MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmfval2 Structured version   Visualization version   GIF version

Theorem nmfval2 24477
Description: The value of the norm function on a group as the distance restricted to the elements of the base set to zero. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
nmfval2.n 𝑁 = (norm‘𝑊)
nmfval2.x 𝑋 = (Base‘𝑊)
nmfval2.z 0 = (0g𝑊)
nmfval2.d 𝐷 = (dist‘𝑊)
nmfval2.e 𝐸 = (𝐷 ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
nmfval2 (𝑊 ∈ Grp → 𝑁 = (𝑥𝑋 ↦ (𝑥𝐸 0 )))
Distinct variable groups:   𝑥,𝐷   𝑥,𝑊   𝑥,𝑋   𝑥, 0
Allowed substitution hints:   𝐸(𝑥)   𝑁(𝑥)

Proof of Theorem nmfval2
StepHypRef Expression
1 nmfval2.x . . 3 𝑋 = (Base‘𝑊)
2 nmfval2.z . . 3 0 = (0g𝑊)
31, 2grpidcl 18844 . 2 (𝑊 ∈ Grp → 0𝑋)
4 nmfval2.n . . 3 𝑁 = (norm‘𝑊)
5 nmfval2.d . . 3 𝐷 = (dist‘𝑊)
6 nmfval2.e . . 3 𝐸 = (𝐷 ↾ (𝑋 × 𝑋))
74, 1, 2, 5, 6nmfval0 24476 . 2 ( 0𝑋𝑁 = (𝑥𝑋 ↦ (𝑥𝐸 0 )))
83, 7syl 17 1 (𝑊 ∈ Grp → 𝑁 = (𝑥𝑋 ↦ (𝑥𝐸 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cmpt 5173   × cxp 5617  cres 5621  cfv 6482  (class class class)co 7349  Basecbs 17120  distcds 17170  0gc0g 17343  Grpcgrp 18812  normcnm 24462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490  df-riota 7306  df-ov 7352  df-0g 17345  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-grp 18815  df-nm 24468
This theorem is referenced by:  nmf2  24479  nmpropd2  24481
  Copyright terms: Public domain W3C validator