![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > ococss | Structured version Visualization version GIF version |
Description: Inclusion in complement of complement. Part of Proposition 1 of [Kalmbach] p. 65. (Contributed by NM, 9-Aug-2000.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ococss | ⊢ (𝐴 ⊆ ℋ → 𝐴 ⊆ (⊥‘(⊥‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3821 | . . . 4 ⊢ (𝐴 ⊆ ℋ → (𝑦 ∈ 𝐴 → 𝑦 ∈ ℋ)) | |
2 | ocorth 28701 | . . . . . 6 ⊢ (𝐴 ⊆ ℋ → ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ (⊥‘𝐴)) → (𝑦 ·ih 𝑥) = 0)) | |
3 | 2 | expd 406 | . . . . 5 ⊢ (𝐴 ⊆ ℋ → (𝑦 ∈ 𝐴 → (𝑥 ∈ (⊥‘𝐴) → (𝑦 ·ih 𝑥) = 0))) |
4 | 3 | ralrimdv 3177 | . . . 4 ⊢ (𝐴 ⊆ ℋ → (𝑦 ∈ 𝐴 → ∀𝑥 ∈ (⊥‘𝐴)(𝑦 ·ih 𝑥) = 0)) |
5 | 1, 4 | jcad 508 | . . 3 ⊢ (𝐴 ⊆ ℋ → (𝑦 ∈ 𝐴 → (𝑦 ∈ ℋ ∧ ∀𝑥 ∈ (⊥‘𝐴)(𝑦 ·ih 𝑥) = 0))) |
6 | ocss 28695 | . . . 4 ⊢ (𝐴 ⊆ ℋ → (⊥‘𝐴) ⊆ ℋ) | |
7 | ocel 28691 | . . . 4 ⊢ ((⊥‘𝐴) ⊆ ℋ → (𝑦 ∈ (⊥‘(⊥‘𝐴)) ↔ (𝑦 ∈ ℋ ∧ ∀𝑥 ∈ (⊥‘𝐴)(𝑦 ·ih 𝑥) = 0))) | |
8 | 6, 7 | syl 17 | . . 3 ⊢ (𝐴 ⊆ ℋ → (𝑦 ∈ (⊥‘(⊥‘𝐴)) ↔ (𝑦 ∈ ℋ ∧ ∀𝑥 ∈ (⊥‘𝐴)(𝑦 ·ih 𝑥) = 0))) |
9 | 5, 8 | sylibrd 251 | . 2 ⊢ (𝐴 ⊆ ℋ → (𝑦 ∈ 𝐴 → 𝑦 ∈ (⊥‘(⊥‘𝐴)))) |
10 | 9 | ssrdv 3833 | 1 ⊢ (𝐴 ⊆ ℋ → 𝐴 ⊆ (⊥‘(⊥‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1656 ∈ wcel 2164 ∀wral 3117 ⊆ wss 3798 ‘cfv 6127 (class class class)co 6910 0cc0 10259 ℋchba 28327 ·ih csp 28330 ⊥cort 28338 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 ax-hilex 28407 ax-hfvadd 28408 ax-hv0cl 28411 ax-hfvmul 28413 ax-hvmul0 28418 ax-hfi 28487 ax-his1 28490 ax-his2 28491 ax-his3 28492 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-id 5252 df-po 5265 df-so 5266 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-er 8014 df-en 8229 df-dom 8230 df-sdom 8231 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-div 11017 df-2 11421 df-cj 14223 df-re 14224 df-im 14225 df-sh 28615 df-oc 28660 |
This theorem is referenced by: shococss 28704 occon3 28707 hsupunss 28753 spanssoc 28759 shunssji 28779 ococin 28818 sshhococi 28956 h1did 28961 spansnpji 28988 pjoccoi 29588 |
Copyright terms: Public domain | W3C validator |