MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nsgsubg Structured version   Visualization version   GIF version

Theorem nsgsubg 19072
Description: A normal subgroup is a subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
Assertion
Ref Expression
nsgsubg (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))

Proof of Theorem nsgsubg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . 3 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2733 . . 3 (+g𝐺) = (+g𝐺)
31, 2isnsg 19069 . 2 (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦) ∈ 𝑆 ↔ (𝑦(+g𝐺)𝑥) ∈ 𝑆)))
43simplbi 497 1 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2113  wral 3048  cfv 6486  (class class class)co 7352  Basecbs 17122  +gcplusg 17163  SubGrpcsubg 19035  NrmSGrpcnsg 19036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7355  df-subg 19038  df-nsg 19039
This theorem is referenced by:  nsgconj  19073  isnsg3  19074  trivnsgd  19086  eqgcpbl  19096  qusgrp  19100  quseccl  19101  qusadd  19102  qus0  19103  qusinv  19104  qussub  19105  ecqusaddcl  19107  ghmnsgima  19154  ghmnsgpreima  19155  conjnsg  19168  qusghm  19169  ghmqusnsglem1  19194  ghmqusnsglem2  19195  ghmqusnsg  19196  ghmquskerlem1  19197  ghmquskerlem2  19199  ghmquskerlem3  19200  ghmqusker  19201  sylow3lem4  19544  prmgrpsimpgd  20030  rhmqusnsg  21224  rngqiprngimf1lem  21233  rngqiprngimf1  21239  rngqiprngimfo  21240  rngqiprngfulem4  21253  rngqipring1  21255  clsnsg  24026  qustgpopn  24036  qustgphaus  24039  cyc3genpm  33128  qusker  33321  qus0g  33379  qusima  33380  qusrn  33381  nsgqus0  33382  nsgmgclem  33383  nsgmgc  33384  nsgqusf1olem1  33385  nsgqusf1olem2  33386  nsgqusf1olem3  33387  lmhmqusker  33389  rhmquskerlem  33397  qsnzr  33427  opprqusplusg  33461  opprqus0g  33462  qsdrngilem  33466  qsdrngi  33467
  Copyright terms: Public domain W3C validator