| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nsgconj | Structured version Visualization version GIF version | ||
| Description: The conjugation of an element of a normal subgroup is in the subgroup. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| Ref | Expression |
|---|---|
| isnsg3.1 | ⊢ 𝑋 = (Base‘𝐺) |
| isnsg3.2 | ⊢ + = (+g‘𝐺) |
| isnsg3.3 | ⊢ − = (-g‘𝐺) |
| Ref | Expression |
|---|---|
| nsgconj | ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → ((𝐴 + 𝐵) − 𝐴) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nsgsubg 19056 | . . . . 5 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺)) | |
| 2 | 1 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → 𝑆 ∈ (SubGrp‘𝐺)) |
| 3 | subgrcl 19029 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → 𝐺 ∈ Grp) |
| 5 | simp2 1137 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → 𝐴 ∈ 𝑋) | |
| 6 | isnsg3.1 | . . . . . 6 ⊢ 𝑋 = (Base‘𝐺) | |
| 7 | 6 | subgss 19025 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝑋) |
| 8 | 2, 7 | syl 17 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → 𝑆 ⊆ 𝑋) |
| 9 | simp3 1138 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → 𝐵 ∈ 𝑆) | |
| 10 | 8, 9 | sseldd 3938 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → 𝐵 ∈ 𝑋) |
| 11 | isnsg3.2 | . . . 4 ⊢ + = (+g‘𝐺) | |
| 12 | isnsg3.3 | . . . 4 ⊢ − = (-g‘𝐺) | |
| 13 | 6, 11, 12 | grpaddsubass 18928 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((𝐴 + 𝐵) − 𝐴) = (𝐴 + (𝐵 − 𝐴))) |
| 14 | 4, 5, 10, 5, 13 | syl13anc 1374 | . 2 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → ((𝐴 + 𝐵) − 𝐴) = (𝐴 + (𝐵 − 𝐴))) |
| 15 | 6, 11, 12 | grpnpcan 18930 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝐵 − 𝐴) + 𝐴) = 𝐵) |
| 16 | 4, 10, 5, 15 | syl3anc 1373 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → ((𝐵 − 𝐴) + 𝐴) = 𝐵) |
| 17 | 16, 9 | eqeltrd 2828 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → ((𝐵 − 𝐴) + 𝐴) ∈ 𝑆) |
| 18 | simp1 1136 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → 𝑆 ∈ (NrmSGrp‘𝐺)) | |
| 19 | 6, 12 | grpsubcl 18918 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐵 − 𝐴) ∈ 𝑋) |
| 20 | 4, 10, 5, 19 | syl3anc 1373 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → (𝐵 − 𝐴) ∈ 𝑋) |
| 21 | 6, 11 | nsgbi 19055 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝐵 − 𝐴) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (((𝐵 − 𝐴) + 𝐴) ∈ 𝑆 ↔ (𝐴 + (𝐵 − 𝐴)) ∈ 𝑆)) |
| 22 | 18, 20, 5, 21 | syl3anc 1373 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → (((𝐵 − 𝐴) + 𝐴) ∈ 𝑆 ↔ (𝐴 + (𝐵 − 𝐴)) ∈ 𝑆)) |
| 23 | 17, 22 | mpbid 232 | . 2 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → (𝐴 + (𝐵 − 𝐴)) ∈ 𝑆) |
| 24 | 14, 23 | eqeltrd 2828 | 1 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → ((𝐴 + 𝐵) − 𝐴) ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⊆ wss 3905 ‘cfv 6486 (class class class)co 7353 Basecbs 17139 +gcplusg 17180 Grpcgrp 18831 -gcsg 18833 SubGrpcsubg 19018 NrmSGrpcnsg 19019 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-0g 17364 df-mgm 18533 df-sgrp 18612 df-mnd 18628 df-grp 18834 df-minusg 18835 df-sbg 18836 df-subg 19021 df-nsg 19022 |
| This theorem is referenced by: isnsg3 19058 ghmnsgima 19138 ghmnsgpreima 19139 clsnsg 24014 |
| Copyright terms: Public domain | W3C validator |