MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coeeq2 Structured version   Visualization version   GIF version

Theorem coeeq2 24435
Description: Compute the coefficient function given a sum expression for the polynomial. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
dgrle.1 (𝜑𝐹 ∈ (Poly‘𝑆))
dgrle.2 (𝜑𝑁 ∈ ℕ0)
dgrle.3 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐴 ∈ ℂ)
dgrle.4 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘))))
Assertion
Ref Expression
coeeq2 (𝜑 → (coeff‘𝐹) = (𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0)))
Distinct variable groups:   𝑧,𝐴   𝑧,𝑘,𝑁   𝜑,𝑘,𝑧
Allowed substitution hints:   𝐴(𝑘)   𝑆(𝑧,𝑘)   𝐹(𝑧,𝑘)

Proof of Theorem coeeq2
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 dgrle.1 . 2 (𝜑𝐹 ∈ (Poly‘𝑆))
2 dgrle.2 . 2 (𝜑𝑁 ∈ ℕ0)
3 simpll 757 . . . . 5 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘𝑁) → 𝜑)
4 simpr 479 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘𝑁) → 𝑘𝑁)
5 simplr 759 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘𝑁) → 𝑘 ∈ ℕ0)
6 nn0uz 12028 . . . . . . . 8 0 = (ℤ‘0)
75, 6syl6eleq 2868 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘𝑁) → 𝑘 ∈ (ℤ‘0))
82nn0zd 11832 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
98ad2antrr 716 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘𝑁) → 𝑁 ∈ ℤ)
10 elfz5 12651 . . . . . . 7 ((𝑘 ∈ (ℤ‘0) ∧ 𝑁 ∈ ℤ) → (𝑘 ∈ (0...𝑁) ↔ 𝑘𝑁))
117, 9, 10syl2anc 579 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘𝑁) → (𝑘 ∈ (0...𝑁) ↔ 𝑘𝑁))
124, 11mpbird 249 . . . . 5 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘𝑁) → 𝑘 ∈ (0...𝑁))
13 dgrle.3 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐴 ∈ ℂ)
143, 12, 13syl2anc 579 . . . 4 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘𝑁) → 𝐴 ∈ ℂ)
15 0cnd 10369 . . . 4 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘𝑁) → 0 ∈ ℂ)
1614, 15ifclda 4340 . . 3 ((𝜑𝑘 ∈ ℕ0) → if(𝑘𝑁, 𝐴, 0) ∈ ℂ)
1716fmpttd 6649 . 2 (𝜑 → (𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0)):ℕ0⟶ℂ)
18 simpr 479 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
19 eqid 2777 . . . . . . . . 9 (𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0)) = (𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))
2019fvmpt2 6552 . . . . . . . 8 ((𝑘 ∈ ℕ0 ∧ if(𝑘𝑁, 𝐴, 0) ∈ ℂ) → ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) = if(𝑘𝑁, 𝐴, 0))
2118, 16, 20syl2anc 579 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) = if(𝑘𝑁, 𝐴, 0))
2221neeq1d 3027 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) ≠ 0 ↔ if(𝑘𝑁, 𝐴, 0) ≠ 0))
23 iffalse 4315 . . . . . . 7 𝑘𝑁 → if(𝑘𝑁, 𝐴, 0) = 0)
2423necon1ai 2995 . . . . . 6 (if(𝑘𝑁, 𝐴, 0) ≠ 0 → 𝑘𝑁)
2522, 24syl6bi 245 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) ≠ 0 → 𝑘𝑁))
2625ralrimiva 3147 . . . 4 (𝜑 → ∀𝑘 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) ≠ 0 → 𝑘𝑁))
27 nfv 1957 . . . . 5 𝑚(((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) ≠ 0 → 𝑘𝑁)
28 nffvmpt1 6457 . . . . . . 7 𝑘((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚)
29 nfcv 2933 . . . . . . 7 𝑘0
3028, 29nfne 3071 . . . . . 6 𝑘((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) ≠ 0
31 nfv 1957 . . . . . 6 𝑘 𝑚𝑁
3230, 31nfim 1943 . . . . 5 𝑘(((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) ≠ 0 → 𝑚𝑁)
33 fveq2 6446 . . . . . . 7 (𝑘 = 𝑚 → ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) = ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚))
3433neeq1d 3027 . . . . . 6 (𝑘 = 𝑚 → (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) ≠ 0 ↔ ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) ≠ 0))
35 breq1 4889 . . . . . 6 (𝑘 = 𝑚 → (𝑘𝑁𝑚𝑁))
3634, 35imbi12d 336 . . . . 5 (𝑘 = 𝑚 → ((((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) ≠ 0 → 𝑘𝑁) ↔ (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) ≠ 0 → 𝑚𝑁)))
3727, 32, 36cbvral 3362 . . . 4 (∀𝑘 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) ≠ 0 → 𝑘𝑁) ↔ ∀𝑚 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) ≠ 0 → 𝑚𝑁))
3826, 37sylib 210 . . 3 (𝜑 → ∀𝑚 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) ≠ 0 → 𝑚𝑁))
39 plyco0 24385 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0)):ℕ0⟶ℂ) → (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0)) “ (ℤ‘(𝑁 + 1))) = {0} ↔ ∀𝑚 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) ≠ 0 → 𝑚𝑁)))
402, 17, 39syl2anc 579 . . 3 (𝜑 → (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0)) “ (ℤ‘(𝑁 + 1))) = {0} ↔ ∀𝑚 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) ≠ 0 → 𝑚𝑁)))
4138, 40mpbird 249 . 2 (𝜑 → ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0)) “ (ℤ‘(𝑁 + 1))) = {0})
42 dgrle.4 . . 3 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘))))
43 nfcv 2933 . . . . . 6 𝑚(((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) · (𝑧𝑘))
44 nfcv 2933 . . . . . . 7 𝑘 ·
45 nfcv 2933 . . . . . . 7 𝑘(𝑧𝑚)
4628, 44, 45nfov 6952 . . . . . 6 𝑘(((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) · (𝑧𝑚))
47 oveq2 6930 . . . . . . 7 (𝑘 = 𝑚 → (𝑧𝑘) = (𝑧𝑚))
4833, 47oveq12d 6940 . . . . . 6 (𝑘 = 𝑚 → (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) · (𝑧𝑘)) = (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) · (𝑧𝑚)))
4943, 46, 48cbvsumi 14835 . . . . 5 Σ𝑘 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) · (𝑧𝑘)) = Σ𝑚 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) · (𝑧𝑚))
50 elfznn0 12751 . . . . . . . . . 10 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
5150adantl 475 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0)
52 elfzle2 12662 . . . . . . . . . . . 12 (𝑘 ∈ (0...𝑁) → 𝑘𝑁)
5352adantl 475 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘𝑁)
5453iftrued 4314 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → if(𝑘𝑁, 𝐴, 0) = 𝐴)
5513adantlr 705 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ ℂ)
5654, 55eqeltrd 2858 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → if(𝑘𝑁, 𝐴, 0) ∈ ℂ)
5751, 56, 20syl2anc 579 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) = if(𝑘𝑁, 𝐴, 0))
5857, 54eqtrd 2813 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) = 𝐴)
5958oveq1d 6937 . . . . . 6 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) · (𝑧𝑘)) = (𝐴 · (𝑧𝑘)))
6059sumeq2dv 14841 . . . . 5 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘)))
6149, 60syl5eqr 2827 . . . 4 ((𝜑𝑧 ∈ ℂ) → Σ𝑚 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) · (𝑧𝑚)) = Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘)))
6261mpteq2dva 4979 . . 3 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) · (𝑧𝑚))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘))))
6342, 62eqtr4d 2816 . 2 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) · (𝑧𝑚))))
641, 2, 17, 41, 63coeeq 24420 1 (𝜑 → (coeff‘𝐹) = (𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386   = wceq 1601  wcel 2106  wne 2968  wral 3089  ifcif 4306  {csn 4397   class class class wbr 4886  cmpt 4965  cima 5358  wf 6131  cfv 6135  (class class class)co 6922  cc 10270  0cc0 10272  1c1 10273   + caddc 10275   · cmul 10277  cle 10412  0cn0 11642  cz 11728  cuz 11992  ...cfz 12643  cexp 13178  Σcsu 14824  Polycply 24377  coeffccoe 24379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350  ax-addf 10351
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-map 8142  df-pm 8143  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-sup 8636  df-inf 8637  df-oi 8704  df-card 9098  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-n0 11643  df-z 11729  df-uz 11993  df-rp 12138  df-fz 12644  df-fzo 12785  df-fl 12912  df-seq 13120  df-exp 13179  df-hash 13436  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-clim 14627  df-rlim 14628  df-sum 14825  df-0p 23874  df-ply 24381  df-coe 24383
This theorem is referenced by:  dgrle  24436  aareccl  24518  elaa2lem  41369
  Copyright terms: Public domain W3C validator