![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nsgconj | Structured version Visualization version GIF version |
Description: The conjugation of an element of a normal subgroup is in the subgroup. (Contributed by Mario Carneiro, 4-Feb-2015.) |
Ref | Expression |
---|---|
isnsg3.1 | ⊢ 𝑋 = (Base‘𝐺) |
isnsg3.2 | ⊢ + = (+g‘𝐺) |
isnsg3.3 | ⊢ − = (-g‘𝐺) |
Ref | Expression |
---|---|
nsgconj | ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → ((𝐴 + 𝐵) − 𝐴) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsgsubg 17943 | . . . . 5 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺)) | |
2 | 1 | 3ad2ant1 1164 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → 𝑆 ∈ (SubGrp‘𝐺)) |
3 | subgrcl 17916 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → 𝐺 ∈ Grp) |
5 | simp2 1168 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → 𝐴 ∈ 𝑋) | |
6 | isnsg3.1 | . . . . . 6 ⊢ 𝑋 = (Base‘𝐺) | |
7 | 6 | subgss 17912 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝑋) |
8 | 2, 7 | syl 17 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → 𝑆 ⊆ 𝑋) |
9 | simp3 1169 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → 𝐵 ∈ 𝑆) | |
10 | 8, 9 | sseldd 3803 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → 𝐵 ∈ 𝑋) |
11 | isnsg3.2 | . . . 4 ⊢ + = (+g‘𝐺) | |
12 | isnsg3.3 | . . . 4 ⊢ − = (-g‘𝐺) | |
13 | 6, 11, 12 | grpaddsubass 17825 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((𝐴 + 𝐵) − 𝐴) = (𝐴 + (𝐵 − 𝐴))) |
14 | 4, 5, 10, 5, 13 | syl13anc 1492 | . 2 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → ((𝐴 + 𝐵) − 𝐴) = (𝐴 + (𝐵 − 𝐴))) |
15 | 6, 11, 12 | grpnpcan 17827 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝐵 − 𝐴) + 𝐴) = 𝐵) |
16 | 4, 10, 5, 15 | syl3anc 1491 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → ((𝐵 − 𝐴) + 𝐴) = 𝐵) |
17 | 16, 9 | eqeltrd 2882 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → ((𝐵 − 𝐴) + 𝐴) ∈ 𝑆) |
18 | simp1 1167 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → 𝑆 ∈ (NrmSGrp‘𝐺)) | |
19 | 6, 12 | grpsubcl 17815 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐵 − 𝐴) ∈ 𝑋) |
20 | 4, 10, 5, 19 | syl3anc 1491 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → (𝐵 − 𝐴) ∈ 𝑋) |
21 | 6, 11 | nsgbi 17942 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝐵 − 𝐴) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (((𝐵 − 𝐴) + 𝐴) ∈ 𝑆 ↔ (𝐴 + (𝐵 − 𝐴)) ∈ 𝑆)) |
22 | 18, 20, 5, 21 | syl3anc 1491 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → (((𝐵 − 𝐴) + 𝐴) ∈ 𝑆 ↔ (𝐴 + (𝐵 − 𝐴)) ∈ 𝑆)) |
23 | 17, 22 | mpbid 224 | . 2 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → (𝐴 + (𝐵 − 𝐴)) ∈ 𝑆) |
24 | 14, 23 | eqeltrd 2882 | 1 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → ((𝐴 + 𝐵) − 𝐴) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ⊆ wss 3773 ‘cfv 6105 (class class class)co 6882 Basecbs 16188 +gcplusg 16271 Grpcgrp 17742 -gcsg 17744 SubGrpcsubg 17905 NrmSGrpcnsg 17906 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2379 ax-ext 2781 ax-rep 4968 ax-sep 4979 ax-nul 4987 ax-pow 5039 ax-pr 5101 ax-un 7187 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2593 df-eu 2611 df-clab 2790 df-cleq 2796 df-clel 2799 df-nfc 2934 df-ne 2976 df-ral 3098 df-rex 3099 df-reu 3100 df-rmo 3101 df-rab 3102 df-v 3391 df-sbc 3638 df-csb 3733 df-dif 3776 df-un 3778 df-in 3780 df-ss 3787 df-nul 4120 df-if 4282 df-pw 4355 df-sn 4373 df-pr 4375 df-op 4379 df-uni 4633 df-iun 4716 df-br 4848 df-opab 4910 df-mpt 4927 df-id 5224 df-xp 5322 df-rel 5323 df-cnv 5324 df-co 5325 df-dm 5326 df-rn 5327 df-res 5328 df-ima 5329 df-iota 6068 df-fun 6107 df-fn 6108 df-f 6109 df-f1 6110 df-fo 6111 df-f1o 6112 df-fv 6113 df-riota 6843 df-ov 6885 df-oprab 6886 df-mpt2 6887 df-1st 7405 df-2nd 7406 df-0g 16421 df-mgm 17561 df-sgrp 17603 df-mnd 17614 df-grp 17745 df-minusg 17746 df-sbg 17747 df-subg 17908 df-nsg 17909 |
This theorem is referenced by: isnsg3 17945 ghmnsgima 18001 ghmnsgpreima 18002 clsnsg 22245 |
Copyright terms: Public domain | W3C validator |