![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmfval0 | Structured version Visualization version GIF version |
Description: The value of the norm function on a structure containing a zero as the distance restricted to the elements of the base set to zero. Examples of structures containing a "zero" are groups (see nmfval2 24099 proved from this theorem and grpidcl 18849) or more generally monoids (see mndidcl 18639), or pointed sets). (Contributed by Mario Carneiro, 2-Oct-2015.) Extract this result from the proof of nmfval2 24099. (Revised by BJ, 27-Aug-2024.) |
Ref | Expression |
---|---|
nmfval0.n | β’ π = (normβπ) |
nmfval0.x | β’ π = (Baseβπ) |
nmfval0.z | β’ 0 = (0gβπ) |
nmfval0.d | β’ π· = (distβπ) |
nmfval0.e | β’ πΈ = (π· βΎ (π Γ π)) |
Ref | Expression |
---|---|
nmfval0 | β’ ( 0 β π β π = (π₯ β π β¦ (π₯πΈ 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmfval0.n | . . 3 β’ π = (normβπ) | |
2 | nmfval0.x | . . 3 β’ π = (Baseβπ) | |
3 | nmfval0.z | . . 3 β’ 0 = (0gβπ) | |
4 | nmfval0.d | . . 3 β’ π· = (distβπ) | |
5 | 1, 2, 3, 4 | nmfval 24096 | . 2 β’ π = (π₯ β π β¦ (π₯π· 0 )) |
6 | nmfval0.e | . . . . 5 β’ πΈ = (π· βΎ (π Γ π)) | |
7 | 6 | oveqi 7421 | . . . 4 β’ (π₯πΈ 0 ) = (π₯(π· βΎ (π Γ π)) 0 ) |
8 | ovres 7572 | . . . . 5 β’ ((π₯ β π β§ 0 β π) β (π₯(π· βΎ (π Γ π)) 0 ) = (π₯π· 0 )) | |
9 | 8 | ancoms 459 | . . . 4 β’ (( 0 β π β§ π₯ β π) β (π₯(π· βΎ (π Γ π)) 0 ) = (π₯π· 0 )) |
10 | 7, 9 | eqtr2id 2785 | . . 3 β’ (( 0 β π β§ π₯ β π) β (π₯π· 0 ) = (π₯πΈ 0 )) |
11 | 10 | mpteq2dva 5248 | . 2 β’ ( 0 β π β (π₯ β π β¦ (π₯π· 0 )) = (π₯ β π β¦ (π₯πΈ 0 ))) |
12 | 5, 11 | eqtrid 2784 | 1 β’ ( 0 β π β π = (π₯ β π β¦ (π₯πΈ 0 ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 β¦ cmpt 5231 Γ cxp 5674 βΎ cres 5678 βcfv 6543 (class class class)co 7408 Basecbs 17143 distcds 17205 0gc0g 17384 normcnm 24084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7411 df-nm 24090 |
This theorem is referenced by: nmfval2 24099 |
Copyright terms: Public domain | W3C validator |