![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hsmexlem9 | Structured version Visualization version GIF version |
Description: Lemma for hsmex 10422. Properties of the recurrent sequence of ordinals. (Contributed by Stefan O'Rear, 14-Feb-2015.) |
Ref | Expression |
---|---|
hsmexlem7.h | β’ π» = (rec((π§ β V β¦ (harβπ« (π Γ π§))), (harβπ« π)) βΎ Ο) |
Ref | Expression |
---|---|
hsmexlem9 | β’ (π β Ο β (π»βπ) β On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0suc 7879 | . 2 β’ (π β Ο β (π = β β¨ βπ β Ο π = suc π)) | |
2 | fveq2 6881 | . . . 4 β’ (π = β β (π»βπ) = (π»ββ )) | |
3 | hsmexlem7.h | . . . . . 6 β’ π» = (rec((π§ β V β¦ (harβπ« (π Γ π§))), (harβπ« π)) βΎ Ο) | |
4 | 3 | hsmexlem7 10413 | . . . . 5 β’ (π»ββ ) = (harβπ« π) |
5 | harcl 9549 | . . . . 5 β’ (harβπ« π) β On | |
6 | 4, 5 | eqeltri 2821 | . . . 4 β’ (π»ββ ) β On |
7 | 2, 6 | eqeltrdi 2833 | . . 3 β’ (π = β β (π»βπ) β On) |
8 | 3 | hsmexlem8 10414 | . . . . . 6 β’ (π β Ο β (π»βsuc π) = (harβπ« (π Γ (π»βπ)))) |
9 | harcl 9549 | . . . . . 6 β’ (harβπ« (π Γ (π»βπ))) β On | |
10 | 8, 9 | eqeltrdi 2833 | . . . . 5 β’ (π β Ο β (π»βsuc π) β On) |
11 | fveq2 6881 | . . . . . 6 β’ (π = suc π β (π»βπ) = (π»βsuc π)) | |
12 | 11 | eleq1d 2810 | . . . . 5 β’ (π = suc π β ((π»βπ) β On β (π»βsuc π) β On)) |
13 | 10, 12 | syl5ibrcom 246 | . . . 4 β’ (π β Ο β (π = suc π β (π»βπ) β On)) |
14 | 13 | rexlimiv 3140 | . . 3 β’ (βπ β Ο π = suc π β (π»βπ) β On) |
15 | 7, 14 | jaoi 854 | . 2 β’ ((π = β β¨ βπ β Ο π = suc π) β (π»βπ) β On) |
16 | 1, 15 | syl 17 | 1 β’ (π β Ο β (π»βπ) β On) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β¨ wo 844 = wceq 1533 β wcel 2098 βwrex 3062 Vcvv 3466 β c0 4314 π« cpw 4594 β¦ cmpt 5221 Γ cxp 5664 βΎ cres 5668 Oncon0 6354 suc csuc 6356 βcfv 6533 Οcom 7848 reccrdg 8404 harchar 9546 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7357 df-ov 7404 df-om 7849 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-en 8935 df-dom 8936 df-oi 9500 df-har 9547 |
This theorem is referenced by: hsmexlem4 10419 hsmexlem5 10420 |
Copyright terms: Public domain | W3C validator |