| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nsgsubg | Structured version Visualization version GIF version | ||
| Description: A normal subgroup is a subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.) |
| Ref | Expression |
|---|---|
| nsgsubg | ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | eqid 2729 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | 1, 2 | isnsg 19052 | . 2 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) ∈ 𝑆 ↔ (𝑦(+g‘𝐺)𝑥) ∈ 𝑆))) |
| 4 | 3 | simplbi 497 | 1 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 ∀wral 3044 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 +gcplusg 17179 SubGrpcsubg 19017 NrmSGrpcnsg 19018 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 df-subg 19020 df-nsg 19021 |
| This theorem is referenced by: nsgconj 19056 isnsg3 19057 trivnsgd 19069 eqgcpbl 19079 qusgrp 19083 quseccl 19084 qusadd 19085 qus0 19086 qusinv 19087 qussub 19088 ecqusaddcl 19090 ghmnsgima 19137 ghmnsgpreima 19138 conjnsg 19151 qusghm 19152 ghmqusnsglem1 19177 ghmqusnsglem2 19178 ghmqusnsg 19179 ghmquskerlem1 19180 ghmquskerlem2 19182 ghmquskerlem3 19183 ghmqusker 19184 sylow3lem4 19527 prmgrpsimpgd 20013 rhmqusnsg 21210 rngqiprngimf1lem 21219 rngqiprngimf1 21225 rngqiprngimfo 21226 rngqiprngfulem4 21239 rngqipring1 21241 clsnsg 24013 qustgpopn 24023 qustgphaus 24026 cyc3genpm 33107 qusker 33296 qus0g 33354 qusima 33355 qusrn 33356 nsgqus0 33357 nsgmgclem 33358 nsgmgc 33359 nsgqusf1olem1 33360 nsgqusf1olem2 33361 nsgqusf1olem3 33362 lmhmqusker 33364 rhmquskerlem 33372 qsnzr 33402 opprqusplusg 33436 opprqus0g 33437 qsdrngilem 33441 qsdrngi 33442 |
| Copyright terms: Public domain | W3C validator |