![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nsgsubg | Structured version Visualization version GIF version |
Description: A normal subgroup is a subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.) |
Ref | Expression |
---|---|
nsgsubg | ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | eqid 2735 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | 1, 2 | isnsg 19186 | . 2 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) ∈ 𝑆 ↔ (𝑦(+g‘𝐺)𝑥) ∈ 𝑆))) |
4 | 3 | simplbi 497 | 1 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2106 ∀wral 3059 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 +gcplusg 17298 SubGrpcsubg 19151 NrmSGrpcnsg 19152 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-subg 19154 df-nsg 19155 |
This theorem is referenced by: nsgconj 19190 isnsg3 19191 trivnsgd 19203 eqgcpbl 19213 qusgrp 19217 quseccl 19218 qusadd 19219 qus0 19220 qusinv 19221 qussub 19222 ecqusaddcl 19224 ghmnsgima 19271 ghmnsgpreima 19272 conjnsg 19285 qusghm 19286 ghmqusnsglem1 19311 ghmqusnsglem2 19312 ghmqusnsg 19313 ghmquskerlem1 19314 ghmquskerlem2 19316 ghmquskerlem3 19317 ghmqusker 19318 sylow3lem4 19663 prmgrpsimpgd 20149 rhmqusnsg 21313 rngqiprngimf1lem 21322 rngqiprngimf1 21328 rngqiprngimfo 21329 rngqiprngfulem4 21342 rngqipring1 21344 clsnsg 24134 qustgpopn 24144 qustgphaus 24147 cyc3genpm 33155 qusker 33357 qus0g 33415 qusima 33416 qusrn 33417 nsgqus0 33418 nsgmgclem 33419 nsgmgc 33420 nsgqusf1olem1 33421 nsgqusf1olem2 33422 nsgqusf1olem3 33423 lmhmqusker 33425 rhmquskerlem 33433 qsnzr 33463 opprqusplusg 33497 opprqus0g 33498 qsdrngilem 33502 qsdrngi 33503 |
Copyright terms: Public domain | W3C validator |