Step | Hyp | Ref
| Expression |
1 | | nnaordex 8668 |
. 2
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ↔ ∃𝑦 ∈ ω (∅ ∈ 𝑦 ∧ (𝐴 +o 𝑦) = 𝐵))) |
2 | | nn0suc 7907 |
. . . . . . 7
⊢ (𝑦 ∈ ω → (𝑦 = ∅ ∨ ∃𝑥 ∈ ω 𝑦 = suc 𝑥)) |
3 | 2 | ad2antrl 726 |
. . . . . 6
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦 ∈ ω ∧ (∅
∈ 𝑦 ∧ (𝐴 +o 𝑦) = 𝐵))) → (𝑦 = ∅ ∨ ∃𝑥 ∈ ω 𝑦 = suc 𝑥)) |
4 | | simprrl 779 |
. . . . . . 7
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦 ∈ ω ∧ (∅
∈ 𝑦 ∧ (𝐴 +o 𝑦) = 𝐵))) → ∅ ∈ 𝑦) |
5 | | n0i 4336 |
. . . . . . 7
⊢ (∅
∈ 𝑦 → ¬ 𝑦 = ∅) |
6 | 4, 5 | syl 17 |
. . . . . 6
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦 ∈ ω ∧ (∅
∈ 𝑦 ∧ (𝐴 +o 𝑦) = 𝐵))) → ¬ 𝑦 = ∅) |
7 | 3, 6 | orcnd 876 |
. . . . 5
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦 ∈ ω ∧ (∅
∈ 𝑦 ∧ (𝐴 +o 𝑦) = 𝐵))) → ∃𝑥 ∈ ω 𝑦 = suc 𝑥) |
8 | | simprrr 780 |
. . . . . . 7
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦 ∈ ω ∧ (∅
∈ 𝑦 ∧ (𝐴 +o 𝑦) = 𝐵))) → (𝐴 +o 𝑦) = 𝐵) |
9 | | oveq2 7432 |
. . . . . . . 8
⊢ (𝑦 = suc 𝑥 → (𝐴 +o 𝑦) = (𝐴 +o suc 𝑥)) |
10 | 9 | eqeq1d 2728 |
. . . . . . 7
⊢ (𝑦 = suc 𝑥 → ((𝐴 +o 𝑦) = 𝐵 ↔ (𝐴 +o suc 𝑥) = 𝐵)) |
11 | 8, 10 | syl5ibcom 244 |
. . . . . 6
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦 ∈ ω ∧ (∅
∈ 𝑦 ∧ (𝐴 +o 𝑦) = 𝐵))) → (𝑦 = suc 𝑥 → (𝐴 +o suc 𝑥) = 𝐵)) |
12 | 11 | reximdv 3160 |
. . . . 5
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦 ∈ ω ∧ (∅
∈ 𝑦 ∧ (𝐴 +o 𝑦) = 𝐵))) → (∃𝑥 ∈ ω 𝑦 = suc 𝑥 → ∃𝑥 ∈ ω (𝐴 +o suc 𝑥) = 𝐵)) |
13 | 7, 12 | mpd 15 |
. . . 4
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑦 ∈ ω ∧ (∅
∈ 𝑦 ∧ (𝐴 +o 𝑦) = 𝐵))) → ∃𝑥 ∈ ω (𝐴 +o suc 𝑥) = 𝐵) |
14 | 13 | rexlimdvaa 3146 |
. . 3
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) →
(∃𝑦 ∈ ω
(∅ ∈ 𝑦 ∧
(𝐴 +o 𝑦) = 𝐵) → ∃𝑥 ∈ ω (𝐴 +o suc 𝑥) = 𝐵)) |
15 | | peano2 7902 |
. . . . . 6
⊢ (𝑥 ∈ ω → suc 𝑥 ∈
ω) |
16 | 15 | ad2antrl 726 |
. . . . 5
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑥 ∈ ω ∧ (𝐴 +o suc 𝑥) = 𝐵)) → suc 𝑥 ∈ ω) |
17 | | nnord 7884 |
. . . . . . 7
⊢ (𝑥 ∈ ω → Ord 𝑥) |
18 | 17 | ad2antrl 726 |
. . . . . 6
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑥 ∈ ω ∧ (𝐴 +o suc 𝑥) = 𝐵)) → Ord 𝑥) |
19 | | 0elsuc 7844 |
. . . . . 6
⊢ (Ord
𝑥 → ∅ ∈ suc
𝑥) |
20 | 18, 19 | syl 17 |
. . . . 5
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑥 ∈ ω ∧ (𝐴 +o suc 𝑥) = 𝐵)) → ∅ ∈ suc 𝑥) |
21 | | simprr 771 |
. . . . 5
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑥 ∈ ω ∧ (𝐴 +o suc 𝑥) = 𝐵)) → (𝐴 +o suc 𝑥) = 𝐵) |
22 | | eleq2 2815 |
. . . . . . 7
⊢ (𝑦 = suc 𝑥 → (∅ ∈ 𝑦 ↔ ∅ ∈ suc 𝑥)) |
23 | 22, 10 | anbi12d 630 |
. . . . . 6
⊢ (𝑦 = suc 𝑥 → ((∅ ∈ 𝑦 ∧ (𝐴 +o 𝑦) = 𝐵) ↔ (∅ ∈ suc 𝑥 ∧ (𝐴 +o suc 𝑥) = 𝐵))) |
24 | 23 | rspcev 3608 |
. . . . 5
⊢ ((suc
𝑥 ∈ ω ∧
(∅ ∈ suc 𝑥 ∧
(𝐴 +o suc 𝑥) = 𝐵)) → ∃𝑦 ∈ ω (∅ ∈ 𝑦 ∧ (𝐴 +o 𝑦) = 𝐵)) |
25 | 16, 20, 21, 24 | syl12anc 835 |
. . . 4
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝑥 ∈ ω ∧ (𝐴 +o suc 𝑥) = 𝐵)) → ∃𝑦 ∈ ω (∅ ∈ 𝑦 ∧ (𝐴 +o 𝑦) = 𝐵)) |
26 | 25 | rexlimdvaa 3146 |
. . 3
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) →
(∃𝑥 ∈ ω
(𝐴 +o suc 𝑥) = 𝐵 → ∃𝑦 ∈ ω (∅ ∈ 𝑦 ∧ (𝐴 +o 𝑦) = 𝐵))) |
27 | 14, 26 | impbid 211 |
. 2
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) →
(∃𝑦 ∈ ω
(∅ ∈ 𝑦 ∧
(𝐴 +o 𝑦) = 𝐵) ↔ ∃𝑥 ∈ ω (𝐴 +o suc 𝑥) = 𝐵)) |
28 | 1, 27 | bitrd 278 |
1
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ ω (𝐴 +o suc 𝑥) = 𝐵)) |