| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nsgsubg | Structured version Visualization version GIF version | ||
| Description: A normal subgroup is a subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.) |
| Ref | Expression |
|---|---|
| nsgsubg | ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | eqid 2731 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | 1, 2 | isnsg 19065 | . 2 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) ∈ 𝑆 ↔ (𝑦(+g‘𝐺)𝑥) ∈ 𝑆))) |
| 4 | 3 | simplbi 497 | 1 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2111 ∀wral 3047 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 +gcplusg 17158 SubGrpcsubg 19030 NrmSGrpcnsg 19031 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-subg 19033 df-nsg 19034 |
| This theorem is referenced by: nsgconj 19069 isnsg3 19070 trivnsgd 19082 eqgcpbl 19092 qusgrp 19096 quseccl 19097 qusadd 19098 qus0 19099 qusinv 19100 qussub 19101 ecqusaddcl 19103 ghmnsgima 19150 ghmnsgpreima 19151 conjnsg 19164 qusghm 19165 ghmqusnsglem1 19190 ghmqusnsglem2 19191 ghmqusnsg 19192 ghmquskerlem1 19193 ghmquskerlem2 19195 ghmquskerlem3 19196 ghmqusker 19197 sylow3lem4 19540 prmgrpsimpgd 20026 rhmqusnsg 21220 rngqiprngimf1lem 21229 rngqiprngimf1 21235 rngqiprngimfo 21236 rngqiprngfulem4 21249 rngqipring1 21251 clsnsg 24023 qustgpopn 24033 qustgphaus 24036 cyc3genpm 33116 qusker 33309 qus0g 33367 qusima 33368 qusrn 33369 nsgqus0 33370 nsgmgclem 33371 nsgmgc 33372 nsgqusf1olem1 33373 nsgqusf1olem2 33374 nsgqusf1olem3 33375 lmhmqusker 33377 rhmquskerlem 33385 qsnzr 33415 opprqusplusg 33449 opprqus0g 33450 qsdrngilem 33454 qsdrngi 33455 |
| Copyright terms: Public domain | W3C validator |