| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hsmexlem9 | Structured version Visualization version GIF version | ||
| Description: Lemma for hsmex 10323. Properties of the recurrent sequence of ordinals. (Contributed by Stefan O'Rear, 14-Feb-2015.) |
| Ref | Expression |
|---|---|
| hsmexlem7.h | ⊢ 𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω) |
| Ref | Expression |
|---|---|
| hsmexlem9 | ⊢ (𝑎 ∈ ω → (𝐻‘𝑎) ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0suc 7824 | . 2 ⊢ (𝑎 ∈ ω → (𝑎 = ∅ ∨ ∃𝑏 ∈ ω 𝑎 = suc 𝑏)) | |
| 2 | fveq2 6822 | . . . 4 ⊢ (𝑎 = ∅ → (𝐻‘𝑎) = (𝐻‘∅)) | |
| 3 | hsmexlem7.h | . . . . . 6 ⊢ 𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω) | |
| 4 | 3 | hsmexlem7 10314 | . . . . 5 ⊢ (𝐻‘∅) = (har‘𝒫 𝑋) |
| 5 | harcl 9445 | . . . . 5 ⊢ (har‘𝒫 𝑋) ∈ On | |
| 6 | 4, 5 | eqeltri 2827 | . . . 4 ⊢ (𝐻‘∅) ∈ On |
| 7 | 2, 6 | eqeltrdi 2839 | . . 3 ⊢ (𝑎 = ∅ → (𝐻‘𝑎) ∈ On) |
| 8 | 3 | hsmexlem8 10315 | . . . . . 6 ⊢ (𝑏 ∈ ω → (𝐻‘suc 𝑏) = (har‘𝒫 (𝑋 × (𝐻‘𝑏)))) |
| 9 | harcl 9445 | . . . . . 6 ⊢ (har‘𝒫 (𝑋 × (𝐻‘𝑏))) ∈ On | |
| 10 | 8, 9 | eqeltrdi 2839 | . . . . 5 ⊢ (𝑏 ∈ ω → (𝐻‘suc 𝑏) ∈ On) |
| 11 | fveq2 6822 | . . . . . 6 ⊢ (𝑎 = suc 𝑏 → (𝐻‘𝑎) = (𝐻‘suc 𝑏)) | |
| 12 | 11 | eleq1d 2816 | . . . . 5 ⊢ (𝑎 = suc 𝑏 → ((𝐻‘𝑎) ∈ On ↔ (𝐻‘suc 𝑏) ∈ On)) |
| 13 | 10, 12 | syl5ibrcom 247 | . . . 4 ⊢ (𝑏 ∈ ω → (𝑎 = suc 𝑏 → (𝐻‘𝑎) ∈ On)) |
| 14 | 13 | rexlimiv 3126 | . . 3 ⊢ (∃𝑏 ∈ ω 𝑎 = suc 𝑏 → (𝐻‘𝑎) ∈ On) |
| 15 | 7, 14 | jaoi 857 | . 2 ⊢ ((𝑎 = ∅ ∨ ∃𝑏 ∈ ω 𝑎 = suc 𝑏) → (𝐻‘𝑎) ∈ On) |
| 16 | 1, 15 | syl 17 | 1 ⊢ (𝑎 ∈ ω → (𝐻‘𝑎) ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 Vcvv 3436 ∅c0 4280 𝒫 cpw 4547 ↦ cmpt 5170 × cxp 5612 ↾ cres 5616 Oncon0 6306 suc csuc 6308 ‘cfv 6481 ωcom 7796 reccrdg 8328 harchar 9442 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-en 8870 df-dom 8871 df-oi 9396 df-har 9443 |
| This theorem is referenced by: hsmexlem4 10320 hsmexlem5 10321 |
| Copyright terms: Public domain | W3C validator |