MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmval Structured version   Visualization version   GIF version

Theorem nmval 24320
Description: The value of the norm as the distance to zero. Problem 1 of [Kreyszig] p. 63. (Contributed by NM, 4-Dec-2006.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
nmfval.n 𝑁 = (normβ€˜π‘Š)
nmfval.x 𝑋 = (Baseβ€˜π‘Š)
nmfval.z 0 = (0gβ€˜π‘Š)
nmfval.d 𝐷 = (distβ€˜π‘Š)
Assertion
Ref Expression
nmval (𝐴 ∈ 𝑋 β†’ (π‘β€˜π΄) = (𝐴𝐷 0 ))

Proof of Theorem nmval
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 oveq1 7420 . 2 (π‘₯ = 𝐴 β†’ (π‘₯𝐷 0 ) = (𝐴𝐷 0 ))
2 nmfval.n . . 3 𝑁 = (normβ€˜π‘Š)
3 nmfval.x . . 3 𝑋 = (Baseβ€˜π‘Š)
4 nmfval.z . . 3 0 = (0gβ€˜π‘Š)
5 nmfval.d . . 3 𝐷 = (distβ€˜π‘Š)
62, 3, 4, 5nmfval 24319 . 2 𝑁 = (π‘₯ ∈ 𝑋 ↦ (π‘₯𝐷 0 ))
7 ovex 7446 . 2 (𝐴𝐷 0 ) ∈ V
81, 6, 7fvmpt 6999 1 (𝐴 ∈ 𝑋 β†’ (π‘β€˜π΄) = (𝐴𝐷 0 ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1539   ∈ wcel 2104  β€˜cfv 6544  (class class class)co 7413  Basecbs 17150  distcds 17212  0gc0g 17391  normcnm 24307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fv 6552  df-ov 7416  df-nm 24313
This theorem is referenced by:  nmval2  24323  ngpds2  24337  isngp4  24343  nmge0  24348  nmeq0  24349  nminv  24352  nmmtri  24353  nmrtri  24355
  Copyright terms: Public domain W3C validator