|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > nmfval0 | Structured version Visualization version GIF version | ||
| Description: The value of the norm function on a structure containing a zero as the distance restricted to the elements of the base set to zero. Examples of structures containing a "zero" are groups (see nmfval2 24604 proved from this theorem and grpidcl 18983) or more generally monoids (see mndidcl 18762), or pointed sets). (Contributed by Mario Carneiro, 2-Oct-2015.) Extract this result from the proof of nmfval2 24604. (Revised by BJ, 27-Aug-2024.) | 
| Ref | Expression | 
|---|---|
| nmfval0.n | ⊢ 𝑁 = (norm‘𝑊) | 
| nmfval0.x | ⊢ 𝑋 = (Base‘𝑊) | 
| nmfval0.z | ⊢ 0 = (0g‘𝑊) | 
| nmfval0.d | ⊢ 𝐷 = (dist‘𝑊) | 
| nmfval0.e | ⊢ 𝐸 = (𝐷 ↾ (𝑋 × 𝑋)) | 
| Ref | Expression | 
|---|---|
| nmfval0 | ⊢ ( 0 ∈ 𝑋 → 𝑁 = (𝑥 ∈ 𝑋 ↦ (𝑥𝐸 0 ))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nmfval0.n | . . 3 ⊢ 𝑁 = (norm‘𝑊) | |
| 2 | nmfval0.x | . . 3 ⊢ 𝑋 = (Base‘𝑊) | |
| 3 | nmfval0.z | . . 3 ⊢ 0 = (0g‘𝑊) | |
| 4 | nmfval0.d | . . 3 ⊢ 𝐷 = (dist‘𝑊) | |
| 5 | 1, 2, 3, 4 | nmfval 24601 | . 2 ⊢ 𝑁 = (𝑥 ∈ 𝑋 ↦ (𝑥𝐷 0 )) | 
| 6 | nmfval0.e | . . . . 5 ⊢ 𝐸 = (𝐷 ↾ (𝑋 × 𝑋)) | |
| 7 | 6 | oveqi 7444 | . . . 4 ⊢ (𝑥𝐸 0 ) = (𝑥(𝐷 ↾ (𝑋 × 𝑋)) 0 ) | 
| 8 | ovres 7599 | . . . . 5 ⊢ ((𝑥 ∈ 𝑋 ∧ 0 ∈ 𝑋) → (𝑥(𝐷 ↾ (𝑋 × 𝑋)) 0 ) = (𝑥𝐷 0 )) | |
| 9 | 8 | ancoms 458 | . . . 4 ⊢ (( 0 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝑥(𝐷 ↾ (𝑋 × 𝑋)) 0 ) = (𝑥𝐷 0 )) | 
| 10 | 7, 9 | eqtr2id 2790 | . . 3 ⊢ (( 0 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝑥𝐷 0 ) = (𝑥𝐸 0 )) | 
| 11 | 10 | mpteq2dva 5242 | . 2 ⊢ ( 0 ∈ 𝑋 → (𝑥 ∈ 𝑋 ↦ (𝑥𝐷 0 )) = (𝑥 ∈ 𝑋 ↦ (𝑥𝐸 0 ))) | 
| 12 | 5, 11 | eqtrid 2789 | 1 ⊢ ( 0 ∈ 𝑋 → 𝑁 = (𝑥 ∈ 𝑋 ↦ (𝑥𝐸 0 ))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ↦ cmpt 5225 × cxp 5683 ↾ cres 5687 ‘cfv 6561 (class class class)co 7431 Basecbs 17247 distcds 17306 0gc0g 17484 normcnm 24589 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-fv 6569 df-ov 7434 df-nm 24595 | 
| This theorem is referenced by: nmfval2 24604 | 
| Copyright terms: Public domain | W3C validator |