MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hsmexlem9 Structured version   Visualization version   GIF version

Theorem hsmexlem9 10112
Description: Lemma for hsmex 10119. Properties of the recurrent sequence of ordinals. (Contributed by Stefan O'Rear, 14-Feb-2015.)
Hypothesis
Ref Expression
hsmexlem7.h 𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω)
Assertion
Ref Expression
hsmexlem9 (𝑎 ∈ ω → (𝐻𝑎) ∈ On)
Distinct variable groups:   𝑧,𝑋   𝑧,𝑎
Allowed substitution hints:   𝐻(𝑧,𝑎)   𝑋(𝑎)

Proof of Theorem hsmexlem9
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 nn0suc 7716 . 2 (𝑎 ∈ ω → (𝑎 = ∅ ∨ ∃𝑏 ∈ ω 𝑎 = suc 𝑏))
2 fveq2 6756 . . . 4 (𝑎 = ∅ → (𝐻𝑎) = (𝐻‘∅))
3 hsmexlem7.h . . . . . 6 𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω)
43hsmexlem7 10110 . . . . 5 (𝐻‘∅) = (har‘𝒫 𝑋)
5 harcl 9248 . . . . 5 (har‘𝒫 𝑋) ∈ On
64, 5eqeltri 2835 . . . 4 (𝐻‘∅) ∈ On
72, 6eqeltrdi 2847 . . 3 (𝑎 = ∅ → (𝐻𝑎) ∈ On)
83hsmexlem8 10111 . . . . . 6 (𝑏 ∈ ω → (𝐻‘suc 𝑏) = (har‘𝒫 (𝑋 × (𝐻𝑏))))
9 harcl 9248 . . . . . 6 (har‘𝒫 (𝑋 × (𝐻𝑏))) ∈ On
108, 9eqeltrdi 2847 . . . . 5 (𝑏 ∈ ω → (𝐻‘suc 𝑏) ∈ On)
11 fveq2 6756 . . . . . 6 (𝑎 = suc 𝑏 → (𝐻𝑎) = (𝐻‘suc 𝑏))
1211eleq1d 2823 . . . . 5 (𝑎 = suc 𝑏 → ((𝐻𝑎) ∈ On ↔ (𝐻‘suc 𝑏) ∈ On))
1310, 12syl5ibrcom 246 . . . 4 (𝑏 ∈ ω → (𝑎 = suc 𝑏 → (𝐻𝑎) ∈ On))
1413rexlimiv 3208 . . 3 (∃𝑏 ∈ ω 𝑎 = suc 𝑏 → (𝐻𝑎) ∈ On)
157, 14jaoi 853 . 2 ((𝑎 = ∅ ∨ ∃𝑏 ∈ ω 𝑎 = suc 𝑏) → (𝐻𝑎) ∈ On)
161, 15syl 17 1 (𝑎 ∈ ω → (𝐻𝑎) ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 843   = wceq 1539  wcel 2108  wrex 3064  Vcvv 3422  c0 4253  𝒫 cpw 4530  cmpt 5153   × cxp 5578  cres 5582  Oncon0 6251  suc csuc 6253  cfv 6418  ωcom 7687  reccrdg 8211  harchar 9245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-en 8692  df-dom 8693  df-oi 9199  df-har 9246
This theorem is referenced by:  hsmexlem4  10116  hsmexlem5  10117
  Copyright terms: Public domain W3C validator