| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nmfval0 | Structured version Visualization version GIF version | ||
| Description: The value of the norm function on a structure containing a zero as the distance restricted to the elements of the base set to zero. Examples of structures containing a "zero" are groups (see nmfval2 24501 proved from this theorem and grpidcl 18873) or more generally monoids (see mndidcl 18652), or pointed sets). (Contributed by Mario Carneiro, 2-Oct-2015.) Extract this result from the proof of nmfval2 24501. (Revised by BJ, 27-Aug-2024.) |
| Ref | Expression |
|---|---|
| nmfval0.n | ⊢ 𝑁 = (norm‘𝑊) |
| nmfval0.x | ⊢ 𝑋 = (Base‘𝑊) |
| nmfval0.z | ⊢ 0 = (0g‘𝑊) |
| nmfval0.d | ⊢ 𝐷 = (dist‘𝑊) |
| nmfval0.e | ⊢ 𝐸 = (𝐷 ↾ (𝑋 × 𝑋)) |
| Ref | Expression |
|---|---|
| nmfval0 | ⊢ ( 0 ∈ 𝑋 → 𝑁 = (𝑥 ∈ 𝑋 ↦ (𝑥𝐸 0 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmfval0.n | . . 3 ⊢ 𝑁 = (norm‘𝑊) | |
| 2 | nmfval0.x | . . 3 ⊢ 𝑋 = (Base‘𝑊) | |
| 3 | nmfval0.z | . . 3 ⊢ 0 = (0g‘𝑊) | |
| 4 | nmfval0.d | . . 3 ⊢ 𝐷 = (dist‘𝑊) | |
| 5 | 1, 2, 3, 4 | nmfval 24498 | . 2 ⊢ 𝑁 = (𝑥 ∈ 𝑋 ↦ (𝑥𝐷 0 )) |
| 6 | nmfval0.e | . . . . 5 ⊢ 𝐸 = (𝐷 ↾ (𝑋 × 𝑋)) | |
| 7 | 6 | oveqi 7354 | . . . 4 ⊢ (𝑥𝐸 0 ) = (𝑥(𝐷 ↾ (𝑋 × 𝑋)) 0 ) |
| 8 | ovres 7507 | . . . . 5 ⊢ ((𝑥 ∈ 𝑋 ∧ 0 ∈ 𝑋) → (𝑥(𝐷 ↾ (𝑋 × 𝑋)) 0 ) = (𝑥𝐷 0 )) | |
| 9 | 8 | ancoms 458 | . . . 4 ⊢ (( 0 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝑥(𝐷 ↾ (𝑋 × 𝑋)) 0 ) = (𝑥𝐷 0 )) |
| 10 | 7, 9 | eqtr2id 2779 | . . 3 ⊢ (( 0 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝑥𝐷 0 ) = (𝑥𝐸 0 )) |
| 11 | 10 | mpteq2dva 5179 | . 2 ⊢ ( 0 ∈ 𝑋 → (𝑥 ∈ 𝑋 ↦ (𝑥𝐷 0 )) = (𝑥 ∈ 𝑋 ↦ (𝑥𝐸 0 ))) |
| 12 | 5, 11 | eqtrid 2778 | 1 ⊢ ( 0 ∈ 𝑋 → 𝑁 = (𝑥 ∈ 𝑋 ↦ (𝑥𝐸 0 ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ↦ cmpt 5167 × cxp 5609 ↾ cres 5613 ‘cfv 6476 (class class class)co 7341 Basecbs 17115 distcds 17165 0gc0g 17338 normcnm 24486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-fv 6484 df-ov 7344 df-nm 24492 |
| This theorem is referenced by: nmfval2 24501 |
| Copyright terms: Public domain | W3C validator |