MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nsgsubg Structured version   Visualization version   GIF version

Theorem nsgsubg 19055
Description: A normal subgroup is a subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
Assertion
Ref Expression
nsgsubg (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))

Proof of Theorem nsgsubg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2729 . . 3 (+g𝐺) = (+g𝐺)
31, 2isnsg 19052 . 2 (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦) ∈ 𝑆 ↔ (𝑦(+g𝐺)𝑥) ∈ 𝑆)))
43simplbi 497 1 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  wral 3044  cfv 6486  (class class class)co 7353  Basecbs 17138  +gcplusg 17179  SubGrpcsubg 19017  NrmSGrpcnsg 19018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7356  df-subg 19020  df-nsg 19021
This theorem is referenced by:  nsgconj  19056  isnsg3  19057  trivnsgd  19069  eqgcpbl  19079  qusgrp  19083  quseccl  19084  qusadd  19085  qus0  19086  qusinv  19087  qussub  19088  ecqusaddcl  19090  ghmnsgima  19137  ghmnsgpreima  19138  conjnsg  19151  qusghm  19152  ghmqusnsglem1  19177  ghmqusnsglem2  19178  ghmqusnsg  19179  ghmquskerlem1  19180  ghmquskerlem2  19182  ghmquskerlem3  19183  ghmqusker  19184  sylow3lem4  19527  prmgrpsimpgd  20013  rhmqusnsg  21210  rngqiprngimf1lem  21219  rngqiprngimf1  21225  rngqiprngimfo  21226  rngqiprngfulem4  21239  rngqipring1  21241  clsnsg  24013  qustgpopn  24023  qustgphaus  24026  cyc3genpm  33107  qusker  33296  qus0g  33354  qusima  33355  qusrn  33356  nsgqus0  33357  nsgmgclem  33358  nsgmgc  33359  nsgqusf1olem1  33360  nsgqusf1olem2  33361  nsgqusf1olem3  33362  lmhmqusker  33364  rhmquskerlem  33372  qsnzr  33402  opprqusplusg  33436  opprqus0g  33437  qsdrngilem  33441  qsdrngi  33442
  Copyright terms: Public domain W3C validator