MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coeeq2 Structured version   Visualization version   GIF version

Theorem coeeq2 26281
Description: Compute the coefficient function given a sum expression for the polynomial. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
dgrle.1 (𝜑𝐹 ∈ (Poly‘𝑆))
dgrle.2 (𝜑𝑁 ∈ ℕ0)
dgrle.3 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐴 ∈ ℂ)
dgrle.4 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘))))
Assertion
Ref Expression
coeeq2 (𝜑 → (coeff‘𝐹) = (𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0)))
Distinct variable groups:   𝑧,𝐴   𝑧,𝑘,𝑁   𝜑,𝑘,𝑧
Allowed substitution hints:   𝐴(𝑘)   𝑆(𝑧,𝑘)   𝐹(𝑧,𝑘)

Proof of Theorem coeeq2
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 dgrle.1 . 2 (𝜑𝐹 ∈ (Poly‘𝑆))
2 dgrle.2 . 2 (𝜑𝑁 ∈ ℕ0)
3 simpll 767 . . . . 5 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘𝑁) → 𝜑)
4 simpr 484 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘𝑁) → 𝑘𝑁)
5 simplr 769 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘𝑁) → 𝑘 ∈ ℕ0)
6 nn0uz 12920 . . . . . . . 8 0 = (ℤ‘0)
75, 6eleqtrdi 2851 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘𝑁) → 𝑘 ∈ (ℤ‘0))
82nn0zd 12639 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
98ad2antrr 726 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘𝑁) → 𝑁 ∈ ℤ)
10 elfz5 13556 . . . . . . 7 ((𝑘 ∈ (ℤ‘0) ∧ 𝑁 ∈ ℤ) → (𝑘 ∈ (0...𝑁) ↔ 𝑘𝑁))
117, 9, 10syl2anc 584 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘𝑁) → (𝑘 ∈ (0...𝑁) ↔ 𝑘𝑁))
124, 11mpbird 257 . . . . 5 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘𝑁) → 𝑘 ∈ (0...𝑁))
13 dgrle.3 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐴 ∈ ℂ)
143, 12, 13syl2anc 584 . . . 4 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘𝑁) → 𝐴 ∈ ℂ)
15 0cnd 11254 . . . 4 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘𝑁) → 0 ∈ ℂ)
1614, 15ifclda 4561 . . 3 ((𝜑𝑘 ∈ ℕ0) → if(𝑘𝑁, 𝐴, 0) ∈ ℂ)
1716fmpttd 7135 . 2 (𝜑 → (𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0)):ℕ0⟶ℂ)
18 simpr 484 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
19 eqid 2737 . . . . . . . . 9 (𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0)) = (𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))
2019fvmpt2 7027 . . . . . . . 8 ((𝑘 ∈ ℕ0 ∧ if(𝑘𝑁, 𝐴, 0) ∈ ℂ) → ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) = if(𝑘𝑁, 𝐴, 0))
2118, 16, 20syl2anc 584 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) = if(𝑘𝑁, 𝐴, 0))
2221neeq1d 3000 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) ≠ 0 ↔ if(𝑘𝑁, 𝐴, 0) ≠ 0))
23 iffalse 4534 . . . . . . 7 𝑘𝑁 → if(𝑘𝑁, 𝐴, 0) = 0)
2423necon1ai 2968 . . . . . 6 (if(𝑘𝑁, 𝐴, 0) ≠ 0 → 𝑘𝑁)
2522, 24biimtrdi 253 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) ≠ 0 → 𝑘𝑁))
2625ralrimiva 3146 . . . 4 (𝜑 → ∀𝑘 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) ≠ 0 → 𝑘𝑁))
27 nfv 1914 . . . . 5 𝑚(((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) ≠ 0 → 𝑘𝑁)
28 nffvmpt1 6917 . . . . . . 7 𝑘((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚)
29 nfcv 2905 . . . . . . 7 𝑘0
3028, 29nfne 3043 . . . . . 6 𝑘((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) ≠ 0
31 nfv 1914 . . . . . 6 𝑘 𝑚𝑁
3230, 31nfim 1896 . . . . 5 𝑘(((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) ≠ 0 → 𝑚𝑁)
33 fveq2 6906 . . . . . . 7 (𝑘 = 𝑚 → ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) = ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚))
3433neeq1d 3000 . . . . . 6 (𝑘 = 𝑚 → (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) ≠ 0 ↔ ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) ≠ 0))
35 breq1 5146 . . . . . 6 (𝑘 = 𝑚 → (𝑘𝑁𝑚𝑁))
3634, 35imbi12d 344 . . . . 5 (𝑘 = 𝑚 → ((((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) ≠ 0 → 𝑘𝑁) ↔ (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) ≠ 0 → 𝑚𝑁)))
3727, 32, 36cbvralw 3306 . . . 4 (∀𝑘 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) ≠ 0 → 𝑘𝑁) ↔ ∀𝑚 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) ≠ 0 → 𝑚𝑁))
3826, 37sylib 218 . . 3 (𝜑 → ∀𝑚 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) ≠ 0 → 𝑚𝑁))
39 plyco0 26231 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0)):ℕ0⟶ℂ) → (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0)) “ (ℤ‘(𝑁 + 1))) = {0} ↔ ∀𝑚 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) ≠ 0 → 𝑚𝑁)))
402, 17, 39syl2anc 584 . . 3 (𝜑 → (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0)) “ (ℤ‘(𝑁 + 1))) = {0} ↔ ∀𝑚 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) ≠ 0 → 𝑚𝑁)))
4138, 40mpbird 257 . 2 (𝜑 → ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0)) “ (ℤ‘(𝑁 + 1))) = {0})
42 dgrle.4 . . 3 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘))))
43 oveq2 7439 . . . . . . 7 (𝑘 = 𝑚 → (𝑧𝑘) = (𝑧𝑚))
4433, 43oveq12d 7449 . . . . . 6 (𝑘 = 𝑚 → (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) · (𝑧𝑘)) = (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) · (𝑧𝑚)))
45 nfcv 2905 . . . . . 6 𝑚(((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) · (𝑧𝑘))
46 nfcv 2905 . . . . . . 7 𝑘 ·
47 nfcv 2905 . . . . . . 7 𝑘(𝑧𝑚)
4828, 46, 47nfov 7461 . . . . . 6 𝑘(((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) · (𝑧𝑚))
4944, 45, 48cbvsum 15731 . . . . 5 Σ𝑘 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) · (𝑧𝑘)) = Σ𝑚 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) · (𝑧𝑚))
50 elfznn0 13660 . . . . . . . . . 10 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
5150adantl 481 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0)
52 elfzle2 13568 . . . . . . . . . . . 12 (𝑘 ∈ (0...𝑁) → 𝑘𝑁)
5352adantl 481 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘𝑁)
5453iftrued 4533 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → if(𝑘𝑁, 𝐴, 0) = 𝐴)
5513adantlr 715 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ ℂ)
5654, 55eqeltrd 2841 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → if(𝑘𝑁, 𝐴, 0) ∈ ℂ)
5751, 56, 20syl2anc 584 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) = if(𝑘𝑁, 𝐴, 0))
5857, 54eqtrd 2777 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) = 𝐴)
5958oveq1d 7446 . . . . . 6 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) · (𝑧𝑘)) = (𝐴 · (𝑧𝑘)))
6059sumeq2dv 15738 . . . . 5 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘)))
6149, 60eqtr3id 2791 . . . 4 ((𝜑𝑧 ∈ ℂ) → Σ𝑚 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) · (𝑧𝑚)) = Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘)))
6261mpteq2dva 5242 . . 3 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) · (𝑧𝑚))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘))))
6342, 62eqtr4d 2780 . 2 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) · (𝑧𝑚))))
641, 2, 17, 41, 63coeeq 26266 1 (𝜑 → (coeff‘𝐹) = (𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  wral 3061  ifcif 4525  {csn 4626   class class class wbr 5143  cmpt 5225  cima 5688  wf 6557  cfv 6561  (class class class)co 7431  cc 11153  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  cle 11296  0cn0 12526  cz 12613  cuz 12878  ...cfz 13547  cexp 14102  Σcsu 15722  Polycply 26223  coeffccoe 26225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-rlim 15525  df-sum 15723  df-0p 25705  df-ply 26227  df-coe 26229
This theorem is referenced by:  dgrle  26282  aareccl  26368  elaa2lem  46248
  Copyright terms: Public domain W3C validator