MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmfval0 Structured version   Visualization version   GIF version

Theorem nmfval0 24098
Description: The value of the norm function on a structure containing a zero as the distance restricted to the elements of the base set to zero. Examples of structures containing a "zero" are groups (see nmfval2 24099 proved from this theorem and grpidcl 18849) or more generally monoids (see mndidcl 18639), or pointed sets). (Contributed by Mario Carneiro, 2-Oct-2015.) Extract this result from the proof of nmfval2 24099. (Revised by BJ, 27-Aug-2024.)
Hypotheses
Ref Expression
nmfval0.n 𝑁 = (normβ€˜π‘Š)
nmfval0.x 𝑋 = (Baseβ€˜π‘Š)
nmfval0.z 0 = (0gβ€˜π‘Š)
nmfval0.d 𝐷 = (distβ€˜π‘Š)
nmfval0.e 𝐸 = (𝐷 β†Ύ (𝑋 Γ— 𝑋))
Assertion
Ref Expression
nmfval0 ( 0 ∈ 𝑋 β†’ 𝑁 = (π‘₯ ∈ 𝑋 ↦ (π‘₯𝐸 0 )))
Distinct variable groups:   π‘₯,𝐷   π‘₯,π‘Š   π‘₯,𝑋   π‘₯, 0
Allowed substitution hints:   𝐸(π‘₯)   𝑁(π‘₯)

Proof of Theorem nmfval0
StepHypRef Expression
1 nmfval0.n . . 3 𝑁 = (normβ€˜π‘Š)
2 nmfval0.x . . 3 𝑋 = (Baseβ€˜π‘Š)
3 nmfval0.z . . 3 0 = (0gβ€˜π‘Š)
4 nmfval0.d . . 3 𝐷 = (distβ€˜π‘Š)
51, 2, 3, 4nmfval 24096 . 2 𝑁 = (π‘₯ ∈ 𝑋 ↦ (π‘₯𝐷 0 ))
6 nmfval0.e . . . . 5 𝐸 = (𝐷 β†Ύ (𝑋 Γ— 𝑋))
76oveqi 7421 . . . 4 (π‘₯𝐸 0 ) = (π‘₯(𝐷 β†Ύ (𝑋 Γ— 𝑋)) 0 )
8 ovres 7572 . . . . 5 ((π‘₯ ∈ 𝑋 ∧ 0 ∈ 𝑋) β†’ (π‘₯(𝐷 β†Ύ (𝑋 Γ— 𝑋)) 0 ) = (π‘₯𝐷 0 ))
98ancoms 459 . . . 4 (( 0 ∈ 𝑋 ∧ π‘₯ ∈ 𝑋) β†’ (π‘₯(𝐷 β†Ύ (𝑋 Γ— 𝑋)) 0 ) = (π‘₯𝐷 0 ))
107, 9eqtr2id 2785 . . 3 (( 0 ∈ 𝑋 ∧ π‘₯ ∈ 𝑋) β†’ (π‘₯𝐷 0 ) = (π‘₯𝐸 0 ))
1110mpteq2dva 5248 . 2 ( 0 ∈ 𝑋 β†’ (π‘₯ ∈ 𝑋 ↦ (π‘₯𝐷 0 )) = (π‘₯ ∈ 𝑋 ↦ (π‘₯𝐸 0 )))
125, 11eqtrid 2784 1 ( 0 ∈ 𝑋 β†’ 𝑁 = (π‘₯ ∈ 𝑋 ↦ (π‘₯𝐸 0 )))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106   ↦ cmpt 5231   Γ— cxp 5674   β†Ύ cres 5678  β€˜cfv 6543  (class class class)co 7408  Basecbs 17143  distcds 17205  0gc0g 17384  normcnm 24084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7411  df-nm 24090
This theorem is referenced by:  nmfval2  24099
  Copyright terms: Public domain W3C validator