Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > stoweidlem58 | Structured version Visualization version GIF version |
Description: This theorem proves Lemma 2 in [BrosowskiDeutsh] p. 91. Here D is used to represent the set A of Lemma 2, because here the variable A is used for the subalgebra of functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
stoweidlem58.1 | ⊢ Ⅎ𝑡𝐷 |
stoweidlem58.2 | ⊢ Ⅎ𝑡𝑈 |
stoweidlem58.3 | ⊢ Ⅎ𝑡𝜑 |
stoweidlem58.4 | ⊢ 𝐾 = (topGen‘ran (,)) |
stoweidlem58.5 | ⊢ 𝑇 = ∪ 𝐽 |
stoweidlem58.6 | ⊢ 𝐶 = (𝐽 Cn 𝐾) |
stoweidlem58.7 | ⊢ (𝜑 → 𝐽 ∈ Comp) |
stoweidlem58.8 | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
stoweidlem58.9 | ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) |
stoweidlem58.10 | ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) |
stoweidlem58.11 | ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑎) ∈ 𝐴) |
stoweidlem58.12 | ⊢ ((𝜑 ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) → ∃𝑞 ∈ 𝐴 (𝑞‘𝑟) ≠ (𝑞‘𝑡)) |
stoweidlem58.13 | ⊢ (𝜑 → 𝐵 ∈ (Clsd‘𝐽)) |
stoweidlem58.14 | ⊢ (𝜑 → 𝐷 ∈ (Clsd‘𝐽)) |
stoweidlem58.15 | ⊢ (𝜑 → (𝐵 ∩ 𝐷) = ∅) |
stoweidlem58.16 | ⊢ 𝑈 = (𝑇 ∖ 𝐵) |
stoweidlem58.17 | ⊢ (𝜑 → 𝐸 ∈ ℝ+) |
stoweidlem58.18 | ⊢ (𝜑 → 𝐸 < (1 / 3)) |
Ref | Expression |
---|---|
stoweidlem58 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝐷 (𝑥‘𝑡) < 𝐸 ∧ ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑥‘𝑡))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stoweidlem58.1 | . . 3 ⊢ Ⅎ𝑡𝐷 | |
2 | stoweidlem58.3 | . . . 4 ⊢ Ⅎ𝑡𝜑 | |
3 | 1 | nfeq1 2921 | . . . 4 ⊢ Ⅎ𝑡 𝐷 = ∅ |
4 | 2, 3 | nfan 1903 | . . 3 ⊢ Ⅎ𝑡(𝜑 ∧ 𝐷 = ∅) |
5 | eqid 2738 | . . 3 ⊢ (𝑡 ∈ 𝑇 ↦ 1) = (𝑡 ∈ 𝑇 ↦ 1) | |
6 | stoweidlem58.5 | . . 3 ⊢ 𝑇 = ∪ 𝐽 | |
7 | stoweidlem58.11 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑎) ∈ 𝐴) | |
8 | 7 | adantlr 711 | . . 3 ⊢ (((𝜑 ∧ 𝐷 = ∅) ∧ 𝑎 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑎) ∈ 𝐴) |
9 | stoweidlem58.13 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (Clsd‘𝐽)) | |
10 | 9 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐷 = ∅) → 𝐵 ∈ (Clsd‘𝐽)) |
11 | stoweidlem58.17 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ ℝ+) | |
12 | 11 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐷 = ∅) → 𝐸 ∈ ℝ+) |
13 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝐷 = ∅) → 𝐷 = ∅) | |
14 | 1, 4, 5, 6, 8, 10, 12, 13 | stoweidlem18 43449 | . 2 ⊢ ((𝜑 ∧ 𝐷 = ∅) → ∃𝑥 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝐷 (𝑥‘𝑡) < 𝐸 ∧ ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑥‘𝑡))) |
15 | stoweidlem58.2 | . . 3 ⊢ Ⅎ𝑡𝑈 | |
16 | nfcv 2906 | . . . . 5 ⊢ Ⅎ𝑡∅ | |
17 | 1, 16 | nfne 3044 | . . . 4 ⊢ Ⅎ𝑡 𝐷 ≠ ∅ |
18 | 2, 17 | nfan 1903 | . . 3 ⊢ Ⅎ𝑡(𝜑 ∧ 𝐷 ≠ ∅) |
19 | eqid 2738 | . . 3 ⊢ {ℎ ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1)} = {ℎ ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1)} | |
20 | eqid 2738 | . . 3 ⊢ {𝑤 ∈ 𝐽 ∣ ∀𝑒 ∈ ℝ+ ∃ℎ ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − 𝑒) < (ℎ‘𝑡))} = {𝑤 ∈ 𝐽 ∣ ∀𝑒 ∈ ℝ+ ∃ℎ ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − 𝑒) < (ℎ‘𝑡))} | |
21 | stoweidlem58.4 | . . 3 ⊢ 𝐾 = (topGen‘ran (,)) | |
22 | stoweidlem58.6 | . . 3 ⊢ 𝐶 = (𝐽 Cn 𝐾) | |
23 | stoweidlem58.16 | . . 3 ⊢ 𝑈 = (𝑇 ∖ 𝐵) | |
24 | stoweidlem58.7 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ Comp) | |
25 | 24 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐷 ≠ ∅) → 𝐽 ∈ Comp) |
26 | stoweidlem58.8 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | |
27 | 26 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐷 ≠ ∅) → 𝐴 ⊆ 𝐶) |
28 | stoweidlem58.9 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) | |
29 | 28 | 3adant1r 1175 | . . 3 ⊢ (((𝜑 ∧ 𝐷 ≠ ∅) ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) |
30 | stoweidlem58.10 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) | |
31 | 30 | 3adant1r 1175 | . . 3 ⊢ (((𝜑 ∧ 𝐷 ≠ ∅) ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) |
32 | 7 | adantlr 711 | . . 3 ⊢ (((𝜑 ∧ 𝐷 ≠ ∅) ∧ 𝑎 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑎) ∈ 𝐴) |
33 | stoweidlem58.12 | . . . 4 ⊢ ((𝜑 ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) → ∃𝑞 ∈ 𝐴 (𝑞‘𝑟) ≠ (𝑞‘𝑡)) | |
34 | 33 | adantlr 711 | . . 3 ⊢ (((𝜑 ∧ 𝐷 ≠ ∅) ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) → ∃𝑞 ∈ 𝐴 (𝑞‘𝑟) ≠ (𝑞‘𝑡)) |
35 | 9 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐷 ≠ ∅) → 𝐵 ∈ (Clsd‘𝐽)) |
36 | stoweidlem58.14 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ (Clsd‘𝐽)) | |
37 | 36 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐷 ≠ ∅) → 𝐷 ∈ (Clsd‘𝐽)) |
38 | stoweidlem58.15 | . . . 4 ⊢ (𝜑 → (𝐵 ∩ 𝐷) = ∅) | |
39 | 38 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐷 ≠ ∅) → (𝐵 ∩ 𝐷) = ∅) |
40 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝐷 ≠ ∅) → 𝐷 ≠ ∅) | |
41 | 11 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐷 ≠ ∅) → 𝐸 ∈ ℝ+) |
42 | stoweidlem58.18 | . . . 4 ⊢ (𝜑 → 𝐸 < (1 / 3)) | |
43 | 42 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐷 ≠ ∅) → 𝐸 < (1 / 3)) |
44 | 1, 15, 18, 19, 20, 21, 6, 22, 23, 25, 27, 29, 31, 32, 34, 35, 37, 39, 40, 41, 43 | stoweidlem57 43488 | . 2 ⊢ ((𝜑 ∧ 𝐷 ≠ ∅) → ∃𝑥 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝐷 (𝑥‘𝑡) < 𝐸 ∧ ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑥‘𝑡))) |
45 | 14, 44 | pm2.61dane 3031 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝐷 (𝑥‘𝑡) < 𝐸 ∧ ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑥‘𝑡))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 Ⅎwnf 1787 ∈ wcel 2108 Ⅎwnfc 2886 ≠ wne 2942 ∀wral 3063 ∃wrex 3064 {crab 3067 ∖ cdif 3880 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 ∪ cuni 4836 class class class wbr 5070 ↦ cmpt 5153 ran crn 5581 ‘cfv 6418 (class class class)co 7255 ℝcr 10801 0cc0 10802 1c1 10803 + caddc 10805 · cmul 10807 < clt 10940 ≤ cle 10941 − cmin 11135 / cdiv 11562 3c3 11959 ℝ+crp 12659 (,)cioo 13008 topGenctg 17065 Clsdccld 22075 Cn ccn 22283 Compccmp 22445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-rlim 15126 df-sum 15326 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-pt 17072 df-prds 17075 df-xrs 17130 df-qtop 17135 df-imas 17136 df-xps 17138 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-mulg 18616 df-cntz 18838 df-cmn 19303 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cld 22078 df-cn 22286 df-cnp 22287 df-cmp 22446 df-tx 22621 df-hmeo 22814 df-xms 23381 df-ms 23382 df-tms 23383 |
This theorem is referenced by: stoweidlem59 43490 |
Copyright terms: Public domain | W3C validator |