MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmval Structured version   Visualization version   GIF version

Theorem nmval 24494
Description: The value of the norm as the distance to zero. Problem 1 of [Kreyszig] p. 63. (Contributed by NM, 4-Dec-2006.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
nmfval.n 𝑁 = (norm‘𝑊)
nmfval.x 𝑋 = (Base‘𝑊)
nmfval.z 0 = (0g𝑊)
nmfval.d 𝐷 = (dist‘𝑊)
Assertion
Ref Expression
nmval (𝐴𝑋 → (𝑁𝐴) = (𝐴𝐷 0 ))

Proof of Theorem nmval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq1 7360 . 2 (𝑥 = 𝐴 → (𝑥𝐷 0 ) = (𝐴𝐷 0 ))
2 nmfval.n . . 3 𝑁 = (norm‘𝑊)
3 nmfval.x . . 3 𝑋 = (Base‘𝑊)
4 nmfval.z . . 3 0 = (0g𝑊)
5 nmfval.d . . 3 𝐷 = (dist‘𝑊)
62, 3, 4, 5nmfval 24493 . 2 𝑁 = (𝑥𝑋 ↦ (𝑥𝐷 0 ))
7 ovex 7386 . 2 (𝐴𝐷 0 ) ∈ V
81, 6, 7fvmpt 6934 1 (𝐴𝑋 → (𝑁𝐴) = (𝐴𝐷 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6486  (class class class)co 7353  Basecbs 17139  distcds 17189  0gc0g 17362  normcnm 24481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7356  df-nm 24487
This theorem is referenced by:  nmval2  24497  ngpds2  24511  isngp4  24517  nmge0  24522  nmeq0  24523  nminv  24526  nmmtri  24527  nmrtri  24529
  Copyright terms: Public domain W3C validator