MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hsmexlem9 Structured version   Visualization version   GIF version

Theorem hsmexlem9 10181
Description: Lemma for hsmex 10188. Properties of the recurrent sequence of ordinals. (Contributed by Stefan O'Rear, 14-Feb-2015.)
Hypothesis
Ref Expression
hsmexlem7.h 𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω)
Assertion
Ref Expression
hsmexlem9 (𝑎 ∈ ω → (𝐻𝑎) ∈ On)
Distinct variable groups:   𝑧,𝑋   𝑧,𝑎
Allowed substitution hints:   𝐻(𝑧,𝑎)   𝑋(𝑎)

Proof of Theorem hsmexlem9
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 nn0suc 7742 . 2 (𝑎 ∈ ω → (𝑎 = ∅ ∨ ∃𝑏 ∈ ω 𝑎 = suc 𝑏))
2 fveq2 6774 . . . 4 (𝑎 = ∅ → (𝐻𝑎) = (𝐻‘∅))
3 hsmexlem7.h . . . . . 6 𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω)
43hsmexlem7 10179 . . . . 5 (𝐻‘∅) = (har‘𝒫 𝑋)
5 harcl 9318 . . . . 5 (har‘𝒫 𝑋) ∈ On
64, 5eqeltri 2835 . . . 4 (𝐻‘∅) ∈ On
72, 6eqeltrdi 2847 . . 3 (𝑎 = ∅ → (𝐻𝑎) ∈ On)
83hsmexlem8 10180 . . . . . 6 (𝑏 ∈ ω → (𝐻‘suc 𝑏) = (har‘𝒫 (𝑋 × (𝐻𝑏))))
9 harcl 9318 . . . . . 6 (har‘𝒫 (𝑋 × (𝐻𝑏))) ∈ On
108, 9eqeltrdi 2847 . . . . 5 (𝑏 ∈ ω → (𝐻‘suc 𝑏) ∈ On)
11 fveq2 6774 . . . . . 6 (𝑎 = suc 𝑏 → (𝐻𝑎) = (𝐻‘suc 𝑏))
1211eleq1d 2823 . . . . 5 (𝑎 = suc 𝑏 → ((𝐻𝑎) ∈ On ↔ (𝐻‘suc 𝑏) ∈ On))
1310, 12syl5ibrcom 246 . . . 4 (𝑏 ∈ ω → (𝑎 = suc 𝑏 → (𝐻𝑎) ∈ On))
1413rexlimiv 3209 . . 3 (∃𝑏 ∈ ω 𝑎 = suc 𝑏 → (𝐻𝑎) ∈ On)
157, 14jaoi 854 . 2 ((𝑎 = ∅ ∨ ∃𝑏 ∈ ω 𝑎 = suc 𝑏) → (𝐻𝑎) ∈ On)
161, 15syl 17 1 (𝑎 ∈ ω → (𝐻𝑎) ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 844   = wceq 1539  wcel 2106  wrex 3065  Vcvv 3432  c0 4256  𝒫 cpw 4533  cmpt 5157   × cxp 5587  cres 5591  Oncon0 6266  suc csuc 6268  cfv 6433  ωcom 7712  reccrdg 8240  harchar 9315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-en 8734  df-dom 8735  df-oi 9269  df-har 9316
This theorem is referenced by:  hsmexlem4  10185  hsmexlem5  10186
  Copyright terms: Public domain W3C validator