![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > stoweidlem58 | Structured version Visualization version GIF version |
Description: This theorem proves Lemma 2 in [BrosowskiDeutsh] p. 91. Here D is used to represent the set A of Lemma 2, because here the variable A is used for the subalgebra of functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
stoweidlem58.1 | ⊢ Ⅎ𝑡𝐷 |
stoweidlem58.2 | ⊢ Ⅎ𝑡𝑈 |
stoweidlem58.3 | ⊢ Ⅎ𝑡𝜑 |
stoweidlem58.4 | ⊢ 𝐾 = (topGen‘ran (,)) |
stoweidlem58.5 | ⊢ 𝑇 = ∪ 𝐽 |
stoweidlem58.6 | ⊢ 𝐶 = (𝐽 Cn 𝐾) |
stoweidlem58.7 | ⊢ (𝜑 → 𝐽 ∈ Comp) |
stoweidlem58.8 | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
stoweidlem58.9 | ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) |
stoweidlem58.10 | ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) |
stoweidlem58.11 | ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑎) ∈ 𝐴) |
stoweidlem58.12 | ⊢ ((𝜑 ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) → ∃𝑞 ∈ 𝐴 (𝑞‘𝑟) ≠ (𝑞‘𝑡)) |
stoweidlem58.13 | ⊢ (𝜑 → 𝐵 ∈ (Clsd‘𝐽)) |
stoweidlem58.14 | ⊢ (𝜑 → 𝐷 ∈ (Clsd‘𝐽)) |
stoweidlem58.15 | ⊢ (𝜑 → (𝐵 ∩ 𝐷) = ∅) |
stoweidlem58.16 | ⊢ 𝑈 = (𝑇 ∖ 𝐵) |
stoweidlem58.17 | ⊢ (𝜑 → 𝐸 ∈ ℝ+) |
stoweidlem58.18 | ⊢ (𝜑 → 𝐸 < (1 / 3)) |
Ref | Expression |
---|---|
stoweidlem58 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝐷 (𝑥‘𝑡) < 𝐸 ∧ ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑥‘𝑡))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stoweidlem58.1 | . . 3 ⊢ Ⅎ𝑡𝐷 | |
2 | stoweidlem58.3 | . . . 4 ⊢ Ⅎ𝑡𝜑 | |
3 | 1 | nfeq1 2924 | . . . 4 ⊢ Ⅎ𝑡 𝐷 = ∅ |
4 | 2, 3 | nfan 1898 | . . 3 ⊢ Ⅎ𝑡(𝜑 ∧ 𝐷 = ∅) |
5 | eqid 2740 | . . 3 ⊢ (𝑡 ∈ 𝑇 ↦ 1) = (𝑡 ∈ 𝑇 ↦ 1) | |
6 | stoweidlem58.5 | . . 3 ⊢ 𝑇 = ∪ 𝐽 | |
7 | stoweidlem58.11 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑎) ∈ 𝐴) | |
8 | 7 | adantlr 714 | . . 3 ⊢ (((𝜑 ∧ 𝐷 = ∅) ∧ 𝑎 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑎) ∈ 𝐴) |
9 | stoweidlem58.13 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (Clsd‘𝐽)) | |
10 | 9 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐷 = ∅) → 𝐵 ∈ (Clsd‘𝐽)) |
11 | stoweidlem58.17 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ ℝ+) | |
12 | 11 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐷 = ∅) → 𝐸 ∈ ℝ+) |
13 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝐷 = ∅) → 𝐷 = ∅) | |
14 | 1, 4, 5, 6, 8, 10, 12, 13 | stoweidlem18 45941 | . 2 ⊢ ((𝜑 ∧ 𝐷 = ∅) → ∃𝑥 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝐷 (𝑥‘𝑡) < 𝐸 ∧ ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑥‘𝑡))) |
15 | stoweidlem58.2 | . . 3 ⊢ Ⅎ𝑡𝑈 | |
16 | nfcv 2908 | . . . . 5 ⊢ Ⅎ𝑡∅ | |
17 | 1, 16 | nfne 3049 | . . . 4 ⊢ Ⅎ𝑡 𝐷 ≠ ∅ |
18 | 2, 17 | nfan 1898 | . . 3 ⊢ Ⅎ𝑡(𝜑 ∧ 𝐷 ≠ ∅) |
19 | eqid 2740 | . . 3 ⊢ {ℎ ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1)} = {ℎ ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1)} | |
20 | eqid 2740 | . . 3 ⊢ {𝑤 ∈ 𝐽 ∣ ∀𝑒 ∈ ℝ+ ∃ℎ ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − 𝑒) < (ℎ‘𝑡))} = {𝑤 ∈ 𝐽 ∣ ∀𝑒 ∈ ℝ+ ∃ℎ ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − 𝑒) < (ℎ‘𝑡))} | |
21 | stoweidlem58.4 | . . 3 ⊢ 𝐾 = (topGen‘ran (,)) | |
22 | stoweidlem58.6 | . . 3 ⊢ 𝐶 = (𝐽 Cn 𝐾) | |
23 | stoweidlem58.16 | . . 3 ⊢ 𝑈 = (𝑇 ∖ 𝐵) | |
24 | stoweidlem58.7 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ Comp) | |
25 | 24 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐷 ≠ ∅) → 𝐽 ∈ Comp) |
26 | stoweidlem58.8 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | |
27 | 26 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐷 ≠ ∅) → 𝐴 ⊆ 𝐶) |
28 | stoweidlem58.9 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) | |
29 | 28 | 3adant1r 1177 | . . 3 ⊢ (((𝜑 ∧ 𝐷 ≠ ∅) ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) |
30 | stoweidlem58.10 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) | |
31 | 30 | 3adant1r 1177 | . . 3 ⊢ (((𝜑 ∧ 𝐷 ≠ ∅) ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) |
32 | 7 | adantlr 714 | . . 3 ⊢ (((𝜑 ∧ 𝐷 ≠ ∅) ∧ 𝑎 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑎) ∈ 𝐴) |
33 | stoweidlem58.12 | . . . 4 ⊢ ((𝜑 ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) → ∃𝑞 ∈ 𝐴 (𝑞‘𝑟) ≠ (𝑞‘𝑡)) | |
34 | 33 | adantlr 714 | . . 3 ⊢ (((𝜑 ∧ 𝐷 ≠ ∅) ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) → ∃𝑞 ∈ 𝐴 (𝑞‘𝑟) ≠ (𝑞‘𝑡)) |
35 | 9 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐷 ≠ ∅) → 𝐵 ∈ (Clsd‘𝐽)) |
36 | stoweidlem58.14 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ (Clsd‘𝐽)) | |
37 | 36 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐷 ≠ ∅) → 𝐷 ∈ (Clsd‘𝐽)) |
38 | stoweidlem58.15 | . . . 4 ⊢ (𝜑 → (𝐵 ∩ 𝐷) = ∅) | |
39 | 38 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐷 ≠ ∅) → (𝐵 ∩ 𝐷) = ∅) |
40 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝐷 ≠ ∅) → 𝐷 ≠ ∅) | |
41 | 11 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐷 ≠ ∅) → 𝐸 ∈ ℝ+) |
42 | stoweidlem58.18 | . . . 4 ⊢ (𝜑 → 𝐸 < (1 / 3)) | |
43 | 42 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐷 ≠ ∅) → 𝐸 < (1 / 3)) |
44 | 1, 15, 18, 19, 20, 21, 6, 22, 23, 25, 27, 29, 31, 32, 34, 35, 37, 39, 40, 41, 43 | stoweidlem57 45980 | . 2 ⊢ ((𝜑 ∧ 𝐷 ≠ ∅) → ∃𝑥 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝐷 (𝑥‘𝑡) < 𝐸 ∧ ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑥‘𝑡))) |
45 | 14, 44 | pm2.61dane 3035 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝐷 (𝑥‘𝑡) < 𝐸 ∧ ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑥‘𝑡))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 Ⅎwnf 1781 ∈ wcel 2108 Ⅎwnfc 2893 ≠ wne 2946 ∀wral 3067 ∃wrex 3076 {crab 3443 ∖ cdif 3973 ∩ cin 3975 ⊆ wss 3976 ∅c0 4352 ∪ cuni 4931 class class class wbr 5166 ↦ cmpt 5249 ran crn 5701 ‘cfv 6575 (class class class)co 7450 ℝcr 11185 0cc0 11186 1c1 11187 + caddc 11189 · cmul 11191 < clt 11326 ≤ cle 11327 − cmin 11522 / cdiv 11949 3c3 12351 ℝ+crp 13059 (,)cioo 13409 topGenctg 17499 Clsdccld 23047 Cn ccn 23255 Compccmp 23417 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 ax-inf2 9712 ax-cnex 11242 ax-resscn 11243 ax-1cn 11244 ax-icn 11245 ax-addcl 11246 ax-addrcl 11247 ax-mulcl 11248 ax-mulrcl 11249 ax-mulcom 11250 ax-addass 11251 ax-mulass 11252 ax-distr 11253 ax-i2m1 11254 ax-1ne0 11255 ax-1rid 11256 ax-rnegex 11257 ax-rrecex 11258 ax-cnre 11259 ax-pre-lttri 11260 ax-pre-lttrn 11261 ax-pre-ltadd 11262 ax-pre-mulgt0 11263 ax-pre-sup 11264 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6334 df-ord 6400 df-on 6401 df-lim 6402 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-isom 6584 df-riota 7406 df-ov 7453 df-oprab 7454 df-mpo 7455 df-of 7716 df-om 7906 df-1st 8032 df-2nd 8033 df-supp 8204 df-frecs 8324 df-wrecs 8355 df-recs 8429 df-rdg 8468 df-1o 8524 df-2o 8525 df-er 8765 df-map 8888 df-pm 8889 df-ixp 8958 df-en 9006 df-dom 9007 df-sdom 9008 df-fin 9009 df-fsupp 9434 df-fi 9482 df-sup 9513 df-inf 9514 df-oi 9581 df-card 10010 df-pnf 11328 df-mnf 11329 df-xr 11330 df-ltxr 11331 df-le 11332 df-sub 11524 df-neg 11525 df-div 11950 df-nn 12296 df-2 12358 df-3 12359 df-4 12360 df-5 12361 df-6 12362 df-7 12363 df-8 12364 df-9 12365 df-n0 12556 df-z 12642 df-dec 12761 df-uz 12906 df-q 13016 df-rp 13060 df-xneg 13177 df-xadd 13178 df-xmul 13179 df-ioo 13413 df-ico 13415 df-icc 13416 df-fz 13570 df-fzo 13714 df-fl 13845 df-seq 14055 df-exp 14115 df-hash 14382 df-cj 15150 df-re 15151 df-im 15152 df-sqrt 15286 df-abs 15287 df-clim 15536 df-rlim 15537 df-sum 15737 df-struct 17196 df-sets 17213 df-slot 17231 df-ndx 17243 df-base 17261 df-ress 17290 df-plusg 17326 df-mulr 17327 df-starv 17328 df-sca 17329 df-vsca 17330 df-ip 17331 df-tset 17332 df-ple 17333 df-ds 17335 df-unif 17336 df-hom 17337 df-cco 17338 df-rest 17484 df-topn 17485 df-0g 17503 df-gsum 17504 df-topgen 17505 df-pt 17506 df-prds 17509 df-xrs 17564 df-qtop 17569 df-imas 17570 df-xps 17572 df-mre 17646 df-mrc 17647 df-acs 17649 df-mgm 18680 df-sgrp 18759 df-mnd 18775 df-submnd 18821 df-mulg 19110 df-cntz 19359 df-cmn 19826 df-psmet 21381 df-xmet 21382 df-met 21383 df-bl 21384 df-mopn 21385 df-cnfld 21390 df-top 22923 df-topon 22940 df-topsp 22962 df-bases 22976 df-cld 23050 df-cn 23258 df-cnp 23259 df-cmp 23418 df-tx 23593 df-hmeo 23786 df-xms 24353 df-ms 24354 df-tms 24355 |
This theorem is referenced by: stoweidlem59 45982 |
Copyright terms: Public domain | W3C validator |