Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nsgconj Structured version   Visualization version   GIF version

Theorem nsgconj 18311
 Description: The conjugation of an element of a normal subgroup is in the subgroup. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypotheses
Ref Expression
isnsg3.1 𝑋 = (Base‘𝐺)
isnsg3.2 + = (+g𝐺)
isnsg3.3 = (-g𝐺)
Assertion
Ref Expression
nsgconj ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑆) → ((𝐴 + 𝐵) 𝐴) ∈ 𝑆)

Proof of Theorem nsgconj
StepHypRef Expression
1 nsgsubg 18310 . . . . 5 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))
213ad2ant1 1130 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑆) → 𝑆 ∈ (SubGrp‘𝐺))
3 subgrcl 18284 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
42, 3syl 17 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑆) → 𝐺 ∈ Grp)
5 simp2 1134 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑆) → 𝐴𝑋)
6 isnsg3.1 . . . . . 6 𝑋 = (Base‘𝐺)
76subgss 18280 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝑋)
82, 7syl 17 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑆) → 𝑆𝑋)
9 simp3 1135 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑆) → 𝐵𝑆)
108, 9sseldd 3954 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑆) → 𝐵𝑋)
11 isnsg3.2 . . . 4 + = (+g𝐺)
12 isnsg3.3 . . . 4 = (-g𝐺)
136, 11, 12grpaddsubass 18189 . . 3 ((𝐺 ∈ Grp ∧ (𝐴𝑋𝐵𝑋𝐴𝑋)) → ((𝐴 + 𝐵) 𝐴) = (𝐴 + (𝐵 𝐴)))
144, 5, 10, 5, 13syl13anc 1369 . 2 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑆) → ((𝐴 + 𝐵) 𝐴) = (𝐴 + (𝐵 𝐴)))
156, 11, 12grpnpcan 18191 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐵𝑋𝐴𝑋) → ((𝐵 𝐴) + 𝐴) = 𝐵)
164, 10, 5, 15syl3anc 1368 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑆) → ((𝐵 𝐴) + 𝐴) = 𝐵)
1716, 9eqeltrd 2916 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑆) → ((𝐵 𝐴) + 𝐴) ∈ 𝑆)
18 simp1 1133 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑆) → 𝑆 ∈ (NrmSGrp‘𝐺))
196, 12grpsubcl 18179 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐵𝑋𝐴𝑋) → (𝐵 𝐴) ∈ 𝑋)
204, 10, 5, 19syl3anc 1368 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑆) → (𝐵 𝐴) ∈ 𝑋)
216, 11nsgbi 18309 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝐵 𝐴) ∈ 𝑋𝐴𝑋) → (((𝐵 𝐴) + 𝐴) ∈ 𝑆 ↔ (𝐴 + (𝐵 𝐴)) ∈ 𝑆))
2218, 20, 5, 21syl3anc 1368 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑆) → (((𝐵 𝐴) + 𝐴) ∈ 𝑆 ↔ (𝐴 + (𝐵 𝐴)) ∈ 𝑆))
2317, 22mpbid 235 . 2 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑆) → (𝐴 + (𝐵 𝐴)) ∈ 𝑆)
2414, 23eqeltrd 2916 1 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑆) → ((𝐴 + 𝐵) 𝐴) ∈ 𝑆)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115   ⊆ wss 3919  ‘cfv 6343  (class class class)co 7149  Basecbs 16483  +gcplusg 16565  Grpcgrp 18103  -gcsg 18105  SubGrpcsubg 18273  NrmSGrpcnsg 18274 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-1st 7684  df-2nd 7685  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-minusg 18107  df-sbg 18108  df-subg 18276  df-nsg 18277 This theorem is referenced by:  isnsg3  18312  ghmnsgima  18382  ghmnsgpreima  18383  clsnsg  22722
 Copyright terms: Public domain W3C validator