| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nsgsubg | Structured version Visualization version GIF version | ||
| Description: A normal subgroup is a subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.) |
| Ref | Expression |
|---|---|
| nsgsubg | ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | eqid 2735 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | 1, 2 | isnsg 19138 | . 2 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) ∈ 𝑆 ↔ (𝑦(+g‘𝐺)𝑥) ∈ 𝑆))) |
| 4 | 3 | simplbi 497 | 1 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2108 ∀wral 3051 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 +gcplusg 17271 SubGrpcsubg 19103 NrmSGrpcnsg 19104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fv 6539 df-ov 7408 df-subg 19106 df-nsg 19107 |
| This theorem is referenced by: nsgconj 19142 isnsg3 19143 trivnsgd 19155 eqgcpbl 19165 qusgrp 19169 quseccl 19170 qusadd 19171 qus0 19172 qusinv 19173 qussub 19174 ecqusaddcl 19176 ghmnsgima 19223 ghmnsgpreima 19224 conjnsg 19237 qusghm 19238 ghmqusnsglem1 19263 ghmqusnsglem2 19264 ghmqusnsg 19265 ghmquskerlem1 19266 ghmquskerlem2 19268 ghmquskerlem3 19269 ghmqusker 19270 sylow3lem4 19611 prmgrpsimpgd 20097 rhmqusnsg 21246 rngqiprngimf1lem 21255 rngqiprngimf1 21261 rngqiprngimfo 21262 rngqiprngfulem4 21275 rngqipring1 21277 clsnsg 24048 qustgpopn 24058 qustgphaus 24061 cyc3genpm 33163 qusker 33364 qus0g 33422 qusima 33423 qusrn 33424 nsgqus0 33425 nsgmgclem 33426 nsgmgc 33427 nsgqusf1olem1 33428 nsgqusf1olem2 33429 nsgqusf1olem3 33430 lmhmqusker 33432 rhmquskerlem 33440 qsnzr 33470 opprqusplusg 33504 opprqus0g 33505 qsdrngilem 33509 qsdrngi 33510 |
| Copyright terms: Public domain | W3C validator |