MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nsgsubg Structured version   Visualization version   GIF version

Theorem nsgsubg 19141
Description: A normal subgroup is a subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
Assertion
Ref Expression
nsgsubg (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))

Proof of Theorem nsgsubg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . 3 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2735 . . 3 (+g𝐺) = (+g𝐺)
31, 2isnsg 19138 . 2 (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦) ∈ 𝑆 ↔ (𝑦(+g𝐺)𝑥) ∈ 𝑆)))
43simplbi 497 1 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2108  wral 3051  cfv 6531  (class class class)co 7405  Basecbs 17228  +gcplusg 17271  SubGrpcsubg 19103  NrmSGrpcnsg 19104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fv 6539  df-ov 7408  df-subg 19106  df-nsg 19107
This theorem is referenced by:  nsgconj  19142  isnsg3  19143  trivnsgd  19155  eqgcpbl  19165  qusgrp  19169  quseccl  19170  qusadd  19171  qus0  19172  qusinv  19173  qussub  19174  ecqusaddcl  19176  ghmnsgima  19223  ghmnsgpreima  19224  conjnsg  19237  qusghm  19238  ghmqusnsglem1  19263  ghmqusnsglem2  19264  ghmqusnsg  19265  ghmquskerlem1  19266  ghmquskerlem2  19268  ghmquskerlem3  19269  ghmqusker  19270  sylow3lem4  19611  prmgrpsimpgd  20097  rhmqusnsg  21246  rngqiprngimf1lem  21255  rngqiprngimf1  21261  rngqiprngimfo  21262  rngqiprngfulem4  21275  rngqipring1  21277  clsnsg  24048  qustgpopn  24058  qustgphaus  24061  cyc3genpm  33163  qusker  33364  qus0g  33422  qusima  33423  qusrn  33424  nsgqus0  33425  nsgmgclem  33426  nsgmgc  33427  nsgqusf1olem1  33428  nsgqusf1olem2  33429  nsgqusf1olem3  33430  lmhmqusker  33432  rhmquskerlem  33440  qsnzr  33470  opprqusplusg  33504  opprqus0g  33505  qsdrngilem  33509  qsdrngi  33510
  Copyright terms: Public domain W3C validator