MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmfval0 Structured version   Visualization version   GIF version

Theorem nmfval0 24603
Description: The value of the norm function on a structure containing a zero as the distance restricted to the elements of the base set to zero. Examples of structures containing a "zero" are groups (see nmfval2 24604 proved from this theorem and grpidcl 18983) or more generally monoids (see mndidcl 18762), or pointed sets). (Contributed by Mario Carneiro, 2-Oct-2015.) Extract this result from the proof of nmfval2 24604. (Revised by BJ, 27-Aug-2024.)
Hypotheses
Ref Expression
nmfval0.n 𝑁 = (norm‘𝑊)
nmfval0.x 𝑋 = (Base‘𝑊)
nmfval0.z 0 = (0g𝑊)
nmfval0.d 𝐷 = (dist‘𝑊)
nmfval0.e 𝐸 = (𝐷 ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
nmfval0 ( 0𝑋𝑁 = (𝑥𝑋 ↦ (𝑥𝐸 0 )))
Distinct variable groups:   𝑥,𝐷   𝑥,𝑊   𝑥,𝑋   𝑥, 0
Allowed substitution hints:   𝐸(𝑥)   𝑁(𝑥)

Proof of Theorem nmfval0
StepHypRef Expression
1 nmfval0.n . . 3 𝑁 = (norm‘𝑊)
2 nmfval0.x . . 3 𝑋 = (Base‘𝑊)
3 nmfval0.z . . 3 0 = (0g𝑊)
4 nmfval0.d . . 3 𝐷 = (dist‘𝑊)
51, 2, 3, 4nmfval 24601 . 2 𝑁 = (𝑥𝑋 ↦ (𝑥𝐷 0 ))
6 nmfval0.e . . . . 5 𝐸 = (𝐷 ↾ (𝑋 × 𝑋))
76oveqi 7444 . . . 4 (𝑥𝐸 0 ) = (𝑥(𝐷 ↾ (𝑋 × 𝑋)) 0 )
8 ovres 7599 . . . . 5 ((𝑥𝑋0𝑋) → (𝑥(𝐷 ↾ (𝑋 × 𝑋)) 0 ) = (𝑥𝐷 0 ))
98ancoms 458 . . . 4 (( 0𝑋𝑥𝑋) → (𝑥(𝐷 ↾ (𝑋 × 𝑋)) 0 ) = (𝑥𝐷 0 ))
107, 9eqtr2id 2790 . . 3 (( 0𝑋𝑥𝑋) → (𝑥𝐷 0 ) = (𝑥𝐸 0 ))
1110mpteq2dva 5242 . 2 ( 0𝑋 → (𝑥𝑋 ↦ (𝑥𝐷 0 )) = (𝑥𝑋 ↦ (𝑥𝐸 0 )))
125, 11eqtrid 2789 1 ( 0𝑋𝑁 = (𝑥𝑋 ↦ (𝑥𝐸 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cmpt 5225   × cxp 5683  cres 5687  cfv 6561  (class class class)co 7431  Basecbs 17247  distcds 17306  0gc0g 17484  normcnm 24589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569  df-ov 7434  df-nm 24595
This theorem is referenced by:  nmfval2  24604
  Copyright terms: Public domain W3C validator