π₯βπ‘) β€ 1) β§ βπ‘ β π· (π₯βπ‘) < πΈ β§ βπ‘ β π΅ (1 β πΈ) < (π₯βπ‘))) |
45 | 14, 44 | pm2.61dane 3030 | 1 β’ (π β βπ₯ β π΄ (βπ‘ β π (0 β€ (π₯βπ‘) β§ (π₯βπ‘) β€ 1) β§ βπ‘ β π· (π₯βπ‘) < πΈ β§ βπ‘ β π΅ (1 β πΈ) < (π₯βπ‘))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 β§ w3a 1088 = wceq 1542 β²wnf 1786 β wcel 2107 β²wnfc 2884 β wne 2941 βwral 3062 βwrex 3071 {crab 3433 β cdif 3946 β© cin 3948 β wss 3949 β c0 4323 βͺ cuni 4909 class class class wbr 5149 β¦ cmpt 5232 ran crn 5678 βcfv 6544 (class class class)co 7409 βcr 11109 0cc0 11110 1c1 11111 + caddc 11113 Β· cmul 11115 < clt 11248 β€ cle 11249 β cmin 11444 / cdiv 11871 3c3 12268 β+crp 12974 (,)cioo 13324 topGenctg 17383 Clsdccld 22520 Cn ccn 22728 Compccmp 22890 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-inf2 9636 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 ax-mulf 11190 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-of 7670 df-om 7856 df-1st 7975 df-2nd 7976 df-supp 8147 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-2o 8467 df-er 8703 df-map 8822 df-pm 8823 df-ixp 8892 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-fsupp 9362 df-fi 9406 df-sup 9437 df-inf 9438 df-oi 9505 df-card 9934 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-dec 12678 df-uz 12823 df-q 12933 df-rp 12975 df-xneg 13092 df-xadd 13093 df-xmul 13094 df-ioo 13328 df-ico 13330 df-icc 13331 df-fz 13485 df-fzo 13628 df-fl 13757 df-seq 13967 df-exp 14028 df-hash 14291 df-cj 15046 df-re 15047 df-im 15048 df-sqrt 15182 df-abs 15183 df-clim 15432 df-rlim 15433 df-sum 15633 df-struct 17080 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ress 17174 df-plusg 17210 df-mulr 17211 df-starv 17212 df-sca 17213 df-vsca 17214 df-ip 17215 df-tset 17216 df-ple 17217 df-ds 17219 df-unif 17220 df-hom 17221 df-cco 17222 df-rest 17368 df-topn 17369 df-0g 17387 df-gsum 17388 df-topgen 17389 df-pt 17390 df-prds 17393 df-xrs 17448 df-qtop 17453 df-imas 17454 df-xps 17456 df-mre 17530 df-mrc 17531 df-acs 17533 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-submnd 18672 df-mulg 18951 df-cntz 19181 df-cmn 19650 df-psmet 20936 df-xmet 20937 df-met 20938 df-bl 20939 df-mopn 20940 df-cnfld 20945 df-top 22396 df-topon 22413 df-topsp 22435 df-bases 22449 df-cld 22523 df-cn 22731 df-cnp 22732 df-cmp 22891 df-tx 23066 df-hmeo 23259 df-xms 23826 df-ms 23827 df-tms 23828 |
This theorem is referenced by: stoweidlem59 44775 |
Copyright terms: Public domain | W3C validator |