| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nsgsubg | Structured version Visualization version GIF version | ||
| Description: A normal subgroup is a subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.) |
| Ref | Expression |
|---|---|
| nsgsubg | ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | eqid 2733 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | 1, 2 | isnsg 19069 | . 2 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) ∈ 𝑆 ↔ (𝑦(+g‘𝐺)𝑥) ∈ 𝑆))) |
| 4 | 3 | simplbi 497 | 1 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2113 ∀wral 3048 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 +gcplusg 17163 SubGrpcsubg 19035 NrmSGrpcnsg 19036 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7355 df-subg 19038 df-nsg 19039 |
| This theorem is referenced by: nsgconj 19073 isnsg3 19074 trivnsgd 19086 eqgcpbl 19096 qusgrp 19100 quseccl 19101 qusadd 19102 qus0 19103 qusinv 19104 qussub 19105 ecqusaddcl 19107 ghmnsgima 19154 ghmnsgpreima 19155 conjnsg 19168 qusghm 19169 ghmqusnsglem1 19194 ghmqusnsglem2 19195 ghmqusnsg 19196 ghmquskerlem1 19197 ghmquskerlem2 19199 ghmquskerlem3 19200 ghmqusker 19201 sylow3lem4 19544 prmgrpsimpgd 20030 rhmqusnsg 21224 rngqiprngimf1lem 21233 rngqiprngimf1 21239 rngqiprngimfo 21240 rngqiprngfulem4 21253 rngqipring1 21255 clsnsg 24026 qustgpopn 24036 qustgphaus 24039 cyc3genpm 33128 qusker 33321 qus0g 33379 qusima 33380 qusrn 33381 nsgqus0 33382 nsgmgclem 33383 nsgmgc 33384 nsgqusf1olem1 33385 nsgqusf1olem2 33386 nsgqusf1olem3 33387 lmhmqusker 33389 rhmquskerlem 33397 qsnzr 33427 opprqusplusg 33461 opprqus0g 33462 qsdrngilem 33466 qsdrngi 33467 |
| Copyright terms: Public domain | W3C validator |