Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nsgsubg | Structured version Visualization version GIF version |
Description: A normal subgroup is a subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.) |
Ref | Expression |
---|---|
nsgsubg | ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | eqid 2736 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | 1, 2 | isnsg 18832 | . 2 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) ∈ 𝑆 ↔ (𝑦(+g‘𝐺)𝑥) ∈ 𝑆))) |
4 | 3 | simplbi 499 | 1 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2104 ∀wral 3062 ‘cfv 6458 (class class class)co 7307 Basecbs 16961 +gcplusg 17011 SubGrpcsubg 18798 NrmSGrpcnsg 18799 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3306 df-v 3439 df-sbc 3722 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fv 6466 df-ov 7310 df-subg 18801 df-nsg 18802 |
This theorem is referenced by: nsgconj 18836 isnsg3 18837 trivnsgd 18849 eqgcpbl 18859 qusgrp 18860 quseccl 18861 qusadd 18862 qus0 18863 qusinv 18864 qussub 18865 ghmnsgima 18907 ghmnsgpreima 18908 conjnsg 18919 qusghm 18920 sylow3lem4 19284 prmgrpsimpgd 19766 clsnsg 23310 qustgpopn 23320 qustgphaus 23323 cyc3genpm 31468 qusker 31598 qusima 31643 nsgqus0 31644 nsgmgclem 31645 nsgmgc 31646 nsgqusf1olem1 31647 nsgqusf1olem2 31648 nsgqusf1olem3 31649 |
Copyright terms: Public domain | W3C validator |