Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqgcpbl Structured version   Visualization version   GIF version

Theorem eqgcpbl 18325
 Description: The subgroup coset equivalence relation is compatible with addition when the subgroup is normal. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
eqger.x 𝑋 = (Base‘𝐺)
eqger.r = (𝐺 ~QG 𝑌)
eqgcpbl.p + = (+g𝐺)
Assertion
Ref Expression
eqgcpbl (𝑌 ∈ (NrmSGrp‘𝐺) → ((𝐴 𝐶𝐵 𝐷) → (𝐴 + 𝐵) (𝐶 + 𝐷)))

Proof of Theorem eqgcpbl
StepHypRef Expression
1 nsgsubg 18301 . . . . . 6 (𝑌 ∈ (NrmSGrp‘𝐺) → 𝑌 ∈ (SubGrp‘𝐺))
21adantr 484 . . . . 5 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → 𝑌 ∈ (SubGrp‘𝐺))
3 subgrcl 18275 . . . . 5 (𝑌 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
42, 3syl 17 . . . 4 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → 𝐺 ∈ Grp)
5 simprl 770 . . . . . 6 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → 𝐴 𝐶)
6 eqger.x . . . . . . . . 9 𝑋 = (Base‘𝐺)
76subgss 18271 . . . . . . . 8 (𝑌 ∈ (SubGrp‘𝐺) → 𝑌𝑋)
82, 7syl 17 . . . . . . 7 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → 𝑌𝑋)
9 eqid 2822 . . . . . . . 8 (invg𝐺) = (invg𝐺)
10 eqgcpbl.p . . . . . . . 8 + = (+g𝐺)
11 eqger.r . . . . . . . 8 = (𝐺 ~QG 𝑌)
126, 9, 10, 11eqgval 18320 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑌𝑋) → (𝐴 𝐶 ↔ (𝐴𝑋𝐶𝑋 ∧ (((invg𝐺)‘𝐴) + 𝐶) ∈ 𝑌)))
134, 8, 12syl2anc 587 . . . . . 6 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (𝐴 𝐶 ↔ (𝐴𝑋𝐶𝑋 ∧ (((invg𝐺)‘𝐴) + 𝐶) ∈ 𝑌)))
145, 13mpbid 235 . . . . 5 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (𝐴𝑋𝐶𝑋 ∧ (((invg𝐺)‘𝐴) + 𝐶) ∈ 𝑌))
1514simp1d 1139 . . . 4 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → 𝐴𝑋)
16 simprr 772 . . . . . 6 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → 𝐵 𝐷)
176, 9, 10, 11eqgval 18320 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑌𝑋) → (𝐵 𝐷 ↔ (𝐵𝑋𝐷𝑋 ∧ (((invg𝐺)‘𝐵) + 𝐷) ∈ 𝑌)))
184, 8, 17syl2anc 587 . . . . . 6 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (𝐵 𝐷 ↔ (𝐵𝑋𝐷𝑋 ∧ (((invg𝐺)‘𝐵) + 𝐷) ∈ 𝑌)))
1916, 18mpbid 235 . . . . 5 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (𝐵𝑋𝐷𝑋 ∧ (((invg𝐺)‘𝐵) + 𝐷) ∈ 𝑌))
2019simp1d 1139 . . . 4 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → 𝐵𝑋)
216, 10grpcl 18102 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + 𝐵) ∈ 𝑋)
224, 15, 20, 21syl3anc 1368 . . 3 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (𝐴 + 𝐵) ∈ 𝑋)
2314simp2d 1140 . . . 4 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → 𝐶𝑋)
2419simp2d 1140 . . . 4 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → 𝐷𝑋)
256, 10grpcl 18102 . . . 4 ((𝐺 ∈ Grp ∧ 𝐶𝑋𝐷𝑋) → (𝐶 + 𝐷) ∈ 𝑋)
264, 23, 24, 25syl3anc 1368 . . 3 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (𝐶 + 𝐷) ∈ 𝑋)
276, 10, 9grpinvadd 18168 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝐵𝑋) → ((invg𝐺)‘(𝐴 + 𝐵)) = (((invg𝐺)‘𝐵) + ((invg𝐺)‘𝐴)))
284, 15, 20, 27syl3anc 1368 . . . . . 6 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → ((invg𝐺)‘(𝐴 + 𝐵)) = (((invg𝐺)‘𝐵) + ((invg𝐺)‘𝐴)))
2928oveq1d 7155 . . . . 5 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (((invg𝐺)‘(𝐴 + 𝐵)) + (𝐶 + 𝐷)) = ((((invg𝐺)‘𝐵) + ((invg𝐺)‘𝐴)) + (𝐶 + 𝐷)))
306, 9grpinvcl 18142 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐵𝑋) → ((invg𝐺)‘𝐵) ∈ 𝑋)
314, 20, 30syl2anc 587 . . . . . 6 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → ((invg𝐺)‘𝐵) ∈ 𝑋)
326, 9grpinvcl 18142 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((invg𝐺)‘𝐴) ∈ 𝑋)
334, 15, 32syl2anc 587 . . . . . 6 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → ((invg𝐺)‘𝐴) ∈ 𝑋)
346, 10grpass 18103 . . . . . 6 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝐵) ∈ 𝑋 ∧ ((invg𝐺)‘𝐴) ∈ 𝑋 ∧ (𝐶 + 𝐷) ∈ 𝑋)) → ((((invg𝐺)‘𝐵) + ((invg𝐺)‘𝐴)) + (𝐶 + 𝐷)) = (((invg𝐺)‘𝐵) + (((invg𝐺)‘𝐴) + (𝐶 + 𝐷))))
354, 31, 33, 26, 34syl13anc 1369 . . . . 5 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → ((((invg𝐺)‘𝐵) + ((invg𝐺)‘𝐴)) + (𝐶 + 𝐷)) = (((invg𝐺)‘𝐵) + (((invg𝐺)‘𝐴) + (𝐶 + 𝐷))))
3629, 35eqtrd 2857 . . . 4 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (((invg𝐺)‘(𝐴 + 𝐵)) + (𝐶 + 𝐷)) = (((invg𝐺)‘𝐵) + (((invg𝐺)‘𝐴) + (𝐶 + 𝐷))))
376, 10grpass 18103 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝐴) ∈ 𝑋𝐶𝑋𝐷𝑋)) → ((((invg𝐺)‘𝐴) + 𝐶) + 𝐷) = (((invg𝐺)‘𝐴) + (𝐶 + 𝐷)))
384, 33, 23, 24, 37syl13anc 1369 . . . . . . . 8 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → ((((invg𝐺)‘𝐴) + 𝐶) + 𝐷) = (((invg𝐺)‘𝐴) + (𝐶 + 𝐷)))
3938oveq1d 7155 . . . . . . 7 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (((((invg𝐺)‘𝐴) + 𝐶) + 𝐷) + ((invg𝐺)‘𝐵)) = ((((invg𝐺)‘𝐴) + (𝐶 + 𝐷)) + ((invg𝐺)‘𝐵)))
406, 10grpcl 18102 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ ((invg𝐺)‘𝐴) ∈ 𝑋𝐶𝑋) → (((invg𝐺)‘𝐴) + 𝐶) ∈ 𝑋)
414, 33, 23, 40syl3anc 1368 . . . . . . . 8 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (((invg𝐺)‘𝐴) + 𝐶) ∈ 𝑋)
426, 10grpass 18103 . . . . . . . 8 ((𝐺 ∈ Grp ∧ ((((invg𝐺)‘𝐴) + 𝐶) ∈ 𝑋𝐷𝑋 ∧ ((invg𝐺)‘𝐵) ∈ 𝑋)) → (((((invg𝐺)‘𝐴) + 𝐶) + 𝐷) + ((invg𝐺)‘𝐵)) = ((((invg𝐺)‘𝐴) + 𝐶) + (𝐷 + ((invg𝐺)‘𝐵))))
434, 41, 24, 31, 42syl13anc 1369 . . . . . . 7 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (((((invg𝐺)‘𝐴) + 𝐶) + 𝐷) + ((invg𝐺)‘𝐵)) = ((((invg𝐺)‘𝐴) + 𝐶) + (𝐷 + ((invg𝐺)‘𝐵))))
4439, 43eqtr3d 2859 . . . . . 6 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → ((((invg𝐺)‘𝐴) + (𝐶 + 𝐷)) + ((invg𝐺)‘𝐵)) = ((((invg𝐺)‘𝐴) + 𝐶) + (𝐷 + ((invg𝐺)‘𝐵))))
4514simp3d 1141 . . . . . . 7 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (((invg𝐺)‘𝐴) + 𝐶) ∈ 𝑌)
4619simp3d 1141 . . . . . . . 8 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (((invg𝐺)‘𝐵) + 𝐷) ∈ 𝑌)
47 simpl 486 . . . . . . . . 9 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → 𝑌 ∈ (NrmSGrp‘𝐺))
486, 10nsgbi 18300 . . . . . . . . 9 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ ((invg𝐺)‘𝐵) ∈ 𝑋𝐷𝑋) → ((((invg𝐺)‘𝐵) + 𝐷) ∈ 𝑌 ↔ (𝐷 + ((invg𝐺)‘𝐵)) ∈ 𝑌))
4947, 31, 24, 48syl3anc 1368 . . . . . . . 8 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → ((((invg𝐺)‘𝐵) + 𝐷) ∈ 𝑌 ↔ (𝐷 + ((invg𝐺)‘𝐵)) ∈ 𝑌))
5046, 49mpbid 235 . . . . . . 7 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (𝐷 + ((invg𝐺)‘𝐵)) ∈ 𝑌)
5110subgcl 18280 . . . . . . 7 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (((invg𝐺)‘𝐴) + 𝐶) ∈ 𝑌 ∧ (𝐷 + ((invg𝐺)‘𝐵)) ∈ 𝑌) → ((((invg𝐺)‘𝐴) + 𝐶) + (𝐷 + ((invg𝐺)‘𝐵))) ∈ 𝑌)
522, 45, 50, 51syl3anc 1368 . . . . . 6 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → ((((invg𝐺)‘𝐴) + 𝐶) + (𝐷 + ((invg𝐺)‘𝐵))) ∈ 𝑌)
5344, 52eqeltrd 2914 . . . . 5 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → ((((invg𝐺)‘𝐴) + (𝐶 + 𝐷)) + ((invg𝐺)‘𝐵)) ∈ 𝑌)
546, 10grpcl 18102 . . . . . . 7 ((𝐺 ∈ Grp ∧ ((invg𝐺)‘𝐴) ∈ 𝑋 ∧ (𝐶 + 𝐷) ∈ 𝑋) → (((invg𝐺)‘𝐴) + (𝐶 + 𝐷)) ∈ 𝑋)
554, 33, 26, 54syl3anc 1368 . . . . . 6 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (((invg𝐺)‘𝐴) + (𝐶 + 𝐷)) ∈ 𝑋)
566, 10nsgbi 18300 . . . . . 6 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (((invg𝐺)‘𝐴) + (𝐶 + 𝐷)) ∈ 𝑋 ∧ ((invg𝐺)‘𝐵) ∈ 𝑋) → (((((invg𝐺)‘𝐴) + (𝐶 + 𝐷)) + ((invg𝐺)‘𝐵)) ∈ 𝑌 ↔ (((invg𝐺)‘𝐵) + (((invg𝐺)‘𝐴) + (𝐶 + 𝐷))) ∈ 𝑌))
5747, 55, 31, 56syl3anc 1368 . . . . 5 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (((((invg𝐺)‘𝐴) + (𝐶 + 𝐷)) + ((invg𝐺)‘𝐵)) ∈ 𝑌 ↔ (((invg𝐺)‘𝐵) + (((invg𝐺)‘𝐴) + (𝐶 + 𝐷))) ∈ 𝑌))
5853, 57mpbid 235 . . . 4 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (((invg𝐺)‘𝐵) + (((invg𝐺)‘𝐴) + (𝐶 + 𝐷))) ∈ 𝑌)
5936, 58eqeltrd 2914 . . 3 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (((invg𝐺)‘(𝐴 + 𝐵)) + (𝐶 + 𝐷)) ∈ 𝑌)
606, 9, 10, 11eqgval 18320 . . . 4 ((𝐺 ∈ Grp ∧ 𝑌𝑋) → ((𝐴 + 𝐵) (𝐶 + 𝐷) ↔ ((𝐴 + 𝐵) ∈ 𝑋 ∧ (𝐶 + 𝐷) ∈ 𝑋 ∧ (((invg𝐺)‘(𝐴 + 𝐵)) + (𝐶 + 𝐷)) ∈ 𝑌)))
614, 8, 60syl2anc 587 . . 3 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → ((𝐴 + 𝐵) (𝐶 + 𝐷) ↔ ((𝐴 + 𝐵) ∈ 𝑋 ∧ (𝐶 + 𝐷) ∈ 𝑋 ∧ (((invg𝐺)‘(𝐴 + 𝐵)) + (𝐶 + 𝐷)) ∈ 𝑌)))
6222, 26, 59, 61mpbir3and 1339 . 2 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝐴 𝐶𝐵 𝐷)) → (𝐴 + 𝐵) (𝐶 + 𝐷))
6362ex 416 1 (𝑌 ∈ (NrmSGrp‘𝐺) → ((𝐴 𝐶𝐵 𝐷) → (𝐴 + 𝐵) (𝐶 + 𝐷)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2114   ⊆ wss 3908   class class class wbr 5042  ‘cfv 6334  (class class class)co 7140  Basecbs 16474  +gcplusg 16556  Grpcgrp 18094  invgcminusg 18095  SubGrpcsubg 18264  NrmSGrpcnsg 18265   ~QG cqg 18266 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-ndx 16477  df-slot 16478  df-base 16480  df-sets 16481  df-ress 16482  df-plusg 16569  df-0g 16706  df-mgm 17843  df-sgrp 17892  df-mnd 17903  df-grp 18097  df-minusg 18098  df-subg 18267  df-nsg 18268  df-eqg 18269 This theorem is referenced by:  qusgrp  18326  qusadd  18328  qus1  19999  quslmod  30955
 Copyright terms: Public domain W3C validator