Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nsgbi | Structured version Visualization version GIF version |
Description: Defining property of a normal subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.) |
Ref | Expression |
---|---|
isnsg.1 | ⊢ 𝑋 = (Base‘𝐺) |
isnsg.2 | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
nsgbi | ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴 + 𝐵) ∈ 𝑆 ↔ (𝐵 + 𝐴) ∈ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isnsg.1 | . . . . 5 ⊢ 𝑋 = (Base‘𝐺) | |
2 | isnsg.2 | . . . . 5 ⊢ + = (+g‘𝐺) | |
3 | 1, 2 | isnsg 18698 | . . . 4 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆))) |
4 | 3 | simprbi 496 | . . 3 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)) |
5 | oveq1 7262 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥 + 𝑦) = (𝐴 + 𝑦)) | |
6 | 5 | eleq1d 2823 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝐴 + 𝑦) ∈ 𝑆)) |
7 | oveq2 7263 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑦 + 𝑥) = (𝑦 + 𝐴)) | |
8 | 7 | eleq1d 2823 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝑦 + 𝑥) ∈ 𝑆 ↔ (𝑦 + 𝐴) ∈ 𝑆)) |
9 | 6, 8 | bibi12d 345 | . . . 4 ⊢ (𝑥 = 𝐴 → (((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆) ↔ ((𝐴 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝐴) ∈ 𝑆))) |
10 | oveq2 7263 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (𝐴 + 𝑦) = (𝐴 + 𝐵)) | |
11 | 10 | eleq1d 2823 | . . . . 5 ⊢ (𝑦 = 𝐵 → ((𝐴 + 𝑦) ∈ 𝑆 ↔ (𝐴 + 𝐵) ∈ 𝑆)) |
12 | oveq1 7262 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (𝑦 + 𝐴) = (𝐵 + 𝐴)) | |
13 | 12 | eleq1d 2823 | . . . . 5 ⊢ (𝑦 = 𝐵 → ((𝑦 + 𝐴) ∈ 𝑆 ↔ (𝐵 + 𝐴) ∈ 𝑆)) |
14 | 11, 13 | bibi12d 345 | . . . 4 ⊢ (𝑦 = 𝐵 → (((𝐴 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝐴) ∈ 𝑆) ↔ ((𝐴 + 𝐵) ∈ 𝑆 ↔ (𝐵 + 𝐴) ∈ 𝑆))) |
15 | 9, 14 | rspc2v 3562 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆) → ((𝐴 + 𝐵) ∈ 𝑆 ↔ (𝐵 + 𝐴) ∈ 𝑆))) |
16 | 4, 15 | syl5com 31 | . 2 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴 + 𝐵) ∈ 𝑆 ↔ (𝐵 + 𝐴) ∈ 𝑆))) |
17 | 16 | 3impib 1114 | 1 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴 + 𝐵) ∈ 𝑆 ↔ (𝐵 + 𝐴) ∈ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 SubGrpcsubg 18664 NrmSGrpcnsg 18665 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-subg 18667 df-nsg 18668 |
This theorem is referenced by: nsgconj 18702 eqgcpbl 18725 |
Copyright terms: Public domain | W3C validator |