![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmval | Structured version Visualization version GIF version |
Description: The value of the norm as the distance to zero. Problem 1 of [Kreyszig] p. 63. (Contributed by NM, 4-Dec-2006.) (Revised by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
nmfval.n | β’ π = (normβπ) |
nmfval.x | β’ π = (Baseβπ) |
nmfval.z | β’ 0 = (0gβπ) |
nmfval.d | β’ π· = (distβπ) |
Ref | Expression |
---|---|
nmval | β’ (π΄ β π β (πβπ΄) = (π΄π· 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7420 | . 2 β’ (π₯ = π΄ β (π₯π· 0 ) = (π΄π· 0 )) | |
2 | nmfval.n | . . 3 β’ π = (normβπ) | |
3 | nmfval.x | . . 3 β’ π = (Baseβπ) | |
4 | nmfval.z | . . 3 β’ 0 = (0gβπ) | |
5 | nmfval.d | . . 3 β’ π· = (distβπ) | |
6 | 2, 3, 4, 5 | nmfval 24319 | . 2 β’ π = (π₯ β π β¦ (π₯π· 0 )) |
7 | ovex 7446 | . 2 β’ (π΄π· 0 ) β V | |
8 | 1, 6, 7 | fvmpt 6999 | 1 β’ (π΄ β π β (πβπ΄) = (π΄π· 0 )) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1539 β wcel 2104 βcfv 6544 (class class class)co 7413 Basecbs 17150 distcds 17212 0gc0g 17391 normcnm 24307 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fv 6552 df-ov 7416 df-nm 24313 |
This theorem is referenced by: nmval2 24323 ngpds2 24337 isngp4 24343 nmge0 24348 nmeq0 24349 nminv 24352 nmmtri 24353 nmrtri 24355 |
Copyright terms: Public domain | W3C validator |