MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hsmexlem9 Structured version   Visualization version   GIF version

Theorem hsmexlem9 10494
Description: Lemma for hsmex 10501. Properties of the recurrent sequence of ordinals. (Contributed by Stefan O'Rear, 14-Feb-2015.)
Hypothesis
Ref Expression
hsmexlem7.h 𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω)
Assertion
Ref Expression
hsmexlem9 (𝑎 ∈ ω → (𝐻𝑎) ∈ On)
Distinct variable groups:   𝑧,𝑋   𝑧,𝑎
Allowed substitution hints:   𝐻(𝑧,𝑎)   𝑋(𝑎)

Proof of Theorem hsmexlem9
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 nn0suc 7934 . 2 (𝑎 ∈ ω → (𝑎 = ∅ ∨ ∃𝑏 ∈ ω 𝑎 = suc 𝑏))
2 fveq2 6920 . . . 4 (𝑎 = ∅ → (𝐻𝑎) = (𝐻‘∅))
3 hsmexlem7.h . . . . . 6 𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω)
43hsmexlem7 10492 . . . . 5 (𝐻‘∅) = (har‘𝒫 𝑋)
5 harcl 9628 . . . . 5 (har‘𝒫 𝑋) ∈ On
64, 5eqeltri 2840 . . . 4 (𝐻‘∅) ∈ On
72, 6eqeltrdi 2852 . . 3 (𝑎 = ∅ → (𝐻𝑎) ∈ On)
83hsmexlem8 10493 . . . . . 6 (𝑏 ∈ ω → (𝐻‘suc 𝑏) = (har‘𝒫 (𝑋 × (𝐻𝑏))))
9 harcl 9628 . . . . . 6 (har‘𝒫 (𝑋 × (𝐻𝑏))) ∈ On
108, 9eqeltrdi 2852 . . . . 5 (𝑏 ∈ ω → (𝐻‘suc 𝑏) ∈ On)
11 fveq2 6920 . . . . . 6 (𝑎 = suc 𝑏 → (𝐻𝑎) = (𝐻‘suc 𝑏))
1211eleq1d 2829 . . . . 5 (𝑎 = suc 𝑏 → ((𝐻𝑎) ∈ On ↔ (𝐻‘suc 𝑏) ∈ On))
1310, 12syl5ibrcom 247 . . . 4 (𝑏 ∈ ω → (𝑎 = suc 𝑏 → (𝐻𝑎) ∈ On))
1413rexlimiv 3154 . . 3 (∃𝑏 ∈ ω 𝑎 = suc 𝑏 → (𝐻𝑎) ∈ On)
157, 14jaoi 856 . 2 ((𝑎 = ∅ ∨ ∃𝑏 ∈ ω 𝑎 = suc 𝑏) → (𝐻𝑎) ∈ On)
161, 15syl 17 1 (𝑎 ∈ ω → (𝐻𝑎) ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 846   = wceq 1537  wcel 2108  wrex 3076  Vcvv 3488  c0 4352  𝒫 cpw 4622  cmpt 5249   × cxp 5698  cres 5702  Oncon0 6395  suc csuc 6397  cfv 6573  ωcom 7903  reccrdg 8465  harchar 9625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-en 9004  df-dom 9005  df-oi 9579  df-har 9626
This theorem is referenced by:  hsmexlem4  10498  hsmexlem5  10499
  Copyright terms: Public domain W3C validator