| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nsgsubg | Structured version Visualization version GIF version | ||
| Description: A normal subgroup is a subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.) |
| Ref | Expression |
|---|---|
| nsgsubg | ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | eqid 2730 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | 1, 2 | isnsg 19094 | . 2 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) ∈ 𝑆 ↔ (𝑦(+g‘𝐺)𝑥) ∈ 𝑆))) |
| 4 | 3 | simplbi 497 | 1 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 ∀wral 3045 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 +gcplusg 17227 SubGrpcsubg 19059 NrmSGrpcnsg 19060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-subg 19062 df-nsg 19063 |
| This theorem is referenced by: nsgconj 19098 isnsg3 19099 trivnsgd 19111 eqgcpbl 19121 qusgrp 19125 quseccl 19126 qusadd 19127 qus0 19128 qusinv 19129 qussub 19130 ecqusaddcl 19132 ghmnsgima 19179 ghmnsgpreima 19180 conjnsg 19193 qusghm 19194 ghmqusnsglem1 19219 ghmqusnsglem2 19220 ghmqusnsg 19221 ghmquskerlem1 19222 ghmquskerlem2 19224 ghmquskerlem3 19225 ghmqusker 19226 sylow3lem4 19567 prmgrpsimpgd 20053 rhmqusnsg 21202 rngqiprngimf1lem 21211 rngqiprngimf1 21217 rngqiprngimfo 21218 rngqiprngfulem4 21231 rngqipring1 21233 clsnsg 24004 qustgpopn 24014 qustgphaus 24017 cyc3genpm 33116 qusker 33327 qus0g 33385 qusima 33386 qusrn 33387 nsgqus0 33388 nsgmgclem 33389 nsgmgc 33390 nsgqusf1olem1 33391 nsgqusf1olem2 33392 nsgqusf1olem3 33393 lmhmqusker 33395 rhmquskerlem 33403 qsnzr 33433 opprqusplusg 33467 opprqus0g 33468 qsdrngilem 33472 qsdrngi 33473 |
| Copyright terms: Public domain | W3C validator |