MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqgcpbl Structured version   Visualization version   GIF version

Theorem eqgcpbl 19213
Description: The subgroup coset equivalence relation is compatible with addition when the subgroup is normal. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
eqger.x 𝑋 = (Base‘𝐺)
eqger.r = (𝐺 ~QG 𝑌)
eqgcpbl.p + = (+g𝐺)
Assertion
Ref Expression
eqgcpbl (𝑌 ∈ (NrmSGrp‘𝐺) → ((𝐴 𝐶𝐵 𝐷) → (𝐴 + 𝐵) (𝐶 + 𝐷)))

Proof of Theorem eqgcpbl
StepHypRef Expression
1 nsgsubg 19189 . . . . . 6 (𝑌 ∈ (NrmSGrp‘𝐺) → 𝑌 ∈ (SubGrp‘𝐺))
21adantr 480 . . . . 5 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → 𝑌 ∈ (SubGrp‘𝐺))
3 subgrcl 19162 . . . . 5 (𝑌 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
42, 3syl 17 . . . 4 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → 𝐺 ∈ Grp)
5 simprl 771 . . . . . 6 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → 𝐴 𝐶)
6 eqger.x . . . . . . . . 9 𝑋 = (Base‘𝐺)
76subgss 19158 . . . . . . . 8 (𝑌 ∈ (SubGrp‘𝐺) → 𝑌𝑋)
82, 7syl 17 . . . . . . 7 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → 𝑌𝑋)
9 eqid 2735 . . . . . . . 8 (invg𝐺) = (invg𝐺)
10 eqgcpbl.p . . . . . . . 8 + = (+g𝐺)
11 eqger.r . . . . . . . 8 = (𝐺 ~QG 𝑌)
126, 9, 10, 11eqgval 19208 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑌𝑋) → (𝐴 𝐶 ↔ (𝐴𝑋𝐶𝑋 ∧ (((invg𝐺)‘𝐴) + 𝐶) ∈ 𝑌)))
134, 8, 12syl2anc 584 . . . . . 6 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (𝐴 𝐶 ↔ (𝐴𝑋𝐶𝑋 ∧ (((invg𝐺)‘𝐴) + 𝐶) ∈ 𝑌)))
145, 13mpbid 232 . . . . 5 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (𝐴𝑋𝐶𝑋 ∧ (((invg𝐺)‘𝐴) + 𝐶) ∈ 𝑌))
1514simp1d 1141 . . . 4 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → 𝐴𝑋)
16 simprr 773 . . . . . 6 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → 𝐵 𝐷)
176, 9, 10, 11eqgval 19208 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑌𝑋) → (𝐵 𝐷 ↔ (𝐵𝑋𝐷𝑋 ∧ (((invg𝐺)‘𝐵) + 𝐷) ∈ 𝑌)))
184, 8, 17syl2anc 584 . . . . . 6 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (𝐵 𝐷 ↔ (𝐵𝑋𝐷𝑋 ∧ (((invg𝐺)‘𝐵) + 𝐷) ∈ 𝑌)))
1916, 18mpbid 232 . . . . 5 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (𝐵𝑋𝐷𝑋 ∧ (((invg𝐺)‘𝐵) + 𝐷) ∈ 𝑌))
2019simp1d 1141 . . . 4 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → 𝐵𝑋)
216, 10grpcl 18972 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + 𝐵) ∈ 𝑋)
224, 15, 20, 21syl3anc 1370 . . 3 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (𝐴 + 𝐵) ∈ 𝑋)
2314simp2d 1142 . . . 4 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → 𝐶𝑋)
2419simp2d 1142 . . . 4 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → 𝐷𝑋)
256, 10grpcl 18972 . . . 4 ((𝐺 ∈ Grp ∧ 𝐶𝑋𝐷𝑋) → (𝐶 + 𝐷) ∈ 𝑋)
264, 23, 24, 25syl3anc 1370 . . 3 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (𝐶 + 𝐷) ∈ 𝑋)
276, 10, 9grpinvadd 19049 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝐵𝑋) → ((invg𝐺)‘(𝐴 + 𝐵)) = (((invg𝐺)‘𝐵) + ((invg𝐺)‘𝐴)))
284, 15, 20, 27syl3anc 1370 . . . . . 6 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → ((invg𝐺)‘(𝐴 + 𝐵)) = (((invg𝐺)‘𝐵) + ((invg𝐺)‘𝐴)))
2928oveq1d 7446 . . . . 5 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (((invg𝐺)‘(𝐴 + 𝐵)) + (𝐶 + 𝐷)) = ((((invg𝐺)‘𝐵) + ((invg𝐺)‘𝐴)) + (𝐶 + 𝐷)))
306, 9grpinvcl 19018 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐵𝑋) → ((invg𝐺)‘𝐵) ∈ 𝑋)
314, 20, 30syl2anc 584 . . . . . 6 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → ((invg𝐺)‘𝐵) ∈ 𝑋)
326, 9grpinvcl 19018 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((invg𝐺)‘𝐴) ∈ 𝑋)
334, 15, 32syl2anc 584 . . . . . 6 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → ((invg𝐺)‘𝐴) ∈ 𝑋)
346, 10grpass 18973 . . . . . 6 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝐵) ∈ 𝑋 ∧ ((invg𝐺)‘𝐴) ∈ 𝑋 ∧ (𝐶 + 𝐷) ∈ 𝑋)) → ((((invg𝐺)‘𝐵) + ((invg𝐺)‘𝐴)) + (𝐶 + 𝐷)) = (((invg𝐺)‘𝐵) + (((invg𝐺)‘𝐴) + (𝐶 + 𝐷))))
354, 31, 33, 26, 34syl13anc 1371 . . . . 5 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → ((((invg𝐺)‘𝐵) + ((invg𝐺)‘𝐴)) + (𝐶 + 𝐷)) = (((invg𝐺)‘𝐵) + (((invg𝐺)‘𝐴) + (𝐶 + 𝐷))))
3629, 35eqtrd 2775 . . . 4 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (((invg𝐺)‘(𝐴 + 𝐵)) + (𝐶 + 𝐷)) = (((invg𝐺)‘𝐵) + (((invg𝐺)‘𝐴) + (𝐶 + 𝐷))))
376, 10grpass 18973 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝐴) ∈ 𝑋𝐶𝑋𝐷𝑋)) → ((((invg𝐺)‘𝐴) + 𝐶) + 𝐷) = (((invg𝐺)‘𝐴) + (𝐶 + 𝐷)))
384, 33, 23, 24, 37syl13anc 1371 . . . . . . . 8 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → ((((invg𝐺)‘𝐴) + 𝐶) + 𝐷) = (((invg𝐺)‘𝐴) + (𝐶 + 𝐷)))
3938oveq1d 7446 . . . . . . 7 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (((((invg𝐺)‘𝐴) + 𝐶) + 𝐷) + ((invg𝐺)‘𝐵)) = ((((invg𝐺)‘𝐴) + (𝐶 + 𝐷)) + ((invg𝐺)‘𝐵)))
406, 10grpcl 18972 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ ((invg𝐺)‘𝐴) ∈ 𝑋𝐶𝑋) → (((invg𝐺)‘𝐴) + 𝐶) ∈ 𝑋)
414, 33, 23, 40syl3anc 1370 . . . . . . . 8 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (((invg𝐺)‘𝐴) + 𝐶) ∈ 𝑋)
426, 10grpass 18973 . . . . . . . 8 ((𝐺 ∈ Grp ∧ ((((invg𝐺)‘𝐴) + 𝐶) ∈ 𝑋𝐷𝑋 ∧ ((invg𝐺)‘𝐵) ∈ 𝑋)) → (((((invg𝐺)‘𝐴) + 𝐶) + 𝐷) + ((invg𝐺)‘𝐵)) = ((((invg𝐺)‘𝐴) + 𝐶) + (𝐷 + ((invg𝐺)‘𝐵))))
434, 41, 24, 31, 42syl13anc 1371 . . . . . . 7 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (((((invg𝐺)‘𝐴) + 𝐶) + 𝐷) + ((invg𝐺)‘𝐵)) = ((((invg𝐺)‘𝐴) + 𝐶) + (𝐷 + ((invg𝐺)‘𝐵))))
4439, 43eqtr3d 2777 . . . . . 6 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → ((((invg𝐺)‘𝐴) + (𝐶 + 𝐷)) + ((invg𝐺)‘𝐵)) = ((((invg𝐺)‘𝐴) + 𝐶) + (𝐷 + ((invg𝐺)‘𝐵))))
4514simp3d 1143 . . . . . . 7 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (((invg𝐺)‘𝐴) + 𝐶) ∈ 𝑌)
4619simp3d 1143 . . . . . . . 8 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (((invg𝐺)‘𝐵) + 𝐷) ∈ 𝑌)
47 simpl 482 . . . . . . . . 9 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → 𝑌 ∈ (NrmSGrp‘𝐺))
486, 10nsgbi 19188 . . . . . . . . 9 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ ((invg𝐺)‘𝐵) ∈ 𝑋𝐷𝑋) → ((((invg𝐺)‘𝐵) + 𝐷) ∈ 𝑌 ↔ (𝐷 + ((invg𝐺)‘𝐵)) ∈ 𝑌))
4947, 31, 24, 48syl3anc 1370 . . . . . . . 8 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → ((((invg𝐺)‘𝐵) + 𝐷) ∈ 𝑌 ↔ (𝐷 + ((invg𝐺)‘𝐵)) ∈ 𝑌))
5046, 49mpbid 232 . . . . . . 7 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (𝐷 + ((invg𝐺)‘𝐵)) ∈ 𝑌)
5110subgcl 19167 . . . . . . 7 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (((invg𝐺)‘𝐴) + 𝐶) ∈ 𝑌 ∧ (𝐷 + ((invg𝐺)‘𝐵)) ∈ 𝑌) → ((((invg𝐺)‘𝐴) + 𝐶) + (𝐷 + ((invg𝐺)‘𝐵))) ∈ 𝑌)
522, 45, 50, 51syl3anc 1370 . . . . . 6 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → ((((invg𝐺)‘𝐴) + 𝐶) + (𝐷 + ((invg𝐺)‘𝐵))) ∈ 𝑌)
5344, 52eqeltrd 2839 . . . . 5 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → ((((invg𝐺)‘𝐴) + (𝐶 + 𝐷)) + ((invg𝐺)‘𝐵)) ∈ 𝑌)
546, 10grpcl 18972 . . . . . . 7 ((𝐺 ∈ Grp ∧ ((invg𝐺)‘𝐴) ∈ 𝑋 ∧ (𝐶 + 𝐷) ∈ 𝑋) → (((invg𝐺)‘𝐴) + (𝐶 + 𝐷)) ∈ 𝑋)
554, 33, 26, 54syl3anc 1370 . . . . . 6 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (((invg𝐺)‘𝐴) + (𝐶 + 𝐷)) ∈ 𝑋)
566, 10nsgbi 19188 . . . . . 6 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (((invg𝐺)‘𝐴) + (𝐶 + 𝐷)) ∈ 𝑋 ∧ ((invg𝐺)‘𝐵) ∈ 𝑋) → (((((invg𝐺)‘𝐴) + (𝐶 + 𝐷)) + ((invg𝐺)‘𝐵)) ∈ 𝑌 ↔ (((invg𝐺)‘𝐵) + (((invg𝐺)‘𝐴) + (𝐶 + 𝐷))) ∈ 𝑌))
5747, 55, 31, 56syl3anc 1370 . . . . 5 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (((((invg𝐺)‘𝐴) + (𝐶 + 𝐷)) + ((invg𝐺)‘𝐵)) ∈ 𝑌 ↔ (((invg𝐺)‘𝐵) + (((invg𝐺)‘𝐴) + (𝐶 + 𝐷))) ∈ 𝑌))
5853, 57mpbid 232 . . . 4 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (((invg𝐺)‘𝐵) + (((invg𝐺)‘𝐴) + (𝐶 + 𝐷))) ∈ 𝑌)
5936, 58eqeltrd 2839 . . 3 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (((invg𝐺)‘(𝐴 + 𝐵)) + (𝐶 + 𝐷)) ∈ 𝑌)
606, 9, 10, 11eqgval 19208 . . . 4 ((𝐺 ∈ Grp ∧ 𝑌𝑋) → ((𝐴 + 𝐵) (𝐶 + 𝐷) ↔ ((𝐴 + 𝐵) ∈ 𝑋 ∧ (𝐶 + 𝐷) ∈ 𝑋 ∧ (((invg𝐺)‘(𝐴 + 𝐵)) + (𝐶 + 𝐷)) ∈ 𝑌)))
614, 8, 60syl2anc 584 . . 3 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → ((𝐴 + 𝐵) (𝐶 + 𝐷) ↔ ((𝐴 + 𝐵) ∈ 𝑋 ∧ (𝐶 + 𝐷) ∈ 𝑋 ∧ (((invg𝐺)‘(𝐴 + 𝐵)) + (𝐶 + 𝐷)) ∈ 𝑌)))
6222, 26, 59, 61mpbir3and 1341 . 2 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (𝐴 + 𝐵) (𝐶 + 𝐷))
6362ex 412 1 (𝑌 ∈ (NrmSGrp‘𝐺) → ((𝐴 𝐶𝐵 𝐷) → (𝐴 + 𝐵) (𝐶 + 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wss 3963   class class class wbr 5148  cfv 6563  (class class class)co 7431  Basecbs 17245  +gcplusg 17298  Grpcgrp 18964  invgcminusg 18965  SubGrpcsubg 19151  NrmSGrpcnsg 19152   ~QG cqg 19153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-subg 19154  df-nsg 19155  df-eqg 19156
This theorem is referenced by:  qusgrp  19217  qusadd  19219  qus0subgadd  19230  qus2idrng  21301  qus1  21302  quslmod  33366
  Copyright terms: Public domain W3C validator