| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nsgsubg | Structured version Visualization version GIF version | ||
| Description: A normal subgroup is a subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.) |
| Ref | Expression |
|---|---|
| nsgsubg | ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | eqid 2729 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | 1, 2 | isnsg 19087 | . 2 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) ∈ 𝑆 ↔ (𝑦(+g‘𝐺)𝑥) ∈ 𝑆))) |
| 4 | 3 | simplbi 497 | 1 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 ∀wral 3044 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 +gcplusg 17220 SubGrpcsubg 19052 NrmSGrpcnsg 19053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-subg 19055 df-nsg 19056 |
| This theorem is referenced by: nsgconj 19091 isnsg3 19092 trivnsgd 19104 eqgcpbl 19114 qusgrp 19118 quseccl 19119 qusadd 19120 qus0 19121 qusinv 19122 qussub 19123 ecqusaddcl 19125 ghmnsgima 19172 ghmnsgpreima 19173 conjnsg 19186 qusghm 19187 ghmqusnsglem1 19212 ghmqusnsglem2 19213 ghmqusnsg 19214 ghmquskerlem1 19215 ghmquskerlem2 19217 ghmquskerlem3 19218 ghmqusker 19219 sylow3lem4 19560 prmgrpsimpgd 20046 rhmqusnsg 21195 rngqiprngimf1lem 21204 rngqiprngimf1 21210 rngqiprngimfo 21211 rngqiprngfulem4 21224 rngqipring1 21226 clsnsg 23997 qustgpopn 24007 qustgphaus 24010 cyc3genpm 33109 qusker 33320 qus0g 33378 qusima 33379 qusrn 33380 nsgqus0 33381 nsgmgclem 33382 nsgmgc 33383 nsgqusf1olem1 33384 nsgqusf1olem2 33385 nsgqusf1olem3 33386 lmhmqusker 33388 rhmquskerlem 33396 qsnzr 33426 opprqusplusg 33460 opprqus0g 33461 qsdrngilem 33465 qsdrngi 33466 |
| Copyright terms: Public domain | W3C validator |