| Step | Hyp | Ref
| Expression |
| 1 | | dgrle.1 |
. 2
⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) |
| 2 | | dgrle.2 |
. 2
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 3 | | simpll 766 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑘 ≤ 𝑁) → 𝜑) |
| 4 | | simpr 484 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑘 ≤ 𝑁) → 𝑘 ≤ 𝑁) |
| 5 | | simplr 768 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑘 ≤ 𝑁) → 𝑘 ∈ ℕ0) |
| 6 | | nn0uz 12842 |
. . . . . . . 8
⊢
ℕ0 = (ℤ≥‘0) |
| 7 | 5, 6 | eleqtrdi 2839 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑘 ≤ 𝑁) → 𝑘 ∈
(ℤ≥‘0)) |
| 8 | 2 | nn0zd 12562 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 9 | 8 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑘 ≤ 𝑁) → 𝑁 ∈ ℤ) |
| 10 | | elfz5 13484 |
. . . . . . 7
⊢ ((𝑘 ∈
(ℤ≥‘0) ∧ 𝑁 ∈ ℤ) → (𝑘 ∈ (0...𝑁) ↔ 𝑘 ≤ 𝑁)) |
| 11 | 7, 9, 10 | syl2anc 584 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑘 ≤ 𝑁) → (𝑘 ∈ (0...𝑁) ↔ 𝑘 ≤ 𝑁)) |
| 12 | 4, 11 | mpbird 257 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑘 ≤ 𝑁) → 𝑘 ∈ (0...𝑁)) |
| 13 | | dgrle.3 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ ℂ) |
| 14 | 3, 12, 13 | syl2anc 584 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑘 ≤ 𝑁) → 𝐴 ∈ ℂ) |
| 15 | | 0cnd 11174 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ¬
𝑘 ≤ 𝑁) → 0 ∈ ℂ) |
| 16 | 14, 15 | ifclda 4527 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → if(𝑘 ≤ 𝑁, 𝐴, 0) ∈ ℂ) |
| 17 | 16 | fmpttd 7090 |
. 2
⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴,
0)):ℕ0⟶ℂ) |
| 18 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈
ℕ0) |
| 19 | | eqid 2730 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ0
↦ if(𝑘 ≤ 𝑁, 𝐴, 0)) = (𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0)) |
| 20 | 19 | fvmpt2 6982 |
. . . . . . . 8
⊢ ((𝑘 ∈ ℕ0
∧ if(𝑘 ≤ 𝑁, 𝐴, 0) ∈ ℂ) → ((𝑘 ∈ ℕ0
↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) = if(𝑘 ≤ 𝑁, 𝐴, 0)) |
| 21 | 18, 16, 20 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑘 ∈ ℕ0
↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) = if(𝑘 ≤ 𝑁, 𝐴, 0)) |
| 22 | 21 | neeq1d 2985 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (((𝑘 ∈ ℕ0
↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) ≠ 0 ↔ if(𝑘 ≤ 𝑁, 𝐴, 0) ≠ 0)) |
| 23 | | iffalse 4500 |
. . . . . . 7
⊢ (¬
𝑘 ≤ 𝑁 → if(𝑘 ≤ 𝑁, 𝐴, 0) = 0) |
| 24 | 23 | necon1ai 2953 |
. . . . . 6
⊢ (if(𝑘 ≤ 𝑁, 𝐴, 0) ≠ 0 → 𝑘 ≤ 𝑁) |
| 25 | 22, 24 | biimtrdi 253 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (((𝑘 ∈ ℕ0
↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁)) |
| 26 | 25 | ralrimiva 3126 |
. . . 4
⊢ (𝜑 → ∀𝑘 ∈ ℕ0 (((𝑘 ∈ ℕ0
↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁)) |
| 27 | | nfv 1914 |
. . . . 5
⊢
Ⅎ𝑚(((𝑘 ∈ ℕ0
↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁) |
| 28 | | nffvmpt1 6872 |
. . . . . . 7
⊢
Ⅎ𝑘((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) |
| 29 | | nfcv 2892 |
. . . . . . 7
⊢
Ⅎ𝑘0 |
| 30 | 28, 29 | nfne 3027 |
. . . . . 6
⊢
Ⅎ𝑘((𝑘 ∈ ℕ0
↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) ≠ 0 |
| 31 | | nfv 1914 |
. . . . . 6
⊢
Ⅎ𝑘 𝑚 ≤ 𝑁 |
| 32 | 30, 31 | nfim 1896 |
. . . . 5
⊢
Ⅎ𝑘(((𝑘 ∈ ℕ0
↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) ≠ 0 → 𝑚 ≤ 𝑁) |
| 33 | | fveq2 6861 |
. . . . . . 7
⊢ (𝑘 = 𝑚 → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) = ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚)) |
| 34 | 33 | neeq1d 2985 |
. . . . . 6
⊢ (𝑘 = 𝑚 → (((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) ≠ 0 ↔ ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) ≠ 0)) |
| 35 | | breq1 5113 |
. . . . . 6
⊢ (𝑘 = 𝑚 → (𝑘 ≤ 𝑁 ↔ 𝑚 ≤ 𝑁)) |
| 36 | 34, 35 | imbi12d 344 |
. . . . 5
⊢ (𝑘 = 𝑚 → ((((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁) ↔ (((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) ≠ 0 → 𝑚 ≤ 𝑁))) |
| 37 | 27, 32, 36 | cbvralw 3282 |
. . . 4
⊢
(∀𝑘 ∈
ℕ0 (((𝑘
∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁) ↔ ∀𝑚 ∈ ℕ0 (((𝑘 ∈ ℕ0
↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) ≠ 0 → 𝑚 ≤ 𝑁)) |
| 38 | 26, 37 | sylib 218 |
. . 3
⊢ (𝜑 → ∀𝑚 ∈ ℕ0 (((𝑘 ∈ ℕ0
↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) ≠ 0 → 𝑚 ≤ 𝑁)) |
| 39 | | plyco0 26104 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ (𝑘 ∈
ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0)):ℕ0⟶ℂ)
→ (((𝑘 ∈
ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0)) “
(ℤ≥‘(𝑁 + 1))) = {0} ↔ ∀𝑚 ∈ ℕ0
(((𝑘 ∈
ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) ≠ 0 → 𝑚 ≤ 𝑁))) |
| 40 | 2, 17, 39 | syl2anc 584 |
. . 3
⊢ (𝜑 → (((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0)) “
(ℤ≥‘(𝑁 + 1))) = {0} ↔ ∀𝑚 ∈ ℕ0
(((𝑘 ∈
ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) ≠ 0 → 𝑚 ≤ 𝑁))) |
| 41 | 38, 40 | mpbird 257 |
. 2
⊢ (𝜑 → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0)) “
(ℤ≥‘(𝑁 + 1))) = {0}) |
| 42 | | dgrle.4 |
. . 3
⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧↑𝑘)))) |
| 43 | | oveq2 7398 |
. . . . . . 7
⊢ (𝑘 = 𝑚 → (𝑧↑𝑘) = (𝑧↑𝑚)) |
| 44 | 33, 43 | oveq12d 7408 |
. . . . . 6
⊢ (𝑘 = 𝑚 → (((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) · (𝑧↑𝑘)) = (((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) · (𝑧↑𝑚))) |
| 45 | | nfcv 2892 |
. . . . . 6
⊢
Ⅎ𝑚(((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) · (𝑧↑𝑘)) |
| 46 | | nfcv 2892 |
. . . . . . 7
⊢
Ⅎ𝑘
· |
| 47 | | nfcv 2892 |
. . . . . . 7
⊢
Ⅎ𝑘(𝑧↑𝑚) |
| 48 | 28, 46, 47 | nfov 7420 |
. . . . . 6
⊢
Ⅎ𝑘(((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) · (𝑧↑𝑚)) |
| 49 | 44, 45, 48 | cbvsum 15668 |
. . . . 5
⊢
Σ𝑘 ∈
(0...𝑁)(((𝑘 ∈ ℕ0
↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) · (𝑧↑𝑘)) = Σ𝑚 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) · (𝑧↑𝑚)) |
| 50 | | elfznn0 13588 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0) |
| 51 | 50 | adantl 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0) |
| 52 | | elfzle2 13496 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ≤ 𝑁) |
| 53 | 52 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ≤ 𝑁) |
| 54 | 53 | iftrued 4499 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → if(𝑘 ≤ 𝑁, 𝐴, 0) = 𝐴) |
| 55 | 13 | adantlr 715 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ ℂ) |
| 56 | 54, 55 | eqeltrd 2829 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → if(𝑘 ≤ 𝑁, 𝐴, 0) ∈ ℂ) |
| 57 | 51, 56, 20 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) = if(𝑘 ≤ 𝑁, 𝐴, 0)) |
| 58 | 57, 54 | eqtrd 2765 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) = 𝐴) |
| 59 | 58 | oveq1d 7405 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) · (𝑧↑𝑘)) = (𝐴 · (𝑧↑𝑘))) |
| 60 | 59 | sumeq2dv 15675 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) · (𝑧↑𝑘)) = Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧↑𝑘))) |
| 61 | 49, 60 | eqtr3id 2779 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑚 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) · (𝑧↑𝑚)) = Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧↑𝑘))) |
| 62 | 61 | mpteq2dva 5203 |
. . 3
⊢ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) · (𝑧↑𝑚))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧↑𝑘)))) |
| 63 | 42, 62 | eqtr4d 2768 |
. 2
⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) · (𝑧↑𝑚)))) |
| 64 | 1, 2, 17, 41, 63 | coeeq 26139 |
1
⊢ (𝜑 → (coeff‘𝐹) = (𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))) |