MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nsgbi Structured version   Visualization version   GIF version

Theorem nsgbi 19064
Description: Defining property of a normal subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
isnsg.1 𝑋 = (Base‘𝐺)
isnsg.2 + = (+g𝐺)
Assertion
Ref Expression
nsgbi ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 + 𝐵) ∈ 𝑆 ↔ (𝐵 + 𝐴) ∈ 𝑆))

Proof of Theorem nsgbi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isnsg.1 . . . . 5 𝑋 = (Base‘𝐺)
2 isnsg.2 . . . . 5 + = (+g𝐺)
31, 2isnsg 19062 . . . 4 (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)))
43simprbi 496 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆))
5 oveq1 7348 . . . . . 6 (𝑥 = 𝐴 → (𝑥 + 𝑦) = (𝐴 + 𝑦))
65eleq1d 2816 . . . . 5 (𝑥 = 𝐴 → ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝐴 + 𝑦) ∈ 𝑆))
7 oveq2 7349 . . . . . 6 (𝑥 = 𝐴 → (𝑦 + 𝑥) = (𝑦 + 𝐴))
87eleq1d 2816 . . . . 5 (𝑥 = 𝐴 → ((𝑦 + 𝑥) ∈ 𝑆 ↔ (𝑦 + 𝐴) ∈ 𝑆))
96, 8bibi12d 345 . . . 4 (𝑥 = 𝐴 → (((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆) ↔ ((𝐴 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝐴) ∈ 𝑆)))
10 oveq2 7349 . . . . . 6 (𝑦 = 𝐵 → (𝐴 + 𝑦) = (𝐴 + 𝐵))
1110eleq1d 2816 . . . . 5 (𝑦 = 𝐵 → ((𝐴 + 𝑦) ∈ 𝑆 ↔ (𝐴 + 𝐵) ∈ 𝑆))
12 oveq1 7348 . . . . . 6 (𝑦 = 𝐵 → (𝑦 + 𝐴) = (𝐵 + 𝐴))
1312eleq1d 2816 . . . . 5 (𝑦 = 𝐵 → ((𝑦 + 𝐴) ∈ 𝑆 ↔ (𝐵 + 𝐴) ∈ 𝑆))
1411, 13bibi12d 345 . . . 4 (𝑦 = 𝐵 → (((𝐴 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝐴) ∈ 𝑆) ↔ ((𝐴 + 𝐵) ∈ 𝑆 ↔ (𝐵 + 𝐴) ∈ 𝑆)))
159, 14rspc2v 3583 . . 3 ((𝐴𝑋𝐵𝑋) → (∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆) → ((𝐴 + 𝐵) ∈ 𝑆 ↔ (𝐵 + 𝐴) ∈ 𝑆)))
164, 15syl5com 31 . 2 (𝑆 ∈ (NrmSGrp‘𝐺) → ((𝐴𝑋𝐵𝑋) → ((𝐴 + 𝐵) ∈ 𝑆 ↔ (𝐵 + 𝐴) ∈ 𝑆)))
17163impib 1116 1 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 + 𝐵) ∈ 𝑆 ↔ (𝐵 + 𝐴) ∈ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  cfv 6476  (class class class)co 7341  Basecbs 17115  +gcplusg 17156  SubGrpcsubg 19028  NrmSGrpcnsg 19029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fv 6484  df-ov 7344  df-subg 19031  df-nsg 19032
This theorem is referenced by:  nsgconj  19066  eqgcpbl  19089
  Copyright terms: Public domain W3C validator