| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nmval | Structured version Visualization version GIF version | ||
| Description: The value of the norm as the distance to zero. Problem 1 of [Kreyszig] p. 63. (Contributed by NM, 4-Dec-2006.) (Revised by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| nmfval.n | ⊢ 𝑁 = (norm‘𝑊) |
| nmfval.x | ⊢ 𝑋 = (Base‘𝑊) |
| nmfval.z | ⊢ 0 = (0g‘𝑊) |
| nmfval.d | ⊢ 𝐷 = (dist‘𝑊) |
| Ref | Expression |
|---|---|
| nmval | ⊢ (𝐴 ∈ 𝑋 → (𝑁‘𝐴) = (𝐴𝐷 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7362 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥𝐷 0 ) = (𝐴𝐷 0 )) | |
| 2 | nmfval.n | . . 3 ⊢ 𝑁 = (norm‘𝑊) | |
| 3 | nmfval.x | . . 3 ⊢ 𝑋 = (Base‘𝑊) | |
| 4 | nmfval.z | . . 3 ⊢ 0 = (0g‘𝑊) | |
| 5 | nmfval.d | . . 3 ⊢ 𝐷 = (dist‘𝑊) | |
| 6 | 2, 3, 4, 5 | nmfval 24523 | . 2 ⊢ 𝑁 = (𝑥 ∈ 𝑋 ↦ (𝑥𝐷 0 )) |
| 7 | ovex 7388 | . 2 ⊢ (𝐴𝐷 0 ) ∈ V | |
| 8 | 1, 6, 7 | fvmpt 6938 | 1 ⊢ (𝐴 ∈ 𝑋 → (𝑁‘𝐴) = (𝐴𝐷 0 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ‘cfv 6489 (class class class)co 7355 Basecbs 17127 distcds 17177 0gc0g 17350 normcnm 24511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-fv 6497 df-ov 7358 df-nm 24517 |
| This theorem is referenced by: nmval2 24527 ngpds2 24541 isngp4 24547 nmge0 24552 nmeq0 24553 nminv 24556 nmmtri 24557 nmrtri 24559 |
| Copyright terms: Public domain | W3C validator |