![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmval | Structured version Visualization version GIF version |
Description: The value of the norm as the distance to zero. Problem 1 of [Kreyszig] p. 63. (Contributed by NM, 4-Dec-2006.) (Revised by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
nmfval.n | ⊢ 𝑁 = (norm‘𝑊) |
nmfval.x | ⊢ 𝑋 = (Base‘𝑊) |
nmfval.z | ⊢ 0 = (0g‘𝑊) |
nmfval.d | ⊢ 𝐷 = (dist‘𝑊) |
Ref | Expression |
---|---|
nmval | ⊢ (𝐴 ∈ 𝑋 → (𝑁‘𝐴) = (𝐴𝐷 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7426 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥𝐷 0 ) = (𝐴𝐷 0 )) | |
2 | nmfval.n | . . 3 ⊢ 𝑁 = (norm‘𝑊) | |
3 | nmfval.x | . . 3 ⊢ 𝑋 = (Base‘𝑊) | |
4 | nmfval.z | . . 3 ⊢ 0 = (0g‘𝑊) | |
5 | nmfval.d | . . 3 ⊢ 𝐷 = (dist‘𝑊) | |
6 | 2, 3, 4, 5 | nmfval 24546 | . 2 ⊢ 𝑁 = (𝑥 ∈ 𝑋 ↦ (𝑥𝐷 0 )) |
7 | ovex 7452 | . 2 ⊢ (𝐴𝐷 0 ) ∈ V | |
8 | 1, 6, 7 | fvmpt 7004 | 1 ⊢ (𝐴 ∈ 𝑋 → (𝑁‘𝐴) = (𝐴𝐷 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ‘cfv 6549 (class class class)co 7419 Basecbs 17188 distcds 17250 0gc0g 17429 normcnm 24534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-fv 6557 df-ov 7422 df-nm 24540 |
This theorem is referenced by: nmval2 24550 ngpds2 24564 isngp4 24570 nmge0 24575 nmeq0 24576 nminv 24579 nmmtri 24580 nmrtri 24582 |
Copyright terms: Public domain | W3C validator |