![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > stoweidlem58 | Structured version Visualization version GIF version |
Description: This theorem proves Lemma 2 in [BrosowskiDeutsh] p. 91. Here D is used to represent the set A of Lemma 2, because here the variable A is used for the subalgebra of functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
stoweidlem58.1 | ⊢ Ⅎ𝑡𝐷 |
stoweidlem58.2 | ⊢ Ⅎ𝑡𝑈 |
stoweidlem58.3 | ⊢ Ⅎ𝑡𝜑 |
stoweidlem58.4 | ⊢ 𝐾 = (topGen‘ran (,)) |
stoweidlem58.5 | ⊢ 𝑇 = ∪ 𝐽 |
stoweidlem58.6 | ⊢ 𝐶 = (𝐽 Cn 𝐾) |
stoweidlem58.7 | ⊢ (𝜑 → 𝐽 ∈ Comp) |
stoweidlem58.8 | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
stoweidlem58.9 | ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) |
stoweidlem58.10 | ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) |
stoweidlem58.11 | ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑎) ∈ 𝐴) |
stoweidlem58.12 | ⊢ ((𝜑 ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) → ∃𝑞 ∈ 𝐴 (𝑞‘𝑟) ≠ (𝑞‘𝑡)) |
stoweidlem58.13 | ⊢ (𝜑 → 𝐵 ∈ (Clsd‘𝐽)) |
stoweidlem58.14 | ⊢ (𝜑 → 𝐷 ∈ (Clsd‘𝐽)) |
stoweidlem58.15 | ⊢ (𝜑 → (𝐵 ∩ 𝐷) = ∅) |
stoweidlem58.16 | ⊢ 𝑈 = (𝑇 ∖ 𝐵) |
stoweidlem58.17 | ⊢ (𝜑 → 𝐸 ∈ ℝ+) |
stoweidlem58.18 | ⊢ (𝜑 → 𝐸 < (1 / 3)) |
Ref | Expression |
---|---|
stoweidlem58 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝐷 (𝑥‘𝑡) < 𝐸 ∧ ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑥‘𝑡))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stoweidlem58.1 | . . 3 ⊢ Ⅎ𝑡𝐷 | |
2 | stoweidlem58.3 | . . . 4 ⊢ Ⅎ𝑡𝜑 | |
3 | 1 | nfeq1 2908 | . . . 4 ⊢ Ⅎ𝑡 𝐷 = ∅ |
4 | 2, 3 | nfan 1895 | . . 3 ⊢ Ⅎ𝑡(𝜑 ∧ 𝐷 = ∅) |
5 | eqid 2726 | . . 3 ⊢ (𝑡 ∈ 𝑇 ↦ 1) = (𝑡 ∈ 𝑇 ↦ 1) | |
6 | stoweidlem58.5 | . . 3 ⊢ 𝑇 = ∪ 𝐽 | |
7 | stoweidlem58.11 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑎) ∈ 𝐴) | |
8 | 7 | adantlr 713 | . . 3 ⊢ (((𝜑 ∧ 𝐷 = ∅) ∧ 𝑎 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑎) ∈ 𝐴) |
9 | stoweidlem58.13 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (Clsd‘𝐽)) | |
10 | 9 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ 𝐷 = ∅) → 𝐵 ∈ (Clsd‘𝐽)) |
11 | stoweidlem58.17 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ ℝ+) | |
12 | 11 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ 𝐷 = ∅) → 𝐸 ∈ ℝ+) |
13 | simpr 483 | . . 3 ⊢ ((𝜑 ∧ 𝐷 = ∅) → 𝐷 = ∅) | |
14 | 1, 4, 5, 6, 8, 10, 12, 13 | stoweidlem18 45639 | . 2 ⊢ ((𝜑 ∧ 𝐷 = ∅) → ∃𝑥 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝐷 (𝑥‘𝑡) < 𝐸 ∧ ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑥‘𝑡))) |
15 | stoweidlem58.2 | . . 3 ⊢ Ⅎ𝑡𝑈 | |
16 | nfcv 2892 | . . . . 5 ⊢ Ⅎ𝑡∅ | |
17 | 1, 16 | nfne 3033 | . . . 4 ⊢ Ⅎ𝑡 𝐷 ≠ ∅ |
18 | 2, 17 | nfan 1895 | . . 3 ⊢ Ⅎ𝑡(𝜑 ∧ 𝐷 ≠ ∅) |
19 | eqid 2726 | . . 3 ⊢ {ℎ ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1)} = {ℎ ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1)} | |
20 | eqid 2726 | . . 3 ⊢ {𝑤 ∈ 𝐽 ∣ ∀𝑒 ∈ ℝ+ ∃ℎ ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − 𝑒) < (ℎ‘𝑡))} = {𝑤 ∈ 𝐽 ∣ ∀𝑒 ∈ ℝ+ ∃ℎ ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − 𝑒) < (ℎ‘𝑡))} | |
21 | stoweidlem58.4 | . . 3 ⊢ 𝐾 = (topGen‘ran (,)) | |
22 | stoweidlem58.6 | . . 3 ⊢ 𝐶 = (𝐽 Cn 𝐾) | |
23 | stoweidlem58.16 | . . 3 ⊢ 𝑈 = (𝑇 ∖ 𝐵) | |
24 | stoweidlem58.7 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ Comp) | |
25 | 24 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ 𝐷 ≠ ∅) → 𝐽 ∈ Comp) |
26 | stoweidlem58.8 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | |
27 | 26 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ 𝐷 ≠ ∅) → 𝐴 ⊆ 𝐶) |
28 | stoweidlem58.9 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) | |
29 | 28 | 3adant1r 1174 | . . 3 ⊢ (((𝜑 ∧ 𝐷 ≠ ∅) ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) |
30 | stoweidlem58.10 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) | |
31 | 30 | 3adant1r 1174 | . . 3 ⊢ (((𝜑 ∧ 𝐷 ≠ ∅) ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) |
32 | 7 | adantlr 713 | . . 3 ⊢ (((𝜑 ∧ 𝐷 ≠ ∅) ∧ 𝑎 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑎) ∈ 𝐴) |
33 | stoweidlem58.12 | . . . 4 ⊢ ((𝜑 ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) → ∃𝑞 ∈ 𝐴 (𝑞‘𝑟) ≠ (𝑞‘𝑡)) | |
34 | 33 | adantlr 713 | . . 3 ⊢ (((𝜑 ∧ 𝐷 ≠ ∅) ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) → ∃𝑞 ∈ 𝐴 (𝑞‘𝑟) ≠ (𝑞‘𝑡)) |
35 | 9 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ 𝐷 ≠ ∅) → 𝐵 ∈ (Clsd‘𝐽)) |
36 | stoweidlem58.14 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ (Clsd‘𝐽)) | |
37 | 36 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ 𝐷 ≠ ∅) → 𝐷 ∈ (Clsd‘𝐽)) |
38 | stoweidlem58.15 | . . . 4 ⊢ (𝜑 → (𝐵 ∩ 𝐷) = ∅) | |
39 | 38 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ 𝐷 ≠ ∅) → (𝐵 ∩ 𝐷) = ∅) |
40 | simpr 483 | . . 3 ⊢ ((𝜑 ∧ 𝐷 ≠ ∅) → 𝐷 ≠ ∅) | |
41 | 11 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ 𝐷 ≠ ∅) → 𝐸 ∈ ℝ+) |
42 | stoweidlem58.18 | . . . 4 ⊢ (𝜑 → 𝐸 < (1 / 3)) | |
43 | 42 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ 𝐷 ≠ ∅) → 𝐸 < (1 / 3)) |
44 | 1, 15, 18, 19, 20, 21, 6, 22, 23, 25, 27, 29, 31, 32, 34, 35, 37, 39, 40, 41, 43 | stoweidlem57 45678 | . 2 ⊢ ((𝜑 ∧ 𝐷 ≠ ∅) → ∃𝑥 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝐷 (𝑥‘𝑡) < 𝐸 ∧ ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑥‘𝑡))) |
45 | 14, 44 | pm2.61dane 3019 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝐷 (𝑥‘𝑡) < 𝐸 ∧ ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑥‘𝑡))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1534 Ⅎwnf 1778 ∈ wcel 2099 Ⅎwnfc 2876 ≠ wne 2930 ∀wral 3051 ∃wrex 3060 {crab 3419 ∖ cdif 3944 ∩ cin 3946 ⊆ wss 3947 ∅c0 4325 ∪ cuni 4913 class class class wbr 5153 ↦ cmpt 5236 ran crn 5683 ‘cfv 6554 (class class class)co 7424 ℝcr 11157 0cc0 11158 1c1 11159 + caddc 11161 · cmul 11163 < clt 11298 ≤ cle 11299 − cmin 11494 / cdiv 11921 3c3 12320 ℝ+crp 13028 (,)cioo 13378 topGenctg 17452 Clsdccld 23011 Cn ccn 23219 Compccmp 23381 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-inf2 9684 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 ax-pre-sup 11236 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-tp 4638 df-op 4640 df-uni 4914 df-int 4955 df-iun 5003 df-iin 5004 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-isom 6563 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-of 7690 df-om 7877 df-1st 8003 df-2nd 8004 df-supp 8175 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-2o 8497 df-er 8734 df-map 8857 df-pm 8858 df-ixp 8927 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-fsupp 9406 df-fi 9454 df-sup 9485 df-inf 9486 df-oi 9553 df-card 9982 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-div 11922 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12611 df-dec 12730 df-uz 12875 df-q 12985 df-rp 13029 df-xneg 13146 df-xadd 13147 df-xmul 13148 df-ioo 13382 df-ico 13384 df-icc 13385 df-fz 13539 df-fzo 13682 df-fl 13812 df-seq 14022 df-exp 14082 df-hash 14348 df-cj 15104 df-re 15105 df-im 15106 df-sqrt 15240 df-abs 15241 df-clim 15490 df-rlim 15491 df-sum 15691 df-struct 17149 df-sets 17166 df-slot 17184 df-ndx 17196 df-base 17214 df-ress 17243 df-plusg 17279 df-mulr 17280 df-starv 17281 df-sca 17282 df-vsca 17283 df-ip 17284 df-tset 17285 df-ple 17286 df-ds 17288 df-unif 17289 df-hom 17290 df-cco 17291 df-rest 17437 df-topn 17438 df-0g 17456 df-gsum 17457 df-topgen 17458 df-pt 17459 df-prds 17462 df-xrs 17517 df-qtop 17522 df-imas 17523 df-xps 17525 df-mre 17599 df-mrc 17600 df-acs 17602 df-mgm 18633 df-sgrp 18712 df-mnd 18728 df-submnd 18774 df-mulg 19062 df-cntz 19311 df-cmn 19780 df-psmet 21335 df-xmet 21336 df-met 21337 df-bl 21338 df-mopn 21339 df-cnfld 21344 df-top 22887 df-topon 22904 df-topsp 22926 df-bases 22940 df-cld 23014 df-cn 23222 df-cnp 23223 df-cmp 23382 df-tx 23557 df-hmeo 23750 df-xms 24317 df-ms 24318 df-tms 24319 |
This theorem is referenced by: stoweidlem59 45680 |
Copyright terms: Public domain | W3C validator |