MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnaordex2 Structured version   Visualization version   GIF version

Theorem nnaordex2 8676
Description: Equivalence for ordering. (Contributed by Scott Fenton, 18-Apr-2025.)
Assertion
Ref Expression
nnaordex2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ∃𝑥 ∈ ω (𝐴 +o suc 𝑥) = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem nnaordex2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nnaordex 8675 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ∃𝑦 ∈ ω (∅ ∈ 𝑦 ∧ (𝐴 +o 𝑦) = 𝐵)))
2 nn0suc 7917 . . . . . . 7 (𝑦 ∈ ω → (𝑦 = ∅ ∨ ∃𝑥 ∈ ω 𝑦 = suc 𝑥))
32ad2antrl 728 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦 ∈ ω ∧ (∅ ∈ 𝑦 ∧ (𝐴 +o 𝑦) = 𝐵))) → (𝑦 = ∅ ∨ ∃𝑥 ∈ ω 𝑦 = suc 𝑥))
4 simprrl 781 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦 ∈ ω ∧ (∅ ∈ 𝑦 ∧ (𝐴 +o 𝑦) = 𝐵))) → ∅ ∈ 𝑦)
5 n0i 4346 . . . . . . 7 (∅ ∈ 𝑦 → ¬ 𝑦 = ∅)
64, 5syl 17 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦 ∈ ω ∧ (∅ ∈ 𝑦 ∧ (𝐴 +o 𝑦) = 𝐵))) → ¬ 𝑦 = ∅)
73, 6orcnd 878 . . . . 5 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦 ∈ ω ∧ (∅ ∈ 𝑦 ∧ (𝐴 +o 𝑦) = 𝐵))) → ∃𝑥 ∈ ω 𝑦 = suc 𝑥)
8 simprrr 782 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦 ∈ ω ∧ (∅ ∈ 𝑦 ∧ (𝐴 +o 𝑦) = 𝐵))) → (𝐴 +o 𝑦) = 𝐵)
9 oveq2 7439 . . . . . . . 8 (𝑦 = suc 𝑥 → (𝐴 +o 𝑦) = (𝐴 +o suc 𝑥))
109eqeq1d 2737 . . . . . . 7 (𝑦 = suc 𝑥 → ((𝐴 +o 𝑦) = 𝐵 ↔ (𝐴 +o suc 𝑥) = 𝐵))
118, 10syl5ibcom 245 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦 ∈ ω ∧ (∅ ∈ 𝑦 ∧ (𝐴 +o 𝑦) = 𝐵))) → (𝑦 = suc 𝑥 → (𝐴 +o suc 𝑥) = 𝐵))
1211reximdv 3168 . . . . 5 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦 ∈ ω ∧ (∅ ∈ 𝑦 ∧ (𝐴 +o 𝑦) = 𝐵))) → (∃𝑥 ∈ ω 𝑦 = suc 𝑥 → ∃𝑥 ∈ ω (𝐴 +o suc 𝑥) = 𝐵))
137, 12mpd 15 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦 ∈ ω ∧ (∅ ∈ 𝑦 ∧ (𝐴 +o 𝑦) = 𝐵))) → ∃𝑥 ∈ ω (𝐴 +o suc 𝑥) = 𝐵)
1413rexlimdvaa 3154 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (∃𝑦 ∈ ω (∅ ∈ 𝑦 ∧ (𝐴 +o 𝑦) = 𝐵) → ∃𝑥 ∈ ω (𝐴 +o suc 𝑥) = 𝐵))
15 peano2 7913 . . . . . 6 (𝑥 ∈ ω → suc 𝑥 ∈ ω)
1615ad2antrl 728 . . . . 5 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑥 ∈ ω ∧ (𝐴 +o suc 𝑥) = 𝐵)) → suc 𝑥 ∈ ω)
17 nnord 7895 . . . . . . 7 (𝑥 ∈ ω → Ord 𝑥)
1817ad2antrl 728 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑥 ∈ ω ∧ (𝐴 +o suc 𝑥) = 𝐵)) → Ord 𝑥)
19 0elsuc 7855 . . . . . 6 (Ord 𝑥 → ∅ ∈ suc 𝑥)
2018, 19syl 17 . . . . 5 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑥 ∈ ω ∧ (𝐴 +o suc 𝑥) = 𝐵)) → ∅ ∈ suc 𝑥)
21 simprr 773 . . . . 5 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑥 ∈ ω ∧ (𝐴 +o suc 𝑥) = 𝐵)) → (𝐴 +o suc 𝑥) = 𝐵)
22 eleq2 2828 . . . . . . 7 (𝑦 = suc 𝑥 → (∅ ∈ 𝑦 ↔ ∅ ∈ suc 𝑥))
2322, 10anbi12d 632 . . . . . 6 (𝑦 = suc 𝑥 → ((∅ ∈ 𝑦 ∧ (𝐴 +o 𝑦) = 𝐵) ↔ (∅ ∈ suc 𝑥 ∧ (𝐴 +o suc 𝑥) = 𝐵)))
2423rspcev 3622 . . . . 5 ((suc 𝑥 ∈ ω ∧ (∅ ∈ suc 𝑥 ∧ (𝐴 +o suc 𝑥) = 𝐵)) → ∃𝑦 ∈ ω (∅ ∈ 𝑦 ∧ (𝐴 +o 𝑦) = 𝐵))
2516, 20, 21, 24syl12anc 837 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑥 ∈ ω ∧ (𝐴 +o suc 𝑥) = 𝐵)) → ∃𝑦 ∈ ω (∅ ∈ 𝑦 ∧ (𝐴 +o 𝑦) = 𝐵))
2625rexlimdvaa 3154 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (∃𝑥 ∈ ω (𝐴 +o suc 𝑥) = 𝐵 → ∃𝑦 ∈ ω (∅ ∈ 𝑦 ∧ (𝐴 +o 𝑦) = 𝐵)))
2714, 26impbid 212 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (∃𝑦 ∈ ω (∅ ∈ 𝑦 ∧ (𝐴 +o 𝑦) = 𝐵) ↔ ∃𝑥 ∈ ω (𝐴 +o suc 𝑥) = 𝐵))
281, 27bitrd 279 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ∃𝑥 ∈ ω (𝐴 +o suc 𝑥) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1537  wcel 2106  wrex 3068  c0 4339  Ord word 6385  suc csuc 6388  (class class class)co 7431  ωcom 7887   +o coa 8502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-oadd 8509
This theorem is referenced by:  om2noseqlt  28320
  Copyright terms: Public domain W3C validator