MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coeeq2 Structured version   Visualization version   GIF version

Theorem coeeq2 25391
Description: Compute the coefficient function given a sum expression for the polynomial. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
dgrle.1 (𝜑𝐹 ∈ (Poly‘𝑆))
dgrle.2 (𝜑𝑁 ∈ ℕ0)
dgrle.3 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐴 ∈ ℂ)
dgrle.4 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘))))
Assertion
Ref Expression
coeeq2 (𝜑 → (coeff‘𝐹) = (𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0)))
Distinct variable groups:   𝑧,𝐴   𝑧,𝑘,𝑁   𝜑,𝑘,𝑧
Allowed substitution hints:   𝐴(𝑘)   𝑆(𝑧,𝑘)   𝐹(𝑧,𝑘)

Proof of Theorem coeeq2
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 dgrle.1 . 2 (𝜑𝐹 ∈ (Poly‘𝑆))
2 dgrle.2 . 2 (𝜑𝑁 ∈ ℕ0)
3 simpll 764 . . . . 5 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘𝑁) → 𝜑)
4 simpr 485 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘𝑁) → 𝑘𝑁)
5 simplr 766 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘𝑁) → 𝑘 ∈ ℕ0)
6 nn0uz 12608 . . . . . . . 8 0 = (ℤ‘0)
75, 6eleqtrdi 2849 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘𝑁) → 𝑘 ∈ (ℤ‘0))
82nn0zd 12412 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
98ad2antrr 723 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘𝑁) → 𝑁 ∈ ℤ)
10 elfz5 13236 . . . . . . 7 ((𝑘 ∈ (ℤ‘0) ∧ 𝑁 ∈ ℤ) → (𝑘 ∈ (0...𝑁) ↔ 𝑘𝑁))
117, 9, 10syl2anc 584 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘𝑁) → (𝑘 ∈ (0...𝑁) ↔ 𝑘𝑁))
124, 11mpbird 256 . . . . 5 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘𝑁) → 𝑘 ∈ (0...𝑁))
13 dgrle.3 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐴 ∈ ℂ)
143, 12, 13syl2anc 584 . . . 4 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘𝑁) → 𝐴 ∈ ℂ)
15 0cnd 10956 . . . 4 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘𝑁) → 0 ∈ ℂ)
1614, 15ifclda 4495 . . 3 ((𝜑𝑘 ∈ ℕ0) → if(𝑘𝑁, 𝐴, 0) ∈ ℂ)
1716fmpttd 6982 . 2 (𝜑 → (𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0)):ℕ0⟶ℂ)
18 simpr 485 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
19 eqid 2738 . . . . . . . . 9 (𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0)) = (𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))
2019fvmpt2 6879 . . . . . . . 8 ((𝑘 ∈ ℕ0 ∧ if(𝑘𝑁, 𝐴, 0) ∈ ℂ) → ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) = if(𝑘𝑁, 𝐴, 0))
2118, 16, 20syl2anc 584 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) = if(𝑘𝑁, 𝐴, 0))
2221neeq1d 3003 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) ≠ 0 ↔ if(𝑘𝑁, 𝐴, 0) ≠ 0))
23 iffalse 4469 . . . . . . 7 𝑘𝑁 → if(𝑘𝑁, 𝐴, 0) = 0)
2423necon1ai 2971 . . . . . 6 (if(𝑘𝑁, 𝐴, 0) ≠ 0 → 𝑘𝑁)
2522, 24syl6bi 252 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) ≠ 0 → 𝑘𝑁))
2625ralrimiva 3113 . . . 4 (𝜑 → ∀𝑘 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) ≠ 0 → 𝑘𝑁))
27 nfv 1917 . . . . 5 𝑚(((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) ≠ 0 → 𝑘𝑁)
28 nffvmpt1 6778 . . . . . . 7 𝑘((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚)
29 nfcv 2907 . . . . . . 7 𝑘0
3028, 29nfne 3045 . . . . . 6 𝑘((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) ≠ 0
31 nfv 1917 . . . . . 6 𝑘 𝑚𝑁
3230, 31nfim 1899 . . . . 5 𝑘(((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) ≠ 0 → 𝑚𝑁)
33 fveq2 6767 . . . . . . 7 (𝑘 = 𝑚 → ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) = ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚))
3433neeq1d 3003 . . . . . 6 (𝑘 = 𝑚 → (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) ≠ 0 ↔ ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) ≠ 0))
35 breq1 5077 . . . . . 6 (𝑘 = 𝑚 → (𝑘𝑁𝑚𝑁))
3634, 35imbi12d 345 . . . . 5 (𝑘 = 𝑚 → ((((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) ≠ 0 → 𝑘𝑁) ↔ (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) ≠ 0 → 𝑚𝑁)))
3727, 32, 36cbvralw 3371 . . . 4 (∀𝑘 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) ≠ 0 → 𝑘𝑁) ↔ ∀𝑚 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) ≠ 0 → 𝑚𝑁))
3826, 37sylib 217 . . 3 (𝜑 → ∀𝑚 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) ≠ 0 → 𝑚𝑁))
39 plyco0 25341 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0)):ℕ0⟶ℂ) → (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0)) “ (ℤ‘(𝑁 + 1))) = {0} ↔ ∀𝑚 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) ≠ 0 → 𝑚𝑁)))
402, 17, 39syl2anc 584 . . 3 (𝜑 → (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0)) “ (ℤ‘(𝑁 + 1))) = {0} ↔ ∀𝑚 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) ≠ 0 → 𝑚𝑁)))
4138, 40mpbird 256 . 2 (𝜑 → ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0)) “ (ℤ‘(𝑁 + 1))) = {0})
42 dgrle.4 . . 3 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘))))
43 nfcv 2907 . . . . . 6 𝑚(((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) · (𝑧𝑘))
44 nfcv 2907 . . . . . . 7 𝑘 ·
45 nfcv 2907 . . . . . . 7 𝑘(𝑧𝑚)
4628, 44, 45nfov 7298 . . . . . 6 𝑘(((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) · (𝑧𝑚))
47 oveq2 7276 . . . . . . 7 (𝑘 = 𝑚 → (𝑧𝑘) = (𝑧𝑚))
4833, 47oveq12d 7286 . . . . . 6 (𝑘 = 𝑚 → (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) · (𝑧𝑘)) = (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) · (𝑧𝑚)))
4943, 46, 48cbvsumi 15397 . . . . 5 Σ𝑘 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) · (𝑧𝑘)) = Σ𝑚 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) · (𝑧𝑚))
50 elfznn0 13337 . . . . . . . . . 10 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
5150adantl 482 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0)
52 elfzle2 13248 . . . . . . . . . . . 12 (𝑘 ∈ (0...𝑁) → 𝑘𝑁)
5352adantl 482 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘𝑁)
5453iftrued 4468 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → if(𝑘𝑁, 𝐴, 0) = 𝐴)
5513adantlr 712 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ ℂ)
5654, 55eqeltrd 2839 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → if(𝑘𝑁, 𝐴, 0) ∈ ℂ)
5751, 56, 20syl2anc 584 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) = if(𝑘𝑁, 𝐴, 0))
5857, 54eqtrd 2778 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) = 𝐴)
5958oveq1d 7283 . . . . . 6 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) · (𝑧𝑘)) = (𝐴 · (𝑧𝑘)))
6059sumeq2dv 15403 . . . . 5 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘)))
6149, 60eqtr3id 2792 . . . 4 ((𝜑𝑧 ∈ ℂ) → Σ𝑚 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) · (𝑧𝑚)) = Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘)))
6261mpteq2dva 5174 . . 3 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) · (𝑧𝑚))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘))))
6342, 62eqtr4d 2781 . 2 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) · (𝑧𝑚))))
641, 2, 17, 41, 63coeeq 25376 1 (𝜑 → (coeff‘𝐹) = (𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  ifcif 4460  {csn 4562   class class class wbr 5074  cmpt 5157  cima 5588  wf 6423  cfv 6427  (class class class)co 7268  cc 10857  0cc0 10859  1c1 10860   + caddc 10862   · cmul 10864  cle 10998  0cn0 12221  cz 12307  cuz 12570  ...cfz 13227  cexp 13770  Σcsu 15385  Polycply 25333  coeffccoe 25335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5222  ax-nul 5229  ax-pow 5287  ax-pr 5351  ax-un 7579  ax-inf2 9387  ax-cnex 10915  ax-resscn 10916  ax-1cn 10917  ax-icn 10918  ax-addcl 10919  ax-addrcl 10920  ax-mulcl 10921  ax-mulrcl 10922  ax-mulcom 10923  ax-addass 10924  ax-mulass 10925  ax-distr 10926  ax-i2m1 10927  ax-1ne0 10928  ax-1rid 10929  ax-rnegex 10930  ax-rrecex 10931  ax-cnre 10932  ax-pre-lttri 10933  ax-pre-lttrn 10934  ax-pre-ltadd 10935  ax-pre-mulgt0 10936  ax-pre-sup 10937
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3432  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5485  df-eprel 5491  df-po 5499  df-so 5500  df-fr 5540  df-se 5541  df-we 5542  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-pred 6196  df-ord 6263  df-on 6264  df-lim 6265  df-suc 6266  df-iota 6385  df-fun 6429  df-fn 6430  df-f 6431  df-f1 6432  df-fo 6433  df-f1o 6434  df-fv 6435  df-isom 6436  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-of 7524  df-om 7704  df-1st 7821  df-2nd 7822  df-frecs 8085  df-wrecs 8116  df-recs 8190  df-rdg 8229  df-1o 8285  df-er 8486  df-map 8605  df-pm 8606  df-en 8722  df-dom 8723  df-sdom 8724  df-fin 8725  df-sup 9189  df-inf 9190  df-oi 9257  df-card 9685  df-pnf 10999  df-mnf 11000  df-xr 11001  df-ltxr 11002  df-le 11003  df-sub 11195  df-neg 11196  df-div 11621  df-nn 11962  df-2 12024  df-3 12025  df-n0 12222  df-z 12308  df-uz 12571  df-rp 12719  df-fz 13228  df-fzo 13371  df-fl 13500  df-seq 13710  df-exp 13771  df-hash 14033  df-cj 14798  df-re 14799  df-im 14800  df-sqrt 14934  df-abs 14935  df-clim 15185  df-rlim 15186  df-sum 15386  df-0p 24822  df-ply 25337  df-coe 25339
This theorem is referenced by:  dgrle  25392  aareccl  25474  elaa2lem  43733
  Copyright terms: Public domain W3C validator