| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nmfval2 | Structured version Visualization version GIF version | ||
| Description: The value of the norm function on a group as the distance restricted to the elements of the base set to zero. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| nmfval2.n | ⊢ 𝑁 = (norm‘𝑊) |
| nmfval2.x | ⊢ 𝑋 = (Base‘𝑊) |
| nmfval2.z | ⊢ 0 = (0g‘𝑊) |
| nmfval2.d | ⊢ 𝐷 = (dist‘𝑊) |
| nmfval2.e | ⊢ 𝐸 = (𝐷 ↾ (𝑋 × 𝑋)) |
| Ref | Expression |
|---|---|
| nmfval2 | ⊢ (𝑊 ∈ Grp → 𝑁 = (𝑥 ∈ 𝑋 ↦ (𝑥𝐸 0 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmfval2.x | . . 3 ⊢ 𝑋 = (Base‘𝑊) | |
| 2 | nmfval2.z | . . 3 ⊢ 0 = (0g‘𝑊) | |
| 3 | 1, 2 | grpidcl 18953 | . 2 ⊢ (𝑊 ∈ Grp → 0 ∈ 𝑋) |
| 4 | nmfval2.n | . . 3 ⊢ 𝑁 = (norm‘𝑊) | |
| 5 | nmfval2.d | . . 3 ⊢ 𝐷 = (dist‘𝑊) | |
| 6 | nmfval2.e | . . 3 ⊢ 𝐸 = (𝐷 ↾ (𝑋 × 𝑋)) | |
| 7 | 4, 1, 2, 5, 6 | nmfval0 24562 | . 2 ⊢ ( 0 ∈ 𝑋 → 𝑁 = (𝑥 ∈ 𝑋 ↦ (𝑥𝐸 0 ))) |
| 8 | 3, 7 | syl 17 | 1 ⊢ (𝑊 ∈ Grp → 𝑁 = (𝑥 ∈ 𝑋 ↦ (𝑥𝐸 0 ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ↦ cmpt 5207 × cxp 5665 ↾ cres 5669 ‘cfv 6542 (class class class)co 7414 Basecbs 17230 distcds 17283 0gc0g 17456 Grpcgrp 18921 normcnm 24548 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 df-riota 7371 df-ov 7417 df-0g 17458 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-grp 18924 df-nm 24554 |
| This theorem is referenced by: nmf2 24565 nmpropd2 24567 |
| Copyright terms: Public domain | W3C validator |