MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqgcpbl Structured version   Visualization version   GIF version

Theorem eqgcpbl 18334
Description: The subgroup coset equivalence relation is compatible with addition when the subgroup is normal. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
eqger.x 𝑋 = (Base‘𝐺)
eqger.r = (𝐺 ~QG 𝑌)
eqgcpbl.p + = (+g𝐺)
Assertion
Ref Expression
eqgcpbl (𝑌 ∈ (NrmSGrp‘𝐺) → ((𝐴 𝐶𝐵 𝐷) → (𝐴 + 𝐵) (𝐶 + 𝐷)))

Proof of Theorem eqgcpbl
StepHypRef Expression
1 nsgsubg 18310 . . . . . 6 (𝑌 ∈ (NrmSGrp‘𝐺) → 𝑌 ∈ (SubGrp‘𝐺))
21adantr 483 . . . . 5 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → 𝑌 ∈ (SubGrp‘𝐺))
3 subgrcl 18284 . . . . 5 (𝑌 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
42, 3syl 17 . . . 4 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → 𝐺 ∈ Grp)
5 simprl 769 . . . . . 6 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → 𝐴 𝐶)
6 eqger.x . . . . . . . . 9 𝑋 = (Base‘𝐺)
76subgss 18280 . . . . . . . 8 (𝑌 ∈ (SubGrp‘𝐺) → 𝑌𝑋)
82, 7syl 17 . . . . . . 7 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → 𝑌𝑋)
9 eqid 2821 . . . . . . . 8 (invg𝐺) = (invg𝐺)
10 eqgcpbl.p . . . . . . . 8 + = (+g𝐺)
11 eqger.r . . . . . . . 8 = (𝐺 ~QG 𝑌)
126, 9, 10, 11eqgval 18329 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑌𝑋) → (𝐴 𝐶 ↔ (𝐴𝑋𝐶𝑋 ∧ (((invg𝐺)‘𝐴) + 𝐶) ∈ 𝑌)))
134, 8, 12syl2anc 586 . . . . . 6 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (𝐴 𝐶 ↔ (𝐴𝑋𝐶𝑋 ∧ (((invg𝐺)‘𝐴) + 𝐶) ∈ 𝑌)))
145, 13mpbid 234 . . . . 5 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (𝐴𝑋𝐶𝑋 ∧ (((invg𝐺)‘𝐴) + 𝐶) ∈ 𝑌))
1514simp1d 1138 . . . 4 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → 𝐴𝑋)
16 simprr 771 . . . . . 6 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → 𝐵 𝐷)
176, 9, 10, 11eqgval 18329 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑌𝑋) → (𝐵 𝐷 ↔ (𝐵𝑋𝐷𝑋 ∧ (((invg𝐺)‘𝐵) + 𝐷) ∈ 𝑌)))
184, 8, 17syl2anc 586 . . . . . 6 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (𝐵 𝐷 ↔ (𝐵𝑋𝐷𝑋 ∧ (((invg𝐺)‘𝐵) + 𝐷) ∈ 𝑌)))
1916, 18mpbid 234 . . . . 5 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (𝐵𝑋𝐷𝑋 ∧ (((invg𝐺)‘𝐵) + 𝐷) ∈ 𝑌))
2019simp1d 1138 . . . 4 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → 𝐵𝑋)
216, 10grpcl 18111 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + 𝐵) ∈ 𝑋)
224, 15, 20, 21syl3anc 1367 . . 3 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (𝐴 + 𝐵) ∈ 𝑋)
2314simp2d 1139 . . . 4 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → 𝐶𝑋)
2419simp2d 1139 . . . 4 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → 𝐷𝑋)
256, 10grpcl 18111 . . . 4 ((𝐺 ∈ Grp ∧ 𝐶𝑋𝐷𝑋) → (𝐶 + 𝐷) ∈ 𝑋)
264, 23, 24, 25syl3anc 1367 . . 3 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (𝐶 + 𝐷) ∈ 𝑋)
276, 10, 9grpinvadd 18177 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝐵𝑋) → ((invg𝐺)‘(𝐴 + 𝐵)) = (((invg𝐺)‘𝐵) + ((invg𝐺)‘𝐴)))
284, 15, 20, 27syl3anc 1367 . . . . . 6 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → ((invg𝐺)‘(𝐴 + 𝐵)) = (((invg𝐺)‘𝐵) + ((invg𝐺)‘𝐴)))
2928oveq1d 7171 . . . . 5 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (((invg𝐺)‘(𝐴 + 𝐵)) + (𝐶 + 𝐷)) = ((((invg𝐺)‘𝐵) + ((invg𝐺)‘𝐴)) + (𝐶 + 𝐷)))
306, 9grpinvcl 18151 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐵𝑋) → ((invg𝐺)‘𝐵) ∈ 𝑋)
314, 20, 30syl2anc 586 . . . . . 6 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → ((invg𝐺)‘𝐵) ∈ 𝑋)
326, 9grpinvcl 18151 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((invg𝐺)‘𝐴) ∈ 𝑋)
334, 15, 32syl2anc 586 . . . . . 6 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → ((invg𝐺)‘𝐴) ∈ 𝑋)
346, 10grpass 18112 . . . . . 6 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝐵) ∈ 𝑋 ∧ ((invg𝐺)‘𝐴) ∈ 𝑋 ∧ (𝐶 + 𝐷) ∈ 𝑋)) → ((((invg𝐺)‘𝐵) + ((invg𝐺)‘𝐴)) + (𝐶 + 𝐷)) = (((invg𝐺)‘𝐵) + (((invg𝐺)‘𝐴) + (𝐶 + 𝐷))))
354, 31, 33, 26, 34syl13anc 1368 . . . . 5 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → ((((invg𝐺)‘𝐵) + ((invg𝐺)‘𝐴)) + (𝐶 + 𝐷)) = (((invg𝐺)‘𝐵) + (((invg𝐺)‘𝐴) + (𝐶 + 𝐷))))
3629, 35eqtrd 2856 . . . 4 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (((invg𝐺)‘(𝐴 + 𝐵)) + (𝐶 + 𝐷)) = (((invg𝐺)‘𝐵) + (((invg𝐺)‘𝐴) + (𝐶 + 𝐷))))
376, 10grpass 18112 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝐴) ∈ 𝑋𝐶𝑋𝐷𝑋)) → ((((invg𝐺)‘𝐴) + 𝐶) + 𝐷) = (((invg𝐺)‘𝐴) + (𝐶 + 𝐷)))
384, 33, 23, 24, 37syl13anc 1368 . . . . . . . 8 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → ((((invg𝐺)‘𝐴) + 𝐶) + 𝐷) = (((invg𝐺)‘𝐴) + (𝐶 + 𝐷)))
3938oveq1d 7171 . . . . . . 7 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (((((invg𝐺)‘𝐴) + 𝐶) + 𝐷) + ((invg𝐺)‘𝐵)) = ((((invg𝐺)‘𝐴) + (𝐶 + 𝐷)) + ((invg𝐺)‘𝐵)))
406, 10grpcl 18111 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ ((invg𝐺)‘𝐴) ∈ 𝑋𝐶𝑋) → (((invg𝐺)‘𝐴) + 𝐶) ∈ 𝑋)
414, 33, 23, 40syl3anc 1367 . . . . . . . 8 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (((invg𝐺)‘𝐴) + 𝐶) ∈ 𝑋)
426, 10grpass 18112 . . . . . . . 8 ((𝐺 ∈ Grp ∧ ((((invg𝐺)‘𝐴) + 𝐶) ∈ 𝑋𝐷𝑋 ∧ ((invg𝐺)‘𝐵) ∈ 𝑋)) → (((((invg𝐺)‘𝐴) + 𝐶) + 𝐷) + ((invg𝐺)‘𝐵)) = ((((invg𝐺)‘𝐴) + 𝐶) + (𝐷 + ((invg𝐺)‘𝐵))))
434, 41, 24, 31, 42syl13anc 1368 . . . . . . 7 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (((((invg𝐺)‘𝐴) + 𝐶) + 𝐷) + ((invg𝐺)‘𝐵)) = ((((invg𝐺)‘𝐴) + 𝐶) + (𝐷 + ((invg𝐺)‘𝐵))))
4439, 43eqtr3d 2858 . . . . . 6 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → ((((invg𝐺)‘𝐴) + (𝐶 + 𝐷)) + ((invg𝐺)‘𝐵)) = ((((invg𝐺)‘𝐴) + 𝐶) + (𝐷 + ((invg𝐺)‘𝐵))))
4514simp3d 1140 . . . . . . 7 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (((invg𝐺)‘𝐴) + 𝐶) ∈ 𝑌)
4619simp3d 1140 . . . . . . . 8 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (((invg𝐺)‘𝐵) + 𝐷) ∈ 𝑌)
47 simpl 485 . . . . . . . . 9 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → 𝑌 ∈ (NrmSGrp‘𝐺))
486, 10nsgbi 18309 . . . . . . . . 9 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ ((invg𝐺)‘𝐵) ∈ 𝑋𝐷𝑋) → ((((invg𝐺)‘𝐵) + 𝐷) ∈ 𝑌 ↔ (𝐷 + ((invg𝐺)‘𝐵)) ∈ 𝑌))
4947, 31, 24, 48syl3anc 1367 . . . . . . . 8 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → ((((invg𝐺)‘𝐵) + 𝐷) ∈ 𝑌 ↔ (𝐷 + ((invg𝐺)‘𝐵)) ∈ 𝑌))
5046, 49mpbid 234 . . . . . . 7 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (𝐷 + ((invg𝐺)‘𝐵)) ∈ 𝑌)
5110subgcl 18289 . . . . . . 7 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (((invg𝐺)‘𝐴) + 𝐶) ∈ 𝑌 ∧ (𝐷 + ((invg𝐺)‘𝐵)) ∈ 𝑌) → ((((invg𝐺)‘𝐴) + 𝐶) + (𝐷 + ((invg𝐺)‘𝐵))) ∈ 𝑌)
522, 45, 50, 51syl3anc 1367 . . . . . 6 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → ((((invg𝐺)‘𝐴) + 𝐶) + (𝐷 + ((invg𝐺)‘𝐵))) ∈ 𝑌)
5344, 52eqeltrd 2913 . . . . 5 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → ((((invg𝐺)‘𝐴) + (𝐶 + 𝐷)) + ((invg𝐺)‘𝐵)) ∈ 𝑌)
546, 10grpcl 18111 . . . . . . 7 ((𝐺 ∈ Grp ∧ ((invg𝐺)‘𝐴) ∈ 𝑋 ∧ (𝐶 + 𝐷) ∈ 𝑋) → (((invg𝐺)‘𝐴) + (𝐶 + 𝐷)) ∈ 𝑋)
554, 33, 26, 54syl3anc 1367 . . . . . 6 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (((invg𝐺)‘𝐴) + (𝐶 + 𝐷)) ∈ 𝑋)
566, 10nsgbi 18309 . . . . . 6 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (((invg𝐺)‘𝐴) + (𝐶 + 𝐷)) ∈ 𝑋 ∧ ((invg𝐺)‘𝐵) ∈ 𝑋) → (((((invg𝐺)‘𝐴) + (𝐶 + 𝐷)) + ((invg𝐺)‘𝐵)) ∈ 𝑌 ↔ (((invg𝐺)‘𝐵) + (((invg𝐺)‘𝐴) + (𝐶 + 𝐷))) ∈ 𝑌))
5747, 55, 31, 56syl3anc 1367 . . . . 5 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (((((invg𝐺)‘𝐴) + (𝐶 + 𝐷)) + ((invg𝐺)‘𝐵)) ∈ 𝑌 ↔ (((invg𝐺)‘𝐵) + (((invg𝐺)‘𝐴) + (𝐶 + 𝐷))) ∈ 𝑌))
5853, 57mpbid 234 . . . 4 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (((invg𝐺)‘𝐵) + (((invg𝐺)‘𝐴) + (𝐶 + 𝐷))) ∈ 𝑌)
5936, 58eqeltrd 2913 . . 3 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (((invg𝐺)‘(𝐴 + 𝐵)) + (𝐶 + 𝐷)) ∈ 𝑌)
606, 9, 10, 11eqgval 18329 . . . 4 ((𝐺 ∈ Grp ∧ 𝑌𝑋) → ((𝐴 + 𝐵) (𝐶 + 𝐷) ↔ ((𝐴 + 𝐵) ∈ 𝑋 ∧ (𝐶 + 𝐷) ∈ 𝑋 ∧ (((invg𝐺)‘(𝐴 + 𝐵)) + (𝐶 + 𝐷)) ∈ 𝑌)))
614, 8, 60syl2anc 586 . . 3 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → ((𝐴 + 𝐵) (𝐶 + 𝐷) ↔ ((𝐴 + 𝐵) ∈ 𝑋 ∧ (𝐶 + 𝐷) ∈ 𝑋 ∧ (((invg𝐺)‘(𝐴 + 𝐵)) + (𝐶 + 𝐷)) ∈ 𝑌)))
6222, 26, 59, 61mpbir3and 1338 . 2 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (𝐴 + 𝐵) (𝐶 + 𝐷))
6362ex 415 1 (𝑌 ∈ (NrmSGrp‘𝐺) → ((𝐴 𝐶𝐵 𝐷) → (𝐴 + 𝐵) (𝐶 + 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wss 3936   class class class wbr 5066  cfv 6355  (class class class)co 7156  Basecbs 16483  +gcplusg 16565  Grpcgrp 18103  invgcminusg 18104  SubGrpcsubg 18273  NrmSGrpcnsg 18274   ~QG cqg 18275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-minusg 18107  df-subg 18276  df-nsg 18277  df-eqg 18278
This theorem is referenced by:  qusgrp  18335  qusadd  18337  qus1  20008  quslmod  30923
  Copyright terms: Public domain W3C validator