| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nmval | Structured version Visualization version GIF version | ||
| Description: The value of the norm as the distance to zero. Problem 1 of [Kreyszig] p. 63. (Contributed by NM, 4-Dec-2006.) (Revised by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| nmfval.n | ⊢ 𝑁 = (norm‘𝑊) |
| nmfval.x | ⊢ 𝑋 = (Base‘𝑊) |
| nmfval.z | ⊢ 0 = (0g‘𝑊) |
| nmfval.d | ⊢ 𝐷 = (dist‘𝑊) |
| Ref | Expression |
|---|---|
| nmval | ⊢ (𝐴 ∈ 𝑋 → (𝑁‘𝐴) = (𝐴𝐷 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7397 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥𝐷 0 ) = (𝐴𝐷 0 )) | |
| 2 | nmfval.n | . . 3 ⊢ 𝑁 = (norm‘𝑊) | |
| 3 | nmfval.x | . . 3 ⊢ 𝑋 = (Base‘𝑊) | |
| 4 | nmfval.z | . . 3 ⊢ 0 = (0g‘𝑊) | |
| 5 | nmfval.d | . . 3 ⊢ 𝐷 = (dist‘𝑊) | |
| 6 | 2, 3, 4, 5 | nmfval 24483 | . 2 ⊢ 𝑁 = (𝑥 ∈ 𝑋 ↦ (𝑥𝐷 0 )) |
| 7 | ovex 7423 | . 2 ⊢ (𝐴𝐷 0 ) ∈ V | |
| 8 | 1, 6, 7 | fvmpt 6971 | 1 ⊢ (𝐴 ∈ 𝑋 → (𝑁‘𝐴) = (𝐴𝐷 0 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 distcds 17236 0gc0g 17409 normcnm 24471 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-nm 24477 |
| This theorem is referenced by: nmval2 24487 ngpds2 24501 isngp4 24507 nmge0 24512 nmeq0 24513 nminv 24516 nmmtri 24517 nmrtri 24519 |
| Copyright terms: Public domain | W3C validator |