MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nsgsubg Structured version   Visualization version   GIF version

Theorem nsgsubg 18835
Description: A normal subgroup is a subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
Assertion
Ref Expression
nsgsubg (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))

Proof of Theorem nsgsubg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . 3 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2736 . . 3 (+g𝐺) = (+g𝐺)
31, 2isnsg 18832 . 2 (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦) ∈ 𝑆 ↔ (𝑦(+g𝐺)𝑥) ∈ 𝑆)))
43simplbi 499 1 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2104  wral 3062  cfv 6458  (class class class)co 7307  Basecbs 16961  +gcplusg 17011  SubGrpcsubg 18798  NrmSGrpcnsg 18799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3306  df-v 3439  df-sbc 3722  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fv 6466  df-ov 7310  df-subg 18801  df-nsg 18802
This theorem is referenced by:  nsgconj  18836  isnsg3  18837  trivnsgd  18849  eqgcpbl  18859  qusgrp  18860  quseccl  18861  qusadd  18862  qus0  18863  qusinv  18864  qussub  18865  ghmnsgima  18907  ghmnsgpreima  18908  conjnsg  18919  qusghm  18920  sylow3lem4  19284  prmgrpsimpgd  19766  clsnsg  23310  qustgpopn  23320  qustgphaus  23323  cyc3genpm  31468  qusker  31598  qusima  31643  nsgqus0  31644  nsgmgclem  31645  nsgmgc  31646  nsgqusf1olem1  31647  nsgqusf1olem2  31648  nsgqusf1olem3  31649
  Copyright terms: Public domain W3C validator