MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nsgconj Structured version   Visualization version   GIF version

Theorem nsgconj 19199
Description: The conjugation of an element of a normal subgroup is in the subgroup. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypotheses
Ref Expression
isnsg3.1 𝑋 = (Base‘𝐺)
isnsg3.2 + = (+g𝐺)
isnsg3.3 = (-g𝐺)
Assertion
Ref Expression
nsgconj ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑆) → ((𝐴 + 𝐵) 𝐴) ∈ 𝑆)

Proof of Theorem nsgconj
StepHypRef Expression
1 nsgsubg 19198 . . . . 5 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))
213ad2ant1 1133 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑆) → 𝑆 ∈ (SubGrp‘𝐺))
3 subgrcl 19171 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
42, 3syl 17 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑆) → 𝐺 ∈ Grp)
5 simp2 1137 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑆) → 𝐴𝑋)
6 isnsg3.1 . . . . . 6 𝑋 = (Base‘𝐺)
76subgss 19167 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝑋)
82, 7syl 17 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑆) → 𝑆𝑋)
9 simp3 1138 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑆) → 𝐵𝑆)
108, 9sseldd 4009 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑆) → 𝐵𝑋)
11 isnsg3.2 . . . 4 + = (+g𝐺)
12 isnsg3.3 . . . 4 = (-g𝐺)
136, 11, 12grpaddsubass 19070 . . 3 ((𝐺 ∈ Grp ∧ (𝐴𝑋𝐵𝑋𝐴𝑋)) → ((𝐴 + 𝐵) 𝐴) = (𝐴 + (𝐵 𝐴)))
144, 5, 10, 5, 13syl13anc 1372 . 2 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑆) → ((𝐴 + 𝐵) 𝐴) = (𝐴 + (𝐵 𝐴)))
156, 11, 12grpnpcan 19072 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐵𝑋𝐴𝑋) → ((𝐵 𝐴) + 𝐴) = 𝐵)
164, 10, 5, 15syl3anc 1371 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑆) → ((𝐵 𝐴) + 𝐴) = 𝐵)
1716, 9eqeltrd 2844 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑆) → ((𝐵 𝐴) + 𝐴) ∈ 𝑆)
18 simp1 1136 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑆) → 𝑆 ∈ (NrmSGrp‘𝐺))
196, 12grpsubcl 19060 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐵𝑋𝐴𝑋) → (𝐵 𝐴) ∈ 𝑋)
204, 10, 5, 19syl3anc 1371 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑆) → (𝐵 𝐴) ∈ 𝑋)
216, 11nsgbi 19197 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝐵 𝐴) ∈ 𝑋𝐴𝑋) → (((𝐵 𝐴) + 𝐴) ∈ 𝑆 ↔ (𝐴 + (𝐵 𝐴)) ∈ 𝑆))
2218, 20, 5, 21syl3anc 1371 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑆) → (((𝐵 𝐴) + 𝐴) ∈ 𝑆 ↔ (𝐴 + (𝐵 𝐴)) ∈ 𝑆))
2317, 22mpbid 232 . 2 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑆) → (𝐴 + (𝐵 𝐴)) ∈ 𝑆)
2414, 23eqeltrd 2844 1 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑆) → ((𝐴 + 𝐵) 𝐴) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1087   = wceq 1537  wcel 2108  wss 3976  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  Grpcgrp 18973  -gcsg 18975  SubGrpcsubg 19160  NrmSGrpcnsg 19161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-nsg 19164
This theorem is referenced by:  isnsg3  19200  ghmnsgima  19280  ghmnsgpreima  19281  clsnsg  24139
  Copyright terms: Public domain W3C validator