MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmval Structured version   Visualization version   GIF version

Theorem nmval 24499
Description: The value of the norm as the distance to zero. Problem 1 of [Kreyszig] p. 63. (Contributed by NM, 4-Dec-2006.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
nmfval.n 𝑁 = (norm‘𝑊)
nmfval.x 𝑋 = (Base‘𝑊)
nmfval.z 0 = (0g𝑊)
nmfval.d 𝐷 = (dist‘𝑊)
Assertion
Ref Expression
nmval (𝐴𝑋 → (𝑁𝐴) = (𝐴𝐷 0 ))

Proof of Theorem nmval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq1 7348 . 2 (𝑥 = 𝐴 → (𝑥𝐷 0 ) = (𝐴𝐷 0 ))
2 nmfval.n . . 3 𝑁 = (norm‘𝑊)
3 nmfval.x . . 3 𝑋 = (Base‘𝑊)
4 nmfval.z . . 3 0 = (0g𝑊)
5 nmfval.d . . 3 𝐷 = (dist‘𝑊)
62, 3, 4, 5nmfval 24498 . 2 𝑁 = (𝑥𝑋 ↦ (𝑥𝐷 0 ))
7 ovex 7374 . 2 (𝐴𝐷 0 ) ∈ V
81, 6, 7fvmpt 6924 1 (𝐴𝑋 → (𝑁𝐴) = (𝐴𝐷 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cfv 6476  (class class class)co 7341  Basecbs 17115  distcds 17165  0gc0g 17338  normcnm 24486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-fv 6484  df-ov 7344  df-nm 24492
This theorem is referenced by:  nmval2  24502  ngpds2  24516  isngp4  24522  nmge0  24527  nmeq0  24528  nminv  24531  nmmtri  24532  nmrtri  24534
  Copyright terms: Public domain W3C validator