MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nsgsubg Structured version   Visualization version   GIF version

Theorem nsgsubg 19068
Description: A normal subgroup is a subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
Assertion
Ref Expression
nsgsubg (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))

Proof of Theorem nsgsubg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . 3 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2731 . . 3 (+g𝐺) = (+g𝐺)
31, 2isnsg 19065 . 2 (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦) ∈ 𝑆 ↔ (𝑦(+g𝐺)𝑥) ∈ 𝑆)))
43simplbi 497 1 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2111  wral 3047  cfv 6481  (class class class)co 7346  Basecbs 17117  +gcplusg 17158  SubGrpcsubg 19030  NrmSGrpcnsg 19031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-subg 19033  df-nsg 19034
This theorem is referenced by:  nsgconj  19069  isnsg3  19070  trivnsgd  19082  eqgcpbl  19092  qusgrp  19096  quseccl  19097  qusadd  19098  qus0  19099  qusinv  19100  qussub  19101  ecqusaddcl  19103  ghmnsgima  19150  ghmnsgpreima  19151  conjnsg  19164  qusghm  19165  ghmqusnsglem1  19190  ghmqusnsglem2  19191  ghmqusnsg  19192  ghmquskerlem1  19193  ghmquskerlem2  19195  ghmquskerlem3  19196  ghmqusker  19197  sylow3lem4  19540  prmgrpsimpgd  20026  rhmqusnsg  21220  rngqiprngimf1lem  21229  rngqiprngimf1  21235  rngqiprngimfo  21236  rngqiprngfulem4  21249  rngqipring1  21251  clsnsg  24023  qustgpopn  24033  qustgphaus  24036  cyc3genpm  33116  qusker  33309  qus0g  33367  qusima  33368  qusrn  33369  nsgqus0  33370  nsgmgclem  33371  nsgmgc  33372  nsgqusf1olem1  33373  nsgqusf1olem2  33374  nsgqusf1olem3  33375  lmhmqusker  33377  rhmquskerlem  33385  qsnzr  33415  opprqusplusg  33449  opprqus0g  33450  qsdrngilem  33454  qsdrngi  33455
  Copyright terms: Public domain W3C validator