MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nsgsubg Structured version   Visualization version   GIF version

Theorem nsgsubg 19090
Description: A normal subgroup is a subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
Assertion
Ref Expression
nsgsubg (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))

Proof of Theorem nsgsubg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2729 . . 3 (+g𝐺) = (+g𝐺)
31, 2isnsg 19087 . 2 (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦) ∈ 𝑆 ↔ (𝑦(+g𝐺)𝑥) ∈ 𝑆)))
43simplbi 497 1 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  wral 3044  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  SubGrpcsubg 19052  NrmSGrpcnsg 19053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-subg 19055  df-nsg 19056
This theorem is referenced by:  nsgconj  19091  isnsg3  19092  trivnsgd  19104  eqgcpbl  19114  qusgrp  19118  quseccl  19119  qusadd  19120  qus0  19121  qusinv  19122  qussub  19123  ecqusaddcl  19125  ghmnsgima  19172  ghmnsgpreima  19173  conjnsg  19186  qusghm  19187  ghmqusnsglem1  19212  ghmqusnsglem2  19213  ghmqusnsg  19214  ghmquskerlem1  19215  ghmquskerlem2  19217  ghmquskerlem3  19218  ghmqusker  19219  sylow3lem4  19560  prmgrpsimpgd  20046  rhmqusnsg  21195  rngqiprngimf1lem  21204  rngqiprngimf1  21210  rngqiprngimfo  21211  rngqiprngfulem4  21224  rngqipring1  21226  clsnsg  23997  qustgpopn  24007  qustgphaus  24010  cyc3genpm  33109  qusker  33320  qus0g  33378  qusima  33379  qusrn  33380  nsgqus0  33381  nsgmgclem  33382  nsgmgc  33383  nsgqusf1olem1  33384  nsgqusf1olem2  33385  nsgqusf1olem3  33386  lmhmqusker  33388  rhmquskerlem  33396  qsnzr  33426  opprqusplusg  33460  opprqus0g  33461  qsdrngilem  33465  qsdrngi  33466
  Copyright terms: Public domain W3C validator