| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nmfval2 | Structured version Visualization version GIF version | ||
| Description: The value of the norm function on a group as the distance restricted to the elements of the base set to zero. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| nmfval2.n | ⊢ 𝑁 = (norm‘𝑊) |
| nmfval2.x | ⊢ 𝑋 = (Base‘𝑊) |
| nmfval2.z | ⊢ 0 = (0g‘𝑊) |
| nmfval2.d | ⊢ 𝐷 = (dist‘𝑊) |
| nmfval2.e | ⊢ 𝐸 = (𝐷 ↾ (𝑋 × 𝑋)) |
| Ref | Expression |
|---|---|
| nmfval2 | ⊢ (𝑊 ∈ Grp → 𝑁 = (𝑥 ∈ 𝑋 ↦ (𝑥𝐸 0 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmfval2.x | . . 3 ⊢ 𝑋 = (Base‘𝑊) | |
| 2 | nmfval2.z | . . 3 ⊢ 0 = (0g‘𝑊) | |
| 3 | 1, 2 | grpidcl 18878 | . 2 ⊢ (𝑊 ∈ Grp → 0 ∈ 𝑋) |
| 4 | nmfval2.n | . . 3 ⊢ 𝑁 = (norm‘𝑊) | |
| 5 | nmfval2.d | . . 3 ⊢ 𝐷 = (dist‘𝑊) | |
| 6 | nmfval2.e | . . 3 ⊢ 𝐸 = (𝐷 ↾ (𝑋 × 𝑋)) | |
| 7 | 4, 1, 2, 5, 6 | nmfval0 24505 | . 2 ⊢ ( 0 ∈ 𝑋 → 𝑁 = (𝑥 ∈ 𝑋 ↦ (𝑥𝐸 0 ))) |
| 8 | 3, 7 | syl 17 | 1 ⊢ (𝑊 ∈ Grp → 𝑁 = (𝑥 ∈ 𝑋 ↦ (𝑥𝐸 0 ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ↦ cmpt 5170 × cxp 5612 ↾ cres 5616 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 distcds 17170 0gc0g 17343 Grpcgrp 18846 normcnm 24491 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-riota 7303 df-ov 7349 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-nm 24497 |
| This theorem is referenced by: nmf2 24508 nmpropd2 24510 |
| Copyright terms: Public domain | W3C validator |