| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nmfval0 | Structured version Visualization version GIF version | ||
| Description: The value of the norm function on a structure containing a zero as the distance restricted to the elements of the base set to zero. Examples of structures containing a "zero" are groups (see nmfval2 24455 proved from this theorem and grpidcl 18873) or more generally monoids (see mndidcl 18652), or pointed sets). (Contributed by Mario Carneiro, 2-Oct-2015.) Extract this result from the proof of nmfval2 24455. (Revised by BJ, 27-Aug-2024.) |
| Ref | Expression |
|---|---|
| nmfval0.n | ⊢ 𝑁 = (norm‘𝑊) |
| nmfval0.x | ⊢ 𝑋 = (Base‘𝑊) |
| nmfval0.z | ⊢ 0 = (0g‘𝑊) |
| nmfval0.d | ⊢ 𝐷 = (dist‘𝑊) |
| nmfval0.e | ⊢ 𝐸 = (𝐷 ↾ (𝑋 × 𝑋)) |
| Ref | Expression |
|---|---|
| nmfval0 | ⊢ ( 0 ∈ 𝑋 → 𝑁 = (𝑥 ∈ 𝑋 ↦ (𝑥𝐸 0 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmfval0.n | . . 3 ⊢ 𝑁 = (norm‘𝑊) | |
| 2 | nmfval0.x | . . 3 ⊢ 𝑋 = (Base‘𝑊) | |
| 3 | nmfval0.z | . . 3 ⊢ 0 = (0g‘𝑊) | |
| 4 | nmfval0.d | . . 3 ⊢ 𝐷 = (dist‘𝑊) | |
| 5 | 1, 2, 3, 4 | nmfval 24452 | . 2 ⊢ 𝑁 = (𝑥 ∈ 𝑋 ↦ (𝑥𝐷 0 )) |
| 6 | nmfval0.e | . . . . 5 ⊢ 𝐸 = (𝐷 ↾ (𝑋 × 𝑋)) | |
| 7 | 6 | oveqi 7382 | . . . 4 ⊢ (𝑥𝐸 0 ) = (𝑥(𝐷 ↾ (𝑋 × 𝑋)) 0 ) |
| 8 | ovres 7535 | . . . . 5 ⊢ ((𝑥 ∈ 𝑋 ∧ 0 ∈ 𝑋) → (𝑥(𝐷 ↾ (𝑋 × 𝑋)) 0 ) = (𝑥𝐷 0 )) | |
| 9 | 8 | ancoms 458 | . . . 4 ⊢ (( 0 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝑥(𝐷 ↾ (𝑋 × 𝑋)) 0 ) = (𝑥𝐷 0 )) |
| 10 | 7, 9 | eqtr2id 2777 | . . 3 ⊢ (( 0 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝑥𝐷 0 ) = (𝑥𝐸 0 )) |
| 11 | 10 | mpteq2dva 5195 | . 2 ⊢ ( 0 ∈ 𝑋 → (𝑥 ∈ 𝑋 ↦ (𝑥𝐷 0 )) = (𝑥 ∈ 𝑋 ↦ (𝑥𝐸 0 ))) |
| 12 | 5, 11 | eqtrid 2776 | 1 ⊢ ( 0 ∈ 𝑋 → 𝑁 = (𝑥 ∈ 𝑋 ↦ (𝑥𝐸 0 ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5183 × cxp 5629 ↾ cres 5633 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 distcds 17205 0gc0g 17378 normcnm 24440 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-ov 7372 df-nm 24446 |
| This theorem is referenced by: nmfval2 24455 |
| Copyright terms: Public domain | W3C validator |