![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nsgbi | Structured version Visualization version GIF version |
Description: Defining property of a normal subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.) |
Ref | Expression |
---|---|
isnsg.1 | ⊢ 𝑋 = (Base‘𝐺) |
isnsg.2 | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
nsgbi | ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴 + 𝐵) ∈ 𝑆 ↔ (𝐵 + 𝐴) ∈ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isnsg.1 | . . . . 5 ⊢ 𝑋 = (Base‘𝐺) | |
2 | isnsg.2 | . . . . 5 ⊢ + = (+g‘𝐺) | |
3 | 1, 2 | isnsg 19037 | . . . 4 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆))) |
4 | 3 | simprbi 497 | . . 3 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)) |
5 | oveq1 7418 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥 + 𝑦) = (𝐴 + 𝑦)) | |
6 | 5 | eleq1d 2818 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝐴 + 𝑦) ∈ 𝑆)) |
7 | oveq2 7419 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑦 + 𝑥) = (𝑦 + 𝐴)) | |
8 | 7 | eleq1d 2818 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝑦 + 𝑥) ∈ 𝑆 ↔ (𝑦 + 𝐴) ∈ 𝑆)) |
9 | 6, 8 | bibi12d 345 | . . . 4 ⊢ (𝑥 = 𝐴 → (((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆) ↔ ((𝐴 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝐴) ∈ 𝑆))) |
10 | oveq2 7419 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (𝐴 + 𝑦) = (𝐴 + 𝐵)) | |
11 | 10 | eleq1d 2818 | . . . . 5 ⊢ (𝑦 = 𝐵 → ((𝐴 + 𝑦) ∈ 𝑆 ↔ (𝐴 + 𝐵) ∈ 𝑆)) |
12 | oveq1 7418 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (𝑦 + 𝐴) = (𝐵 + 𝐴)) | |
13 | 12 | eleq1d 2818 | . . . . 5 ⊢ (𝑦 = 𝐵 → ((𝑦 + 𝐴) ∈ 𝑆 ↔ (𝐵 + 𝐴) ∈ 𝑆)) |
14 | 11, 13 | bibi12d 345 | . . . 4 ⊢ (𝑦 = 𝐵 → (((𝐴 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝐴) ∈ 𝑆) ↔ ((𝐴 + 𝐵) ∈ 𝑆 ↔ (𝐵 + 𝐴) ∈ 𝑆))) |
15 | 9, 14 | rspc2v 3622 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆) → ((𝐴 + 𝐵) ∈ 𝑆 ↔ (𝐵 + 𝐴) ∈ 𝑆))) |
16 | 4, 15 | syl5com 31 | . 2 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴 + 𝐵) ∈ 𝑆 ↔ (𝐵 + 𝐴) ∈ 𝑆))) |
17 | 16 | 3impib 1116 | 1 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴 + 𝐵) ∈ 𝑆 ↔ (𝐵 + 𝐴) ∈ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∀wral 3061 ‘cfv 6543 (class class class)co 7411 Basecbs 17146 +gcplusg 17199 SubGrpcsubg 19002 NrmSGrpcnsg 19003 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7414 df-subg 19005 df-nsg 19006 |
This theorem is referenced by: nsgconj 19041 eqgcpbl 19064 |
Copyright terms: Public domain | W3C validator |