MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmfval0 Structured version   Visualization version   GIF version

Theorem nmfval0 24500
Description: The value of the norm function on a structure containing a zero as the distance restricted to the elements of the base set to zero. Examples of structures containing a "zero" are groups (see nmfval2 24501 proved from this theorem and grpidcl 18873) or more generally monoids (see mndidcl 18652), or pointed sets). (Contributed by Mario Carneiro, 2-Oct-2015.) Extract this result from the proof of nmfval2 24501. (Revised by BJ, 27-Aug-2024.)
Hypotheses
Ref Expression
nmfval0.n 𝑁 = (norm‘𝑊)
nmfval0.x 𝑋 = (Base‘𝑊)
nmfval0.z 0 = (0g𝑊)
nmfval0.d 𝐷 = (dist‘𝑊)
nmfval0.e 𝐸 = (𝐷 ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
nmfval0 ( 0𝑋𝑁 = (𝑥𝑋 ↦ (𝑥𝐸 0 )))
Distinct variable groups:   𝑥,𝐷   𝑥,𝑊   𝑥,𝑋   𝑥, 0
Allowed substitution hints:   𝐸(𝑥)   𝑁(𝑥)

Proof of Theorem nmfval0
StepHypRef Expression
1 nmfval0.n . . 3 𝑁 = (norm‘𝑊)
2 nmfval0.x . . 3 𝑋 = (Base‘𝑊)
3 nmfval0.z . . 3 0 = (0g𝑊)
4 nmfval0.d . . 3 𝐷 = (dist‘𝑊)
51, 2, 3, 4nmfval 24498 . 2 𝑁 = (𝑥𝑋 ↦ (𝑥𝐷 0 ))
6 nmfval0.e . . . . 5 𝐸 = (𝐷 ↾ (𝑋 × 𝑋))
76oveqi 7354 . . . 4 (𝑥𝐸 0 ) = (𝑥(𝐷 ↾ (𝑋 × 𝑋)) 0 )
8 ovres 7507 . . . . 5 ((𝑥𝑋0𝑋) → (𝑥(𝐷 ↾ (𝑋 × 𝑋)) 0 ) = (𝑥𝐷 0 ))
98ancoms 458 . . . 4 (( 0𝑋𝑥𝑋) → (𝑥(𝐷 ↾ (𝑋 × 𝑋)) 0 ) = (𝑥𝐷 0 ))
107, 9eqtr2id 2779 . . 3 (( 0𝑋𝑥𝑋) → (𝑥𝐷 0 ) = (𝑥𝐸 0 ))
1110mpteq2dva 5179 . 2 ( 0𝑋 → (𝑥𝑋 ↦ (𝑥𝐷 0 )) = (𝑥𝑋 ↦ (𝑥𝐸 0 )))
125, 11eqtrid 2778 1 ( 0𝑋𝑁 = (𝑥𝑋 ↦ (𝑥𝐸 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cmpt 5167   × cxp 5609  cres 5613  cfv 6476  (class class class)co 7341  Basecbs 17115  distcds 17165  0gc0g 17338  normcnm 24486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-fv 6484  df-ov 7344  df-nm 24492
This theorem is referenced by:  nmfval2  24501
  Copyright terms: Public domain W3C validator