| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nmval | Structured version Visualization version GIF version | ||
| Description: The value of the norm as the distance to zero. Problem 1 of [Kreyszig] p. 63. (Contributed by NM, 4-Dec-2006.) (Revised by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| nmfval.n | ⊢ 𝑁 = (norm‘𝑊) |
| nmfval.x | ⊢ 𝑋 = (Base‘𝑊) |
| nmfval.z | ⊢ 0 = (0g‘𝑊) |
| nmfval.d | ⊢ 𝐷 = (dist‘𝑊) |
| Ref | Expression |
|---|---|
| nmval | ⊢ (𝐴 ∈ 𝑋 → (𝑁‘𝐴) = (𝐴𝐷 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7348 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥𝐷 0 ) = (𝐴𝐷 0 )) | |
| 2 | nmfval.n | . . 3 ⊢ 𝑁 = (norm‘𝑊) | |
| 3 | nmfval.x | . . 3 ⊢ 𝑋 = (Base‘𝑊) | |
| 4 | nmfval.z | . . 3 ⊢ 0 = (0g‘𝑊) | |
| 5 | nmfval.d | . . 3 ⊢ 𝐷 = (dist‘𝑊) | |
| 6 | 2, 3, 4, 5 | nmfval 24498 | . 2 ⊢ 𝑁 = (𝑥 ∈ 𝑋 ↦ (𝑥𝐷 0 )) |
| 7 | ovex 7374 | . 2 ⊢ (𝐴𝐷 0 ) ∈ V | |
| 8 | 1, 6, 7 | fvmpt 6924 | 1 ⊢ (𝐴 ∈ 𝑋 → (𝑁‘𝐴) = (𝐴𝐷 0 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ‘cfv 6476 (class class class)co 7341 Basecbs 17115 distcds 17165 0gc0g 17338 normcnm 24486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-fv 6484 df-ov 7344 df-nm 24492 |
| This theorem is referenced by: nmval2 24502 ngpds2 24516 isngp4 24522 nmge0 24527 nmeq0 24528 nminv 24531 nmmtri 24532 nmrtri 24534 |
| Copyright terms: Public domain | W3C validator |