MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnaordex2 Structured version   Visualization version   GIF version

Theorem nnaordex2 8606
Description: Equivalence for ordering. (Contributed by Scott Fenton, 18-Apr-2025.)
Assertion
Ref Expression
nnaordex2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ∃𝑥 ∈ ω (𝐴 +o suc 𝑥) = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem nnaordex2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nnaordex 8605 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ∃𝑦 ∈ ω (∅ ∈ 𝑦 ∧ (𝐴 +o 𝑦) = 𝐵)))
2 nn0suc 7873 . . . . . . 7 (𝑦 ∈ ω → (𝑦 = ∅ ∨ ∃𝑥 ∈ ω 𝑦 = suc 𝑥))
32ad2antrl 728 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦 ∈ ω ∧ (∅ ∈ 𝑦 ∧ (𝐴 +o 𝑦) = 𝐵))) → (𝑦 = ∅ ∨ ∃𝑥 ∈ ω 𝑦 = suc 𝑥))
4 simprrl 780 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦 ∈ ω ∧ (∅ ∈ 𝑦 ∧ (𝐴 +o 𝑦) = 𝐵))) → ∅ ∈ 𝑦)
5 n0i 4306 . . . . . . 7 (∅ ∈ 𝑦 → ¬ 𝑦 = ∅)
64, 5syl 17 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦 ∈ ω ∧ (∅ ∈ 𝑦 ∧ (𝐴 +o 𝑦) = 𝐵))) → ¬ 𝑦 = ∅)
73, 6orcnd 878 . . . . 5 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦 ∈ ω ∧ (∅ ∈ 𝑦 ∧ (𝐴 +o 𝑦) = 𝐵))) → ∃𝑥 ∈ ω 𝑦 = suc 𝑥)
8 simprrr 781 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦 ∈ ω ∧ (∅ ∈ 𝑦 ∧ (𝐴 +o 𝑦) = 𝐵))) → (𝐴 +o 𝑦) = 𝐵)
9 oveq2 7398 . . . . . . . 8 (𝑦 = suc 𝑥 → (𝐴 +o 𝑦) = (𝐴 +o suc 𝑥))
109eqeq1d 2732 . . . . . . 7 (𝑦 = suc 𝑥 → ((𝐴 +o 𝑦) = 𝐵 ↔ (𝐴 +o suc 𝑥) = 𝐵))
118, 10syl5ibcom 245 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦 ∈ ω ∧ (∅ ∈ 𝑦 ∧ (𝐴 +o 𝑦) = 𝐵))) → (𝑦 = suc 𝑥 → (𝐴 +o suc 𝑥) = 𝐵))
1211reximdv 3149 . . . . 5 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦 ∈ ω ∧ (∅ ∈ 𝑦 ∧ (𝐴 +o 𝑦) = 𝐵))) → (∃𝑥 ∈ ω 𝑦 = suc 𝑥 → ∃𝑥 ∈ ω (𝐴 +o suc 𝑥) = 𝐵))
137, 12mpd 15 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦 ∈ ω ∧ (∅ ∈ 𝑦 ∧ (𝐴 +o 𝑦) = 𝐵))) → ∃𝑥 ∈ ω (𝐴 +o suc 𝑥) = 𝐵)
1413rexlimdvaa 3136 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (∃𝑦 ∈ ω (∅ ∈ 𝑦 ∧ (𝐴 +o 𝑦) = 𝐵) → ∃𝑥 ∈ ω (𝐴 +o suc 𝑥) = 𝐵))
15 peano2 7869 . . . . . 6 (𝑥 ∈ ω → suc 𝑥 ∈ ω)
1615ad2antrl 728 . . . . 5 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑥 ∈ ω ∧ (𝐴 +o suc 𝑥) = 𝐵)) → suc 𝑥 ∈ ω)
17 nnord 7853 . . . . . . 7 (𝑥 ∈ ω → Ord 𝑥)
1817ad2antrl 728 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑥 ∈ ω ∧ (𝐴 +o suc 𝑥) = 𝐵)) → Ord 𝑥)
19 0elsuc 7813 . . . . . 6 (Ord 𝑥 → ∅ ∈ suc 𝑥)
2018, 19syl 17 . . . . 5 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑥 ∈ ω ∧ (𝐴 +o suc 𝑥) = 𝐵)) → ∅ ∈ suc 𝑥)
21 simprr 772 . . . . 5 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑥 ∈ ω ∧ (𝐴 +o suc 𝑥) = 𝐵)) → (𝐴 +o suc 𝑥) = 𝐵)
22 eleq2 2818 . . . . . . 7 (𝑦 = suc 𝑥 → (∅ ∈ 𝑦 ↔ ∅ ∈ suc 𝑥))
2322, 10anbi12d 632 . . . . . 6 (𝑦 = suc 𝑥 → ((∅ ∈ 𝑦 ∧ (𝐴 +o 𝑦) = 𝐵) ↔ (∅ ∈ suc 𝑥 ∧ (𝐴 +o suc 𝑥) = 𝐵)))
2423rspcev 3591 . . . . 5 ((suc 𝑥 ∈ ω ∧ (∅ ∈ suc 𝑥 ∧ (𝐴 +o suc 𝑥) = 𝐵)) → ∃𝑦 ∈ ω (∅ ∈ 𝑦 ∧ (𝐴 +o 𝑦) = 𝐵))
2516, 20, 21, 24syl12anc 836 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑥 ∈ ω ∧ (𝐴 +o suc 𝑥) = 𝐵)) → ∃𝑦 ∈ ω (∅ ∈ 𝑦 ∧ (𝐴 +o 𝑦) = 𝐵))
2625rexlimdvaa 3136 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (∃𝑥 ∈ ω (𝐴 +o suc 𝑥) = 𝐵 → ∃𝑦 ∈ ω (∅ ∈ 𝑦 ∧ (𝐴 +o 𝑦) = 𝐵)))
2714, 26impbid 212 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (∃𝑦 ∈ ω (∅ ∈ 𝑦 ∧ (𝐴 +o 𝑦) = 𝐵) ↔ ∃𝑥 ∈ ω (𝐴 +o suc 𝑥) = 𝐵))
281, 27bitrd 279 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ∃𝑥 ∈ ω (𝐴 +o suc 𝑥) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wrex 3054  c0 4299  Ord word 6334  suc csuc 6337  (class class class)co 7390  ωcom 7845   +o coa 8434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-oadd 8441
This theorem is referenced by:  om2noseqlt  28200
  Copyright terms: Public domain W3C validator