MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmfval2 Structured version   Visualization version   GIF version

Theorem nmfval2 23200
Description: The value of the norm function using a restricted metric. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
nmfval.n 𝑁 = (norm‘𝑊)
nmfval.x 𝑋 = (Base‘𝑊)
nmfval.z 0 = (0g𝑊)
nmfval.d 𝐷 = (dist‘𝑊)
nmfval.e 𝐸 = (𝐷 ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
nmfval2 (𝑊 ∈ Grp → 𝑁 = (𝑥𝑋 ↦ (𝑥𝐸 0 )))
Distinct variable groups:   𝑥,𝐷   𝑥,𝑊   𝑥,𝑋   𝑥, 0
Allowed substitution hints:   𝐸(𝑥)   𝑁(𝑥)

Proof of Theorem nmfval2
StepHypRef Expression
1 nmfval.n . . 3 𝑁 = (norm‘𝑊)
2 nmfval.x . . 3 𝑋 = (Base‘𝑊)
3 nmfval.z . . 3 0 = (0g𝑊)
4 nmfval.d . . 3 𝐷 = (dist‘𝑊)
51, 2, 3, 4nmfval 23198 . 2 𝑁 = (𝑥𝑋 ↦ (𝑥𝐷 0 ))
6 nmfval.e . . . . 5 𝐸 = (𝐷 ↾ (𝑋 × 𝑋))
76oveqi 7169 . . . 4 (𝑥𝐸 0 ) = (𝑥(𝐷 ↾ (𝑋 × 𝑋)) 0 )
8 id 22 . . . . 5 (𝑥𝑋𝑥𝑋)
92, 3grpidcl 18131 . . . . 5 (𝑊 ∈ Grp → 0𝑋)
10 ovres 7314 . . . . 5 ((𝑥𝑋0𝑋) → (𝑥(𝐷 ↾ (𝑋 × 𝑋)) 0 ) = (𝑥𝐷 0 ))
118, 9, 10syl2anr 598 . . . 4 ((𝑊 ∈ Grp ∧ 𝑥𝑋) → (𝑥(𝐷 ↾ (𝑋 × 𝑋)) 0 ) = (𝑥𝐷 0 ))
127, 11syl5req 2869 . . 3 ((𝑊 ∈ Grp ∧ 𝑥𝑋) → (𝑥𝐷 0 ) = (𝑥𝐸 0 ))
1312mpteq2dva 5161 . 2 (𝑊 ∈ Grp → (𝑥𝑋 ↦ (𝑥𝐷 0 )) = (𝑥𝑋 ↦ (𝑥𝐸 0 )))
145, 13syl5eq 2868 1 (𝑊 ∈ Grp → 𝑁 = (𝑥𝑋 ↦ (𝑥𝐸 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  cmpt 5146   × cxp 5553  cres 5557  cfv 6355  (class class class)co 7156  Basecbs 16483  distcds 16574  0gc0g 16713  Grpcgrp 18103  normcnm 23186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-fv 6363  df-riota 7114  df-ov 7159  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-nm 23192
This theorem is referenced by:  nmf2  23202  nmpropd2  23204
  Copyright terms: Public domain W3C validator