MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmfval0 Structured version   Visualization version   GIF version

Theorem nmfval0 24543
Description: The value of the norm function on a structure containing a zero as the distance restricted to the elements of the base set to zero. Examples of structures containing a "zero" are groups (see nmfval2 24544 proved from this theorem and grpidcl 18930) or more generally monoids (see mndidcl 18712), or pointed sets). (Contributed by Mario Carneiro, 2-Oct-2015.) Extract this result from the proof of nmfval2 24544. (Revised by BJ, 27-Aug-2024.)
Hypotheses
Ref Expression
nmfval0.n 𝑁 = (norm‘𝑊)
nmfval0.x 𝑋 = (Base‘𝑊)
nmfval0.z 0 = (0g𝑊)
nmfval0.d 𝐷 = (dist‘𝑊)
nmfval0.e 𝐸 = (𝐷 ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
nmfval0 ( 0𝑋𝑁 = (𝑥𝑋 ↦ (𝑥𝐸 0 )))
Distinct variable groups:   𝑥,𝐷   𝑥,𝑊   𝑥,𝑋   𝑥, 0
Allowed substitution hints:   𝐸(𝑥)   𝑁(𝑥)

Proof of Theorem nmfval0
StepHypRef Expression
1 nmfval0.n . . 3 𝑁 = (norm‘𝑊)
2 nmfval0.x . . 3 𝑋 = (Base‘𝑊)
3 nmfval0.z . . 3 0 = (0g𝑊)
4 nmfval0.d . . 3 𝐷 = (dist‘𝑊)
51, 2, 3, 4nmfval 24541 . 2 𝑁 = (𝑥𝑋 ↦ (𝑥𝐷 0 ))
6 nmfval0.e . . . . 5 𝐸 = (𝐷 ↾ (𝑋 × 𝑋))
76oveqi 7432 . . . 4 (𝑥𝐸 0 ) = (𝑥(𝐷 ↾ (𝑋 × 𝑋)) 0 )
8 ovres 7587 . . . . 5 ((𝑥𝑋0𝑋) → (𝑥(𝐷 ↾ (𝑋 × 𝑋)) 0 ) = (𝑥𝐷 0 ))
98ancoms 457 . . . 4 (( 0𝑋𝑥𝑋) → (𝑥(𝐷 ↾ (𝑋 × 𝑋)) 0 ) = (𝑥𝐷 0 ))
107, 9eqtr2id 2778 . . 3 (( 0𝑋𝑥𝑋) → (𝑥𝐷 0 ) = (𝑥𝐸 0 ))
1110mpteq2dva 5249 . 2 ( 0𝑋 → (𝑥𝑋 ↦ (𝑥𝐷 0 )) = (𝑥𝑋 ↦ (𝑥𝐸 0 )))
125, 11eqtrid 2777 1 ( 0𝑋𝑁 = (𝑥𝑋 ↦ (𝑥𝐸 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  cmpt 5232   × cxp 5676  cres 5680  cfv 6549  (class class class)co 7419  Basecbs 17183  distcds 17245  0gc0g 17424  normcnm 24529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-fv 6557  df-ov 7422  df-nm 24535
This theorem is referenced by:  nmfval2  24544
  Copyright terms: Public domain W3C validator