| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > stoweidlem58 | Structured version Visualization version GIF version | ||
| Description: This theorem proves Lemma 2 in [BrosowskiDeutsh] p. 91. Here D is used to represent the set A of Lemma 2, because here the variable A is used for the subalgebra of functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| Ref | Expression |
|---|---|
| stoweidlem58.1 | ⊢ Ⅎ𝑡𝐷 |
| stoweidlem58.2 | ⊢ Ⅎ𝑡𝑈 |
| stoweidlem58.3 | ⊢ Ⅎ𝑡𝜑 |
| stoweidlem58.4 | ⊢ 𝐾 = (topGen‘ran (,)) |
| stoweidlem58.5 | ⊢ 𝑇 = ∪ 𝐽 |
| stoweidlem58.6 | ⊢ 𝐶 = (𝐽 Cn 𝐾) |
| stoweidlem58.7 | ⊢ (𝜑 → 𝐽 ∈ Comp) |
| stoweidlem58.8 | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| stoweidlem58.9 | ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) |
| stoweidlem58.10 | ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) |
| stoweidlem58.11 | ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑎) ∈ 𝐴) |
| stoweidlem58.12 | ⊢ ((𝜑 ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) → ∃𝑞 ∈ 𝐴 (𝑞‘𝑟) ≠ (𝑞‘𝑡)) |
| stoweidlem58.13 | ⊢ (𝜑 → 𝐵 ∈ (Clsd‘𝐽)) |
| stoweidlem58.14 | ⊢ (𝜑 → 𝐷 ∈ (Clsd‘𝐽)) |
| stoweidlem58.15 | ⊢ (𝜑 → (𝐵 ∩ 𝐷) = ∅) |
| stoweidlem58.16 | ⊢ 𝑈 = (𝑇 ∖ 𝐵) |
| stoweidlem58.17 | ⊢ (𝜑 → 𝐸 ∈ ℝ+) |
| stoweidlem58.18 | ⊢ (𝜑 → 𝐸 < (1 / 3)) |
| Ref | Expression |
|---|---|
| stoweidlem58 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝐷 (𝑥‘𝑡) < 𝐸 ∧ ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑥‘𝑡))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stoweidlem58.1 | . . 3 ⊢ Ⅎ𝑡𝐷 | |
| 2 | stoweidlem58.3 | . . . 4 ⊢ Ⅎ𝑡𝜑 | |
| 3 | 1 | nfeq1 2908 | . . . 4 ⊢ Ⅎ𝑡 𝐷 = ∅ |
| 4 | 2, 3 | nfan 1899 | . . 3 ⊢ Ⅎ𝑡(𝜑 ∧ 𝐷 = ∅) |
| 5 | eqid 2730 | . . 3 ⊢ (𝑡 ∈ 𝑇 ↦ 1) = (𝑡 ∈ 𝑇 ↦ 1) | |
| 6 | stoweidlem58.5 | . . 3 ⊢ 𝑇 = ∪ 𝐽 | |
| 7 | stoweidlem58.11 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑎) ∈ 𝐴) | |
| 8 | 7 | adantlr 715 | . . 3 ⊢ (((𝜑 ∧ 𝐷 = ∅) ∧ 𝑎 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑎) ∈ 𝐴) |
| 9 | stoweidlem58.13 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (Clsd‘𝐽)) | |
| 10 | 9 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐷 = ∅) → 𝐵 ∈ (Clsd‘𝐽)) |
| 11 | stoweidlem58.17 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ ℝ+) | |
| 12 | 11 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐷 = ∅) → 𝐸 ∈ ℝ+) |
| 13 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝐷 = ∅) → 𝐷 = ∅) | |
| 14 | 1, 4, 5, 6, 8, 10, 12, 13 | stoweidlem18 46009 | . 2 ⊢ ((𝜑 ∧ 𝐷 = ∅) → ∃𝑥 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝐷 (𝑥‘𝑡) < 𝐸 ∧ ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑥‘𝑡))) |
| 15 | stoweidlem58.2 | . . 3 ⊢ Ⅎ𝑡𝑈 | |
| 16 | nfcv 2892 | . . . . 5 ⊢ Ⅎ𝑡∅ | |
| 17 | 1, 16 | nfne 3027 | . . . 4 ⊢ Ⅎ𝑡 𝐷 ≠ ∅ |
| 18 | 2, 17 | nfan 1899 | . . 3 ⊢ Ⅎ𝑡(𝜑 ∧ 𝐷 ≠ ∅) |
| 19 | eqid 2730 | . . 3 ⊢ {ℎ ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1)} = {ℎ ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1)} | |
| 20 | eqid 2730 | . . 3 ⊢ {𝑤 ∈ 𝐽 ∣ ∀𝑒 ∈ ℝ+ ∃ℎ ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − 𝑒) < (ℎ‘𝑡))} = {𝑤 ∈ 𝐽 ∣ ∀𝑒 ∈ ℝ+ ∃ℎ ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − 𝑒) < (ℎ‘𝑡))} | |
| 21 | stoweidlem58.4 | . . 3 ⊢ 𝐾 = (topGen‘ran (,)) | |
| 22 | stoweidlem58.6 | . . 3 ⊢ 𝐶 = (𝐽 Cn 𝐾) | |
| 23 | stoweidlem58.16 | . . 3 ⊢ 𝑈 = (𝑇 ∖ 𝐵) | |
| 24 | stoweidlem58.7 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ Comp) | |
| 25 | 24 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐷 ≠ ∅) → 𝐽 ∈ Comp) |
| 26 | stoweidlem58.8 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | |
| 27 | 26 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐷 ≠ ∅) → 𝐴 ⊆ 𝐶) |
| 28 | stoweidlem58.9 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) | |
| 29 | 28 | 3adant1r 1178 | . . 3 ⊢ (((𝜑 ∧ 𝐷 ≠ ∅) ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) |
| 30 | stoweidlem58.10 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) | |
| 31 | 30 | 3adant1r 1178 | . . 3 ⊢ (((𝜑 ∧ 𝐷 ≠ ∅) ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) |
| 32 | 7 | adantlr 715 | . . 3 ⊢ (((𝜑 ∧ 𝐷 ≠ ∅) ∧ 𝑎 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑎) ∈ 𝐴) |
| 33 | stoweidlem58.12 | . . . 4 ⊢ ((𝜑 ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) → ∃𝑞 ∈ 𝐴 (𝑞‘𝑟) ≠ (𝑞‘𝑡)) | |
| 34 | 33 | adantlr 715 | . . 3 ⊢ (((𝜑 ∧ 𝐷 ≠ ∅) ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) → ∃𝑞 ∈ 𝐴 (𝑞‘𝑟) ≠ (𝑞‘𝑡)) |
| 35 | 9 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐷 ≠ ∅) → 𝐵 ∈ (Clsd‘𝐽)) |
| 36 | stoweidlem58.14 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ (Clsd‘𝐽)) | |
| 37 | 36 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐷 ≠ ∅) → 𝐷 ∈ (Clsd‘𝐽)) |
| 38 | stoweidlem58.15 | . . . 4 ⊢ (𝜑 → (𝐵 ∩ 𝐷) = ∅) | |
| 39 | 38 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐷 ≠ ∅) → (𝐵 ∩ 𝐷) = ∅) |
| 40 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝐷 ≠ ∅) → 𝐷 ≠ ∅) | |
| 41 | 11 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐷 ≠ ∅) → 𝐸 ∈ ℝ+) |
| 42 | stoweidlem58.18 | . . . 4 ⊢ (𝜑 → 𝐸 < (1 / 3)) | |
| 43 | 42 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐷 ≠ ∅) → 𝐸 < (1 / 3)) |
| 44 | 1, 15, 18, 19, 20, 21, 6, 22, 23, 25, 27, 29, 31, 32, 34, 35, 37, 39, 40, 41, 43 | stoweidlem57 46048 | . 2 ⊢ ((𝜑 ∧ 𝐷 ≠ ∅) → ∃𝑥 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝐷 (𝑥‘𝑡) < 𝐸 ∧ ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑥‘𝑡))) |
| 45 | 14, 44 | pm2.61dane 3013 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝐷 (𝑥‘𝑡) < 𝐸 ∧ ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑥‘𝑡))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2877 ≠ wne 2926 ∀wral 3045 ∃wrex 3054 {crab 3408 ∖ cdif 3913 ∩ cin 3915 ⊆ wss 3916 ∅c0 4298 ∪ cuni 4873 class class class wbr 5109 ↦ cmpt 5190 ran crn 5641 ‘cfv 6513 (class class class)co 7389 ℝcr 11073 0cc0 11074 1c1 11075 + caddc 11077 · cmul 11079 < clt 11214 ≤ cle 11215 − cmin 11411 / cdiv 11841 3c3 12243 ℝ+crp 12957 (,)cioo 13312 topGenctg 17406 Clsdccld 22909 Cn ccn 23117 Compccmp 23279 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-inf2 9600 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-pre-sup 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-iin 4960 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-se 5594 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-isom 6522 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-of 7655 df-om 7845 df-1st 7970 df-2nd 7971 df-supp 8142 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-2o 8437 df-er 8673 df-map 8803 df-pm 8804 df-ixp 8873 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-fsupp 9319 df-fi 9368 df-sup 9399 df-inf 9400 df-oi 9469 df-card 9898 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-z 12536 df-dec 12656 df-uz 12800 df-q 12914 df-rp 12958 df-xneg 13078 df-xadd 13079 df-xmul 13080 df-ioo 13316 df-ico 13318 df-icc 13319 df-fz 13475 df-fzo 13622 df-fl 13760 df-seq 13973 df-exp 14033 df-hash 14302 df-cj 15071 df-re 15072 df-im 15073 df-sqrt 15207 df-abs 15208 df-clim 15460 df-rlim 15461 df-sum 15659 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-mulr 17240 df-starv 17241 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ds 17248 df-unif 17249 df-hom 17250 df-cco 17251 df-rest 17391 df-topn 17392 df-0g 17410 df-gsum 17411 df-topgen 17412 df-pt 17413 df-prds 17416 df-xrs 17471 df-qtop 17476 df-imas 17477 df-xps 17479 df-mre 17553 df-mrc 17554 df-acs 17556 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-submnd 18717 df-mulg 19006 df-cntz 19255 df-cmn 19718 df-psmet 21262 df-xmet 21263 df-met 21264 df-bl 21265 df-mopn 21266 df-cnfld 21271 df-top 22787 df-topon 22804 df-topsp 22826 df-bases 22839 df-cld 22912 df-cn 23120 df-cnp 23121 df-cmp 23280 df-tx 23455 df-hmeo 23648 df-xms 24214 df-ms 24215 df-tms 24216 |
| This theorem is referenced by: stoweidlem59 46050 |
| Copyright terms: Public domain | W3C validator |