MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nsgsubg Structured version   Visualization version   GIF version

Theorem nsgsubg 18784
Description: A normal subgroup is a subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
Assertion
Ref Expression
nsgsubg (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))

Proof of Theorem nsgsubg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . 3 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2740 . . 3 (+g𝐺) = (+g𝐺)
31, 2isnsg 18781 . 2 (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦) ∈ 𝑆 ↔ (𝑦(+g𝐺)𝑥) ∈ 𝑆)))
43simplbi 498 1 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2110  wral 3066  cfv 6432  (class class class)co 7271  Basecbs 16910  +gcplusg 16960  SubGrpcsubg 18747  NrmSGrpcnsg 18748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-sbc 3721  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fv 6440  df-ov 7274  df-subg 18750  df-nsg 18751
This theorem is referenced by:  nsgconj  18785  isnsg3  18786  trivnsgd  18798  eqgcpbl  18808  qusgrp  18809  quseccl  18810  qusadd  18811  qus0  18812  qusinv  18813  qussub  18814  ghmnsgima  18856  ghmnsgpreima  18857  conjnsg  18868  qusghm  18869  sylow3lem4  19233  prmgrpsimpgd  19715  clsnsg  23259  qustgpopn  23269  qustgphaus  23272  cyc3genpm  31415  qusker  31545  qusima  31590  nsgqus0  31591  nsgmgclem  31592  nsgmgc  31593  nsgqusf1olem1  31594  nsgqusf1olem2  31595  nsgqusf1olem3  31596
  Copyright terms: Public domain W3C validator