| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | dgrle.1 | . 2
⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) | 
| 2 |  | dgrle.2 | . 2
⊢ (𝜑 → 𝑁 ∈
ℕ0) | 
| 3 |  | simpll 767 | . . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑘 ≤ 𝑁) → 𝜑) | 
| 4 |  | simpr 484 | . . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑘 ≤ 𝑁) → 𝑘 ≤ 𝑁) | 
| 5 |  | simplr 769 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑘 ≤ 𝑁) → 𝑘 ∈ ℕ0) | 
| 6 |  | nn0uz 12920 | . . . . . . . 8
⊢
ℕ0 = (ℤ≥‘0) | 
| 7 | 5, 6 | eleqtrdi 2851 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑘 ≤ 𝑁) → 𝑘 ∈
(ℤ≥‘0)) | 
| 8 | 2 | nn0zd 12639 | . . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ ℤ) | 
| 9 | 8 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑘 ≤ 𝑁) → 𝑁 ∈ ℤ) | 
| 10 |  | elfz5 13556 | . . . . . . 7
⊢ ((𝑘 ∈
(ℤ≥‘0) ∧ 𝑁 ∈ ℤ) → (𝑘 ∈ (0...𝑁) ↔ 𝑘 ≤ 𝑁)) | 
| 11 | 7, 9, 10 | syl2anc 584 | . . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑘 ≤ 𝑁) → (𝑘 ∈ (0...𝑁) ↔ 𝑘 ≤ 𝑁)) | 
| 12 | 4, 11 | mpbird 257 | . . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑘 ≤ 𝑁) → 𝑘 ∈ (0...𝑁)) | 
| 13 |  | dgrle.3 | . . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ ℂ) | 
| 14 | 3, 12, 13 | syl2anc 584 | . . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑘 ≤ 𝑁) → 𝐴 ∈ ℂ) | 
| 15 |  | 0cnd 11254 | . . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ¬
𝑘 ≤ 𝑁) → 0 ∈ ℂ) | 
| 16 | 14, 15 | ifclda 4561 | . . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → if(𝑘 ≤ 𝑁, 𝐴, 0) ∈ ℂ) | 
| 17 | 16 | fmpttd 7135 | . 2
⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴,
0)):ℕ0⟶ℂ) | 
| 18 |  | simpr 484 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈
ℕ0) | 
| 19 |  | eqid 2737 | . . . . . . . . 9
⊢ (𝑘 ∈ ℕ0
↦ if(𝑘 ≤ 𝑁, 𝐴, 0)) = (𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0)) | 
| 20 | 19 | fvmpt2 7027 | . . . . . . . 8
⊢ ((𝑘 ∈ ℕ0
∧ if(𝑘 ≤ 𝑁, 𝐴, 0) ∈ ℂ) → ((𝑘 ∈ ℕ0
↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) = if(𝑘 ≤ 𝑁, 𝐴, 0)) | 
| 21 | 18, 16, 20 | syl2anc 584 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑘 ∈ ℕ0
↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) = if(𝑘 ≤ 𝑁, 𝐴, 0)) | 
| 22 | 21 | neeq1d 3000 | . . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (((𝑘 ∈ ℕ0
↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) ≠ 0 ↔ if(𝑘 ≤ 𝑁, 𝐴, 0) ≠ 0)) | 
| 23 |  | iffalse 4534 | . . . . . . 7
⊢ (¬
𝑘 ≤ 𝑁 → if(𝑘 ≤ 𝑁, 𝐴, 0) = 0) | 
| 24 | 23 | necon1ai 2968 | . . . . . 6
⊢ (if(𝑘 ≤ 𝑁, 𝐴, 0) ≠ 0 → 𝑘 ≤ 𝑁) | 
| 25 | 22, 24 | biimtrdi 253 | . . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (((𝑘 ∈ ℕ0
↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁)) | 
| 26 | 25 | ralrimiva 3146 | . . . 4
⊢ (𝜑 → ∀𝑘 ∈ ℕ0 (((𝑘 ∈ ℕ0
↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁)) | 
| 27 |  | nfv 1914 | . . . . 5
⊢
Ⅎ𝑚(((𝑘 ∈ ℕ0
↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁) | 
| 28 |  | nffvmpt1 6917 | . . . . . . 7
⊢
Ⅎ𝑘((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) | 
| 29 |  | nfcv 2905 | . . . . . . 7
⊢
Ⅎ𝑘0 | 
| 30 | 28, 29 | nfne 3043 | . . . . . 6
⊢
Ⅎ𝑘((𝑘 ∈ ℕ0
↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) ≠ 0 | 
| 31 |  | nfv 1914 | . . . . . 6
⊢
Ⅎ𝑘 𝑚 ≤ 𝑁 | 
| 32 | 30, 31 | nfim 1896 | . . . . 5
⊢
Ⅎ𝑘(((𝑘 ∈ ℕ0
↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) ≠ 0 → 𝑚 ≤ 𝑁) | 
| 33 |  | fveq2 6906 | . . . . . . 7
⊢ (𝑘 = 𝑚 → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) = ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚)) | 
| 34 | 33 | neeq1d 3000 | . . . . . 6
⊢ (𝑘 = 𝑚 → (((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) ≠ 0 ↔ ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) ≠ 0)) | 
| 35 |  | breq1 5146 | . . . . . 6
⊢ (𝑘 = 𝑚 → (𝑘 ≤ 𝑁 ↔ 𝑚 ≤ 𝑁)) | 
| 36 | 34, 35 | imbi12d 344 | . . . . 5
⊢ (𝑘 = 𝑚 → ((((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁) ↔ (((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) ≠ 0 → 𝑚 ≤ 𝑁))) | 
| 37 | 27, 32, 36 | cbvralw 3306 | . . . 4
⊢
(∀𝑘 ∈
ℕ0 (((𝑘
∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁) ↔ ∀𝑚 ∈ ℕ0 (((𝑘 ∈ ℕ0
↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) ≠ 0 → 𝑚 ≤ 𝑁)) | 
| 38 | 26, 37 | sylib 218 | . . 3
⊢ (𝜑 → ∀𝑚 ∈ ℕ0 (((𝑘 ∈ ℕ0
↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) ≠ 0 → 𝑚 ≤ 𝑁)) | 
| 39 |  | plyco0 26231 | . . . 4
⊢ ((𝑁 ∈ ℕ0
∧ (𝑘 ∈
ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0)):ℕ0⟶ℂ)
→ (((𝑘 ∈
ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0)) “
(ℤ≥‘(𝑁 + 1))) = {0} ↔ ∀𝑚 ∈ ℕ0
(((𝑘 ∈
ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) ≠ 0 → 𝑚 ≤ 𝑁))) | 
| 40 | 2, 17, 39 | syl2anc 584 | . . 3
⊢ (𝜑 → (((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0)) “
(ℤ≥‘(𝑁 + 1))) = {0} ↔ ∀𝑚 ∈ ℕ0
(((𝑘 ∈
ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) ≠ 0 → 𝑚 ≤ 𝑁))) | 
| 41 | 38, 40 | mpbird 257 | . 2
⊢ (𝜑 → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0)) “
(ℤ≥‘(𝑁 + 1))) = {0}) | 
| 42 |  | dgrle.4 | . . 3
⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧↑𝑘)))) | 
| 43 |  | oveq2 7439 | . . . . . . 7
⊢ (𝑘 = 𝑚 → (𝑧↑𝑘) = (𝑧↑𝑚)) | 
| 44 | 33, 43 | oveq12d 7449 | . . . . . 6
⊢ (𝑘 = 𝑚 → (((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) · (𝑧↑𝑘)) = (((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) · (𝑧↑𝑚))) | 
| 45 |  | nfcv 2905 | . . . . . 6
⊢
Ⅎ𝑚(((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) · (𝑧↑𝑘)) | 
| 46 |  | nfcv 2905 | . . . . . . 7
⊢
Ⅎ𝑘
· | 
| 47 |  | nfcv 2905 | . . . . . . 7
⊢
Ⅎ𝑘(𝑧↑𝑚) | 
| 48 | 28, 46, 47 | nfov 7461 | . . . . . 6
⊢
Ⅎ𝑘(((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) · (𝑧↑𝑚)) | 
| 49 | 44, 45, 48 | cbvsum 15731 | . . . . 5
⊢
Σ𝑘 ∈
(0...𝑁)(((𝑘 ∈ ℕ0
↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) · (𝑧↑𝑘)) = Σ𝑚 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) · (𝑧↑𝑚)) | 
| 50 |  | elfznn0 13660 | . . . . . . . . . 10
⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0) | 
| 51 | 50 | adantl 481 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0) | 
| 52 |  | elfzle2 13568 | . . . . . . . . . . . 12
⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ≤ 𝑁) | 
| 53 | 52 | adantl 481 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ≤ 𝑁) | 
| 54 | 53 | iftrued 4533 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → if(𝑘 ≤ 𝑁, 𝐴, 0) = 𝐴) | 
| 55 | 13 | adantlr 715 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ ℂ) | 
| 56 | 54, 55 | eqeltrd 2841 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → if(𝑘 ≤ 𝑁, 𝐴, 0) ∈ ℂ) | 
| 57 | 51, 56, 20 | syl2anc 584 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) = if(𝑘 ≤ 𝑁, 𝐴, 0)) | 
| 58 | 57, 54 | eqtrd 2777 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) = 𝐴) | 
| 59 | 58 | oveq1d 7446 | . . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) · (𝑧↑𝑘)) = (𝐴 · (𝑧↑𝑘))) | 
| 60 | 59 | sumeq2dv 15738 | . . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) · (𝑧↑𝑘)) = Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧↑𝑘))) | 
| 61 | 49, 60 | eqtr3id 2791 | . . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑚 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) · (𝑧↑𝑚)) = Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧↑𝑘))) | 
| 62 | 61 | mpteq2dva 5242 | . . 3
⊢ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) · (𝑧↑𝑚))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧↑𝑘)))) | 
| 63 | 42, 62 | eqtr4d 2780 | . 2
⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) · (𝑧↑𝑚)))) | 
| 64 | 1, 2, 17, 41, 63 | coeeq 26266 | 1
⊢ (𝜑 → (coeff‘𝐹) = (𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))) |