Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem58 Structured version   Visualization version   GIF version

Theorem stoweidlem58 46042
Description: This theorem proves Lemma 2 in [BrosowskiDeutsh] p. 91. Here D is used to represent the set A of Lemma 2, because here the variable A is used for the subalgebra of functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem58.1 𝑡𝐷
stoweidlem58.2 𝑡𝑈
stoweidlem58.3 𝑡𝜑
stoweidlem58.4 𝐾 = (topGen‘ran (,))
stoweidlem58.5 𝑇 = 𝐽
stoweidlem58.6 𝐶 = (𝐽 Cn 𝐾)
stoweidlem58.7 (𝜑𝐽 ∈ Comp)
stoweidlem58.8 (𝜑𝐴𝐶)
stoweidlem58.9 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem58.10 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem58.11 ((𝜑𝑎 ∈ ℝ) → (𝑡𝑇𝑎) ∈ 𝐴)
stoweidlem58.12 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
stoweidlem58.13 (𝜑𝐵 ∈ (Clsd‘𝐽))
stoweidlem58.14 (𝜑𝐷 ∈ (Clsd‘𝐽))
stoweidlem58.15 (𝜑 → (𝐵𝐷) = ∅)
stoweidlem58.16 𝑈 = (𝑇𝐵)
stoweidlem58.17 (𝜑𝐸 ∈ ℝ+)
stoweidlem58.18 (𝜑𝐸 < (1 / 3))
Assertion
Ref Expression
stoweidlem58 (𝜑 → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡)))
Distinct variable groups:   𝑓,𝑎,𝑟,𝑡,𝐴,𝑞   𝐷,𝑎,𝑓,𝑟   𝑇,𝑎,𝑓,𝑟,𝑡   𝑈,𝑎,𝑓,𝑟   𝜑,𝑎,𝑓,𝑟   𝑓,𝑔,𝑟,𝑡,𝐴   𝑓,𝐸,𝑔,𝑟,𝑡   𝑥,𝑓,𝑔,𝑡,𝐴   𝐵,𝑓,𝑔,𝑟   𝑓,𝐽,𝑔,𝑟,𝑡   𝑔,𝑞,𝐷   𝑇,𝑔   𝑈,𝑔   𝜑,𝑔   𝐷,𝑞   𝑇,𝑞   𝑈,𝑞   𝜑,𝑞   𝑡,𝐾   𝑥,𝐵   𝑥,𝐷   𝑥,𝐸   𝑥,𝑇
Allowed substitution hints:   𝜑(𝑥,𝑡)   𝐵(𝑡,𝑞,𝑎)   𝐶(𝑥,𝑡,𝑓,𝑔,𝑟,𝑞,𝑎)   𝐷(𝑡)   𝑈(𝑥,𝑡)   𝐸(𝑞,𝑎)   𝐽(𝑥,𝑞,𝑎)   𝐾(𝑥,𝑓,𝑔,𝑟,𝑞,𝑎)

Proof of Theorem stoweidlem58
Dummy variables 𝑒 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stoweidlem58.1 . . 3 𝑡𝐷
2 stoweidlem58.3 . . . 4 𝑡𝜑
31nfeq1 2921 . . . 4 𝑡 𝐷 = ∅
42, 3nfan 1899 . . 3 𝑡(𝜑𝐷 = ∅)
5 eqid 2737 . . 3 (𝑡𝑇 ↦ 1) = (𝑡𝑇 ↦ 1)
6 stoweidlem58.5 . . 3 𝑇 = 𝐽
7 stoweidlem58.11 . . . 4 ((𝜑𝑎 ∈ ℝ) → (𝑡𝑇𝑎) ∈ 𝐴)
87adantlr 715 . . 3 (((𝜑𝐷 = ∅) ∧ 𝑎 ∈ ℝ) → (𝑡𝑇𝑎) ∈ 𝐴)
9 stoweidlem58.13 . . . 4 (𝜑𝐵 ∈ (Clsd‘𝐽))
109adantr 480 . . 3 ((𝜑𝐷 = ∅) → 𝐵 ∈ (Clsd‘𝐽))
11 stoweidlem58.17 . . . 4 (𝜑𝐸 ∈ ℝ+)
1211adantr 480 . . 3 ((𝜑𝐷 = ∅) → 𝐸 ∈ ℝ+)
13 simpr 484 . . 3 ((𝜑𝐷 = ∅) → 𝐷 = ∅)
141, 4, 5, 6, 8, 10, 12, 13stoweidlem18 46002 . 2 ((𝜑𝐷 = ∅) → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡)))
15 stoweidlem58.2 . . 3 𝑡𝑈
16 nfcv 2905 . . . . 5 𝑡
171, 16nfne 3043 . . . 4 𝑡 𝐷 ≠ ∅
182, 17nfan 1899 . . 3 𝑡(𝜑𝐷 ≠ ∅)
19 eqid 2737 . . 3 {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)} = {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
20 eqid 2737 . . 3 {𝑤𝐽 ∣ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))} = {𝑤𝐽 ∣ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))}
21 stoweidlem58.4 . . 3 𝐾 = (topGen‘ran (,))
22 stoweidlem58.6 . . 3 𝐶 = (𝐽 Cn 𝐾)
23 stoweidlem58.16 . . 3 𝑈 = (𝑇𝐵)
24 stoweidlem58.7 . . . 4 (𝜑𝐽 ∈ Comp)
2524adantr 480 . . 3 ((𝜑𝐷 ≠ ∅) → 𝐽 ∈ Comp)
26 stoweidlem58.8 . . . 4 (𝜑𝐴𝐶)
2726adantr 480 . . 3 ((𝜑𝐷 ≠ ∅) → 𝐴𝐶)
28 stoweidlem58.9 . . . 4 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
29283adant1r 1178 . . 3 (((𝜑𝐷 ≠ ∅) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
30 stoweidlem58.10 . . . 4 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
31303adant1r 1178 . . 3 (((𝜑𝐷 ≠ ∅) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
327adantlr 715 . . 3 (((𝜑𝐷 ≠ ∅) ∧ 𝑎 ∈ ℝ) → (𝑡𝑇𝑎) ∈ 𝐴)
33 stoweidlem58.12 . . . 4 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
3433adantlr 715 . . 3 (((𝜑𝐷 ≠ ∅) ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
359adantr 480 . . 3 ((𝜑𝐷 ≠ ∅) → 𝐵 ∈ (Clsd‘𝐽))
36 stoweidlem58.14 . . . 4 (𝜑𝐷 ∈ (Clsd‘𝐽))
3736adantr 480 . . 3 ((𝜑𝐷 ≠ ∅) → 𝐷 ∈ (Clsd‘𝐽))
38 stoweidlem58.15 . . . 4 (𝜑 → (𝐵𝐷) = ∅)
3938adantr 480 . . 3 ((𝜑𝐷 ≠ ∅) → (𝐵𝐷) = ∅)
40 simpr 484 . . 3 ((𝜑𝐷 ≠ ∅) → 𝐷 ≠ ∅)
4111adantr 480 . . 3 ((𝜑𝐷 ≠ ∅) → 𝐸 ∈ ℝ+)
42 stoweidlem58.18 . . . 4 (𝜑𝐸 < (1 / 3))
4342adantr 480 . . 3 ((𝜑𝐷 ≠ ∅) → 𝐸 < (1 / 3))
441, 15, 18, 19, 20, 21, 6, 22, 23, 25, 27, 29, 31, 32, 34, 35, 37, 39, 40, 41, 43stoweidlem57 46041 . 2 ((𝜑𝐷 ≠ ∅) → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡)))
4514, 44pm2.61dane 3029 1 (𝜑 → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1539  wnf 1782  wcel 2108  wnfc 2890  wne 2940  wral 3061  wrex 3070  {crab 3436  cdif 3963  cin 3965  wss 3966  c0 4342   cuni 4915   class class class wbr 5151  cmpt 5234  ran crn 5694  cfv 6569  (class class class)co 7438  cr 11161  0cc0 11162  1c1 11163   + caddc 11165   · cmul 11167   < clt 11302  cle 11303  cmin 11499   / cdiv 11927  3c3 12329  +crp 13041  (,)cioo 13393  topGenctg 17493  Clsdccld 23049   Cn ccn 23257  Compccmp 23419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-inf2 9688  ax-cnex 11218  ax-resscn 11219  ax-1cn 11220  ax-icn 11221  ax-addcl 11222  ax-addrcl 11223  ax-mulcl 11224  ax-mulrcl 11225  ax-mulcom 11226  ax-addass 11227  ax-mulass 11228  ax-distr 11229  ax-i2m1 11230  ax-1ne0 11231  ax-1rid 11232  ax-rnegex 11233  ax-rrecex 11234  ax-cnre 11235  ax-pre-lttri 11236  ax-pre-lttrn 11237  ax-pre-ltadd 11238  ax-pre-mulgt0 11239  ax-pre-sup 11240
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-tp 4639  df-op 4641  df-uni 4916  df-int 4955  df-iun 5001  df-iin 5002  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-se 5646  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-isom 6578  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-of 7704  df-om 7895  df-1st 8022  df-2nd 8023  df-supp 8194  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-1o 8514  df-2o 8515  df-er 8753  df-map 8876  df-pm 8877  df-ixp 8946  df-en 8994  df-dom 8995  df-sdom 8996  df-fin 8997  df-fsupp 9409  df-fi 9458  df-sup 9489  df-inf 9490  df-oi 9557  df-card 9986  df-pnf 11304  df-mnf 11305  df-xr 11306  df-ltxr 11307  df-le 11308  df-sub 11501  df-neg 11502  df-div 11928  df-nn 12274  df-2 12336  df-3 12337  df-4 12338  df-5 12339  df-6 12340  df-7 12341  df-8 12342  df-9 12343  df-n0 12534  df-z 12621  df-dec 12741  df-uz 12886  df-q 12998  df-rp 13042  df-xneg 13161  df-xadd 13162  df-xmul 13163  df-ioo 13397  df-ico 13399  df-icc 13400  df-fz 13554  df-fzo 13701  df-fl 13838  df-seq 14049  df-exp 14109  df-hash 14376  df-cj 15144  df-re 15145  df-im 15146  df-sqrt 15280  df-abs 15281  df-clim 15530  df-rlim 15531  df-sum 15729  df-struct 17190  df-sets 17207  df-slot 17225  df-ndx 17237  df-base 17255  df-ress 17284  df-plusg 17320  df-mulr 17321  df-starv 17322  df-sca 17323  df-vsca 17324  df-ip 17325  df-tset 17326  df-ple 17327  df-ds 17329  df-unif 17330  df-hom 17331  df-cco 17332  df-rest 17478  df-topn 17479  df-0g 17497  df-gsum 17498  df-topgen 17499  df-pt 17500  df-prds 17503  df-xrs 17558  df-qtop 17563  df-imas 17564  df-xps 17566  df-mre 17640  df-mrc 17641  df-acs 17643  df-mgm 18675  df-sgrp 18754  df-mnd 18770  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21383  df-xmet 21384  df-met 21385  df-bl 21386  df-mopn 21387  df-cnfld 21392  df-top 22925  df-topon 22942  df-topsp 22964  df-bases 22978  df-cld 23052  df-cn 23260  df-cnp 23261  df-cmp 23420  df-tx 23595  df-hmeo 23788  df-xms 24355  df-ms 24356  df-tms 24357
This theorem is referenced by:  stoweidlem59  46043
  Copyright terms: Public domain W3C validator