MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmfval2 Structured version   Visualization version   GIF version

Theorem nmfval2 24506
Description: The value of the norm function on a group as the distance restricted to the elements of the base set to zero. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
nmfval2.n 𝑁 = (norm‘𝑊)
nmfval2.x 𝑋 = (Base‘𝑊)
nmfval2.z 0 = (0g𝑊)
nmfval2.d 𝐷 = (dist‘𝑊)
nmfval2.e 𝐸 = (𝐷 ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
nmfval2 (𝑊 ∈ Grp → 𝑁 = (𝑥𝑋 ↦ (𝑥𝐸 0 )))
Distinct variable groups:   𝑥,𝐷   𝑥,𝑊   𝑥,𝑋   𝑥, 0
Allowed substitution hints:   𝐸(𝑥)   𝑁(𝑥)

Proof of Theorem nmfval2
StepHypRef Expression
1 nmfval2.x . . 3 𝑋 = (Base‘𝑊)
2 nmfval2.z . . 3 0 = (0g𝑊)
31, 2grpidcl 18878 . 2 (𝑊 ∈ Grp → 0𝑋)
4 nmfval2.n . . 3 𝑁 = (norm‘𝑊)
5 nmfval2.d . . 3 𝐷 = (dist‘𝑊)
6 nmfval2.e . . 3 𝐸 = (𝐷 ↾ (𝑋 × 𝑋))
74, 1, 2, 5, 6nmfval0 24505 . 2 ( 0𝑋𝑁 = (𝑥𝑋 ↦ (𝑥𝐸 0 )))
83, 7syl 17 1 (𝑊 ∈ Grp → 𝑁 = (𝑥𝑋 ↦ (𝑥𝐸 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cmpt 5170   × cxp 5612  cres 5616  cfv 6481  (class class class)co 7346  Basecbs 17120  distcds 17170  0gc0g 17343  Grpcgrp 18846  normcnm 24491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-riota 7303  df-ov 7349  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-nm 24497
This theorem is referenced by:  nmf2  24508  nmpropd2  24510
  Copyright terms: Public domain W3C validator