![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmfval0 | Structured version Visualization version GIF version |
Description: The value of the norm function on a structure containing a zero as the distance restricted to the elements of the base set to zero. Examples of structures containing a "zero" are groups (see nmfval2 24625 proved from this theorem and grpidcl 19005) or more generally monoids (see mndidcl 18787), or pointed sets). (Contributed by Mario Carneiro, 2-Oct-2015.) Extract this result from the proof of nmfval2 24625. (Revised by BJ, 27-Aug-2024.) |
Ref | Expression |
---|---|
nmfval0.n | ⊢ 𝑁 = (norm‘𝑊) |
nmfval0.x | ⊢ 𝑋 = (Base‘𝑊) |
nmfval0.z | ⊢ 0 = (0g‘𝑊) |
nmfval0.d | ⊢ 𝐷 = (dist‘𝑊) |
nmfval0.e | ⊢ 𝐸 = (𝐷 ↾ (𝑋 × 𝑋)) |
Ref | Expression |
---|---|
nmfval0 | ⊢ ( 0 ∈ 𝑋 → 𝑁 = (𝑥 ∈ 𝑋 ↦ (𝑥𝐸 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmfval0.n | . . 3 ⊢ 𝑁 = (norm‘𝑊) | |
2 | nmfval0.x | . . 3 ⊢ 𝑋 = (Base‘𝑊) | |
3 | nmfval0.z | . . 3 ⊢ 0 = (0g‘𝑊) | |
4 | nmfval0.d | . . 3 ⊢ 𝐷 = (dist‘𝑊) | |
5 | 1, 2, 3, 4 | nmfval 24622 | . 2 ⊢ 𝑁 = (𝑥 ∈ 𝑋 ↦ (𝑥𝐷 0 )) |
6 | nmfval0.e | . . . . 5 ⊢ 𝐸 = (𝐷 ↾ (𝑋 × 𝑋)) | |
7 | 6 | oveqi 7461 | . . . 4 ⊢ (𝑥𝐸 0 ) = (𝑥(𝐷 ↾ (𝑋 × 𝑋)) 0 ) |
8 | ovres 7616 | . . . . 5 ⊢ ((𝑥 ∈ 𝑋 ∧ 0 ∈ 𝑋) → (𝑥(𝐷 ↾ (𝑋 × 𝑋)) 0 ) = (𝑥𝐷 0 )) | |
9 | 8 | ancoms 458 | . . . 4 ⊢ (( 0 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝑥(𝐷 ↾ (𝑋 × 𝑋)) 0 ) = (𝑥𝐷 0 )) |
10 | 7, 9 | eqtr2id 2793 | . . 3 ⊢ (( 0 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝑥𝐷 0 ) = (𝑥𝐸 0 )) |
11 | 10 | mpteq2dva 5266 | . 2 ⊢ ( 0 ∈ 𝑋 → (𝑥 ∈ 𝑋 ↦ (𝑥𝐷 0 )) = (𝑥 ∈ 𝑋 ↦ (𝑥𝐸 0 ))) |
12 | 5, 11 | eqtrid 2792 | 1 ⊢ ( 0 ∈ 𝑋 → 𝑁 = (𝑥 ∈ 𝑋 ↦ (𝑥𝐸 0 ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ↦ cmpt 5249 × cxp 5698 ↾ cres 5702 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 distcds 17320 0gc0g 17499 normcnm 24610 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-nm 24616 |
This theorem is referenced by: nmfval2 24625 |
Copyright terms: Public domain | W3C validator |