MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nsgsubg Structured version   Visualization version   GIF version

Theorem nsgsubg 19198
Description: A normal subgroup is a subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
Assertion
Ref Expression
nsgsubg (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))

Proof of Theorem nsgsubg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . 3 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2740 . . 3 (+g𝐺) = (+g𝐺)
31, 2isnsg 19195 . 2 (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦) ∈ 𝑆 ↔ (𝑦(+g𝐺)𝑥) ∈ 𝑆)))
43simplbi 497 1 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2108  wral 3067  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  SubGrpcsubg 19160  NrmSGrpcnsg 19161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-subg 19163  df-nsg 19164
This theorem is referenced by:  nsgconj  19199  isnsg3  19200  trivnsgd  19212  eqgcpbl  19222  qusgrp  19226  quseccl  19227  qusadd  19228  qus0  19229  qusinv  19230  qussub  19231  ecqusaddcl  19233  ghmnsgima  19280  ghmnsgpreima  19281  conjnsg  19294  qusghm  19295  ghmqusnsglem1  19320  ghmqusnsglem2  19321  ghmqusnsg  19322  ghmquskerlem1  19323  ghmquskerlem2  19325  ghmquskerlem3  19326  ghmqusker  19327  sylow3lem4  19672  prmgrpsimpgd  20158  rhmqusnsg  21318  rngqiprngimf1lem  21327  rngqiprngimf1  21333  rngqiprngimfo  21334  rngqiprngfulem4  21347  rngqipring1  21349  clsnsg  24139  qustgpopn  24149  qustgphaus  24152  cyc3genpm  33145  qusker  33342  qus0g  33400  qusima  33401  qusrn  33402  nsgqus0  33403  nsgmgclem  33404  nsgmgc  33405  nsgqusf1olem1  33406  nsgqusf1olem2  33407  nsgqusf1olem3  33408  lmhmqusker  33410  rhmquskerlem  33418  qsnzr  33448  opprqusplusg  33482  opprqus0g  33483  qsdrngilem  33487  qsdrngi  33488
  Copyright terms: Public domain W3C validator