MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nsgsubg Structured version   Visualization version   GIF version

Theorem nsgsubg 19097
Description: A normal subgroup is a subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
Assertion
Ref Expression
nsgsubg (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))

Proof of Theorem nsgsubg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . 3 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2730 . . 3 (+g𝐺) = (+g𝐺)
31, 2isnsg 19094 . 2 (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦) ∈ 𝑆 ↔ (𝑦(+g𝐺)𝑥) ∈ 𝑆)))
43simplbi 497 1 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  wral 3045  cfv 6514  (class class class)co 7390  Basecbs 17186  +gcplusg 17227  SubGrpcsubg 19059  NrmSGrpcnsg 19060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fv 6522  df-ov 7393  df-subg 19062  df-nsg 19063
This theorem is referenced by:  nsgconj  19098  isnsg3  19099  trivnsgd  19111  eqgcpbl  19121  qusgrp  19125  quseccl  19126  qusadd  19127  qus0  19128  qusinv  19129  qussub  19130  ecqusaddcl  19132  ghmnsgima  19179  ghmnsgpreima  19180  conjnsg  19193  qusghm  19194  ghmqusnsglem1  19219  ghmqusnsglem2  19220  ghmqusnsg  19221  ghmquskerlem1  19222  ghmquskerlem2  19224  ghmquskerlem3  19225  ghmqusker  19226  sylow3lem4  19567  prmgrpsimpgd  20053  rhmqusnsg  21202  rngqiprngimf1lem  21211  rngqiprngimf1  21217  rngqiprngimfo  21218  rngqiprngfulem4  21231  rngqipring1  21233  clsnsg  24004  qustgpopn  24014  qustgphaus  24017  cyc3genpm  33116  qusker  33327  qus0g  33385  qusima  33386  qusrn  33387  nsgqus0  33388  nsgmgclem  33389  nsgmgc  33390  nsgqusf1olem1  33391  nsgqusf1olem2  33392  nsgqusf1olem3  33393  lmhmqusker  33395  rhmquskerlem  33403  qsnzr  33433  opprqusplusg  33467  opprqus0g  33468  qsdrngilem  33472  qsdrngi  33473
  Copyright terms: Public domain W3C validator