Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nmfval0 | Structured version Visualization version GIF version |
Description: The value of the norm function on a structure containing a zero as the distance restricted to the elements of the base set to zero. Examples of structures containing a "zero" are groups (see nmfval2 23653 proved from this theorem and grpidcl 18522) or more generally monoids (see mndidcl 18315), or pointed sets). (Contributed by Mario Carneiro, 2-Oct-2015.) Extract this result from the proof of nmfval2 23653. (Revised by BJ, 27-Aug-2024.) |
Ref | Expression |
---|---|
nmfval0.n | ⊢ 𝑁 = (norm‘𝑊) |
nmfval0.x | ⊢ 𝑋 = (Base‘𝑊) |
nmfval0.z | ⊢ 0 = (0g‘𝑊) |
nmfval0.d | ⊢ 𝐷 = (dist‘𝑊) |
nmfval0.e | ⊢ 𝐸 = (𝐷 ↾ (𝑋 × 𝑋)) |
Ref | Expression |
---|---|
nmfval0 | ⊢ ( 0 ∈ 𝑋 → 𝑁 = (𝑥 ∈ 𝑋 ↦ (𝑥𝐸 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmfval0.n | . . 3 ⊢ 𝑁 = (norm‘𝑊) | |
2 | nmfval0.x | . . 3 ⊢ 𝑋 = (Base‘𝑊) | |
3 | nmfval0.z | . . 3 ⊢ 0 = (0g‘𝑊) | |
4 | nmfval0.d | . . 3 ⊢ 𝐷 = (dist‘𝑊) | |
5 | 1, 2, 3, 4 | nmfval 23650 | . 2 ⊢ 𝑁 = (𝑥 ∈ 𝑋 ↦ (𝑥𝐷 0 )) |
6 | nmfval0.e | . . . . 5 ⊢ 𝐸 = (𝐷 ↾ (𝑋 × 𝑋)) | |
7 | 6 | oveqi 7268 | . . . 4 ⊢ (𝑥𝐸 0 ) = (𝑥(𝐷 ↾ (𝑋 × 𝑋)) 0 ) |
8 | ovres 7416 | . . . . 5 ⊢ ((𝑥 ∈ 𝑋 ∧ 0 ∈ 𝑋) → (𝑥(𝐷 ↾ (𝑋 × 𝑋)) 0 ) = (𝑥𝐷 0 )) | |
9 | 8 | ancoms 458 | . . . 4 ⊢ (( 0 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝑥(𝐷 ↾ (𝑋 × 𝑋)) 0 ) = (𝑥𝐷 0 )) |
10 | 7, 9 | eqtr2id 2792 | . . 3 ⊢ (( 0 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝑥𝐷 0 ) = (𝑥𝐸 0 )) |
11 | 10 | mpteq2dva 5170 | . 2 ⊢ ( 0 ∈ 𝑋 → (𝑥 ∈ 𝑋 ↦ (𝑥𝐷 0 )) = (𝑥 ∈ 𝑋 ↦ (𝑥𝐸 0 ))) |
12 | 5, 11 | eqtrid 2790 | 1 ⊢ ( 0 ∈ 𝑋 → 𝑁 = (𝑥 ∈ 𝑋 ↦ (𝑥𝐸 0 ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ↦ cmpt 5153 × cxp 5578 ↾ cres 5582 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 distcds 16897 0gc0g 17067 normcnm 23638 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-nm 23644 |
This theorem is referenced by: nmfval2 23653 |
Copyright terms: Public domain | W3C validator |