MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmfval0 Structured version   Visualization version   GIF version

Theorem nmfval0 23442
Description: The value of the norm function on a structure containing a zero as the distance restricted to the elements of the base set to zero. Examples of structures containing a "zero" are groups (see nmfval2 23443 proved from this theorem and grpidcl 18349) or more generally monoids (see mndidcl 18142), or pointed sets). (Contributed by Mario Carneiro, 2-Oct-2015.) Extract this result from the proof of nmfval2 23443. (Revised by BJ, 27-Aug-2024.)
Hypotheses
Ref Expression
nmfval0.n 𝑁 = (norm‘𝑊)
nmfval0.x 𝑋 = (Base‘𝑊)
nmfval0.z 0 = (0g𝑊)
nmfval0.d 𝐷 = (dist‘𝑊)
nmfval0.e 𝐸 = (𝐷 ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
nmfval0 ( 0𝑋𝑁 = (𝑥𝑋 ↦ (𝑥𝐸 0 )))
Distinct variable groups:   𝑥,𝐷   𝑥,𝑊   𝑥,𝑋   𝑥, 0
Allowed substitution hints:   𝐸(𝑥)   𝑁(𝑥)

Proof of Theorem nmfval0
StepHypRef Expression
1 nmfval0.n . . 3 𝑁 = (norm‘𝑊)
2 nmfval0.x . . 3 𝑋 = (Base‘𝑊)
3 nmfval0.z . . 3 0 = (0g𝑊)
4 nmfval0.d . . 3 𝐷 = (dist‘𝑊)
51, 2, 3, 4nmfval 23440 . 2 𝑁 = (𝑥𝑋 ↦ (𝑥𝐷 0 ))
6 nmfval0.e . . . . 5 𝐸 = (𝐷 ↾ (𝑋 × 𝑋))
76oveqi 7204 . . . 4 (𝑥𝐸 0 ) = (𝑥(𝐷 ↾ (𝑋 × 𝑋)) 0 )
8 ovres 7352 . . . . 5 ((𝑥𝑋0𝑋) → (𝑥(𝐷 ↾ (𝑋 × 𝑋)) 0 ) = (𝑥𝐷 0 ))
98ancoms 462 . . . 4 (( 0𝑋𝑥𝑋) → (𝑥(𝐷 ↾ (𝑋 × 𝑋)) 0 ) = (𝑥𝐷 0 ))
107, 9eqtr2id 2784 . . 3 (( 0𝑋𝑥𝑋) → (𝑥𝐷 0 ) = (𝑥𝐸 0 ))
1110mpteq2dva 5135 . 2 ( 0𝑋 → (𝑥𝑋 ↦ (𝑥𝐷 0 )) = (𝑥𝑋 ↦ (𝑥𝐸 0 )))
125, 11syl5eq 2783 1 ( 0𝑋𝑁 = (𝑥𝑋 ↦ (𝑥𝐸 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  cmpt 5120   × cxp 5534  cres 5538  cfv 6358  (class class class)co 7191  Basecbs 16666  distcds 16758  0gc0g 16898  normcnm 23428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-sbc 3684  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-fv 6366  df-ov 7194  df-nm 23434
This theorem is referenced by:  nmfval2  23443
  Copyright terms: Public domain W3C validator