Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nsgconj | Structured version Visualization version GIF version |
Description: The conjugation of an element of a normal subgroup is in the subgroup. (Contributed by Mario Carneiro, 4-Feb-2015.) |
Ref | Expression |
---|---|
isnsg3.1 | ⊢ 𝑋 = (Base‘𝐺) |
isnsg3.2 | ⊢ + = (+g‘𝐺) |
isnsg3.3 | ⊢ − = (-g‘𝐺) |
Ref | Expression |
---|---|
nsgconj | ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → ((𝐴 + 𝐵) − 𝐴) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsgsubg 18701 | . . . . 5 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺)) | |
2 | 1 | 3ad2ant1 1131 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → 𝑆 ∈ (SubGrp‘𝐺)) |
3 | subgrcl 18675 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → 𝐺 ∈ Grp) |
5 | simp2 1135 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → 𝐴 ∈ 𝑋) | |
6 | isnsg3.1 | . . . . . 6 ⊢ 𝑋 = (Base‘𝐺) | |
7 | 6 | subgss 18671 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝑋) |
8 | 2, 7 | syl 17 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → 𝑆 ⊆ 𝑋) |
9 | simp3 1136 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → 𝐵 ∈ 𝑆) | |
10 | 8, 9 | sseldd 3918 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → 𝐵 ∈ 𝑋) |
11 | isnsg3.2 | . . . 4 ⊢ + = (+g‘𝐺) | |
12 | isnsg3.3 | . . . 4 ⊢ − = (-g‘𝐺) | |
13 | 6, 11, 12 | grpaddsubass 18580 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((𝐴 + 𝐵) − 𝐴) = (𝐴 + (𝐵 − 𝐴))) |
14 | 4, 5, 10, 5, 13 | syl13anc 1370 | . 2 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → ((𝐴 + 𝐵) − 𝐴) = (𝐴 + (𝐵 − 𝐴))) |
15 | 6, 11, 12 | grpnpcan 18582 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝐵 − 𝐴) + 𝐴) = 𝐵) |
16 | 4, 10, 5, 15 | syl3anc 1369 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → ((𝐵 − 𝐴) + 𝐴) = 𝐵) |
17 | 16, 9 | eqeltrd 2839 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → ((𝐵 − 𝐴) + 𝐴) ∈ 𝑆) |
18 | simp1 1134 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → 𝑆 ∈ (NrmSGrp‘𝐺)) | |
19 | 6, 12 | grpsubcl 18570 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐵 − 𝐴) ∈ 𝑋) |
20 | 4, 10, 5, 19 | syl3anc 1369 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → (𝐵 − 𝐴) ∈ 𝑋) |
21 | 6, 11 | nsgbi 18700 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝐵 − 𝐴) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (((𝐵 − 𝐴) + 𝐴) ∈ 𝑆 ↔ (𝐴 + (𝐵 − 𝐴)) ∈ 𝑆)) |
22 | 18, 20, 5, 21 | syl3anc 1369 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → (((𝐵 − 𝐴) + 𝐴) ∈ 𝑆 ↔ (𝐴 + (𝐵 − 𝐴)) ∈ 𝑆)) |
23 | 17, 22 | mpbid 231 | . 2 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → (𝐴 + (𝐵 − 𝐴)) ∈ 𝑆) |
24 | 14, 23 | eqeltrd 2839 | 1 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → ((𝐴 + 𝐵) − 𝐴) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 Grpcgrp 18492 -gcsg 18494 SubGrpcsubg 18664 NrmSGrpcnsg 18665 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-sbg 18497 df-subg 18667 df-nsg 18668 |
This theorem is referenced by: isnsg3 18703 ghmnsgima 18773 ghmnsgpreima 18774 clsnsg 23169 |
Copyright terms: Public domain | W3C validator |