Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hsmexlem9 | Structured version Visualization version GIF version |
Description: Lemma for hsmex 10119. Properties of the recurrent sequence of ordinals. (Contributed by Stefan O'Rear, 14-Feb-2015.) |
Ref | Expression |
---|---|
hsmexlem7.h | ⊢ 𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω) |
Ref | Expression |
---|---|
hsmexlem9 | ⊢ (𝑎 ∈ ω → (𝐻‘𝑎) ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0suc 7716 | . 2 ⊢ (𝑎 ∈ ω → (𝑎 = ∅ ∨ ∃𝑏 ∈ ω 𝑎 = suc 𝑏)) | |
2 | fveq2 6756 | . . . 4 ⊢ (𝑎 = ∅ → (𝐻‘𝑎) = (𝐻‘∅)) | |
3 | hsmexlem7.h | . . . . . 6 ⊢ 𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω) | |
4 | 3 | hsmexlem7 10110 | . . . . 5 ⊢ (𝐻‘∅) = (har‘𝒫 𝑋) |
5 | harcl 9248 | . . . . 5 ⊢ (har‘𝒫 𝑋) ∈ On | |
6 | 4, 5 | eqeltri 2835 | . . . 4 ⊢ (𝐻‘∅) ∈ On |
7 | 2, 6 | eqeltrdi 2847 | . . 3 ⊢ (𝑎 = ∅ → (𝐻‘𝑎) ∈ On) |
8 | 3 | hsmexlem8 10111 | . . . . . 6 ⊢ (𝑏 ∈ ω → (𝐻‘suc 𝑏) = (har‘𝒫 (𝑋 × (𝐻‘𝑏)))) |
9 | harcl 9248 | . . . . . 6 ⊢ (har‘𝒫 (𝑋 × (𝐻‘𝑏))) ∈ On | |
10 | 8, 9 | eqeltrdi 2847 | . . . . 5 ⊢ (𝑏 ∈ ω → (𝐻‘suc 𝑏) ∈ On) |
11 | fveq2 6756 | . . . . . 6 ⊢ (𝑎 = suc 𝑏 → (𝐻‘𝑎) = (𝐻‘suc 𝑏)) | |
12 | 11 | eleq1d 2823 | . . . . 5 ⊢ (𝑎 = suc 𝑏 → ((𝐻‘𝑎) ∈ On ↔ (𝐻‘suc 𝑏) ∈ On)) |
13 | 10, 12 | syl5ibrcom 246 | . . . 4 ⊢ (𝑏 ∈ ω → (𝑎 = suc 𝑏 → (𝐻‘𝑎) ∈ On)) |
14 | 13 | rexlimiv 3208 | . . 3 ⊢ (∃𝑏 ∈ ω 𝑎 = suc 𝑏 → (𝐻‘𝑎) ∈ On) |
15 | 7, 14 | jaoi 853 | . 2 ⊢ ((𝑎 = ∅ ∨ ∃𝑏 ∈ ω 𝑎 = suc 𝑏) → (𝐻‘𝑎) ∈ On) |
16 | 1, 15 | syl 17 | 1 ⊢ (𝑎 ∈ ω → (𝐻‘𝑎) ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 Vcvv 3422 ∅c0 4253 𝒫 cpw 4530 ↦ cmpt 5153 × cxp 5578 ↾ cres 5582 Oncon0 6251 suc csuc 6253 ‘cfv 6418 ωcom 7687 reccrdg 8211 harchar 9245 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-en 8692 df-dom 8693 df-oi 9199 df-har 9246 |
This theorem is referenced by: hsmexlem4 10116 hsmexlem5 10117 |
Copyright terms: Public domain | W3C validator |