Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmfval2 Structured version   Visualization version   GIF version

Theorem nmfval2 23192
 Description: The value of the norm function using a restricted metric. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
nmfval.n 𝑁 = (norm‘𝑊)
nmfval.x 𝑋 = (Base‘𝑊)
nmfval.z 0 = (0g𝑊)
nmfval.d 𝐷 = (dist‘𝑊)
nmfval.e 𝐸 = (𝐷 ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
nmfval2 (𝑊 ∈ Grp → 𝑁 = (𝑥𝑋 ↦ (𝑥𝐸 0 )))
Distinct variable groups:   𝑥,𝐷   𝑥,𝑊   𝑥,𝑋   𝑥, 0
Allowed substitution hints:   𝐸(𝑥)   𝑁(𝑥)

Proof of Theorem nmfval2
StepHypRef Expression
1 nmfval.n . . 3 𝑁 = (norm‘𝑊)
2 nmfval.x . . 3 𝑋 = (Base‘𝑊)
3 nmfval.z . . 3 0 = (0g𝑊)
4 nmfval.d . . 3 𝐷 = (dist‘𝑊)
51, 2, 3, 4nmfval 23190 . 2 𝑁 = (𝑥𝑋 ↦ (𝑥𝐷 0 ))
6 nmfval.e . . . . 5 𝐸 = (𝐷 ↾ (𝑋 × 𝑋))
76oveqi 7161 . . . 4 (𝑥𝐸 0 ) = (𝑥(𝐷 ↾ (𝑋 × 𝑋)) 0 )
8 id 22 . . . . 5 (𝑥𝑋𝑥𝑋)
92, 3grpidcl 18123 . . . . 5 (𝑊 ∈ Grp → 0𝑋)
10 ovres 7306 . . . . 5 ((𝑥𝑋0𝑋) → (𝑥(𝐷 ↾ (𝑋 × 𝑋)) 0 ) = (𝑥𝐷 0 ))
118, 9, 10syl2anr 598 . . . 4 ((𝑊 ∈ Grp ∧ 𝑥𝑋) → (𝑥(𝐷 ↾ (𝑋 × 𝑋)) 0 ) = (𝑥𝐷 0 ))
127, 11syl5req 2867 . . 3 ((𝑊 ∈ Grp ∧ 𝑥𝑋) → (𝑥𝐷 0 ) = (𝑥𝐸 0 ))
1312mpteq2dva 5152 . 2 (𝑊 ∈ Grp → (𝑥𝑋 ↦ (𝑥𝐷 0 )) = (𝑥𝑋 ↦ (𝑥𝐸 0 )))
145, 13syl5eq 2866 1 (𝑊 ∈ Grp → 𝑁 = (𝑥𝑋 ↦ (𝑥𝐸 0 )))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 398   = wceq 1530   ∈ wcel 2107   ↦ cmpt 5137   × cxp 5546   ↾ cres 5550  ‘cfv 6348  (class class class)co 7148  Basecbs 16475  distcds 16566  0gc0g 16705  Grpcgrp 18095  normcnm 23178 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-fv 6356  df-riota 7106  df-ov 7151  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-nm 23184 This theorem is referenced by:  nmf2  23194  nmpropd2  23196
 Copyright terms: Public domain W3C validator