Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > ococss | Structured version Visualization version GIF version |
Description: Inclusion in complement of complement. Part of Proposition 1 of [Kalmbach] p. 65. (Contributed by NM, 9-Aug-2000.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ococss | ⊢ (𝐴 ⊆ ℋ → 𝐴 ⊆ (⊥‘(⊥‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3914 | . . . 4 ⊢ (𝐴 ⊆ ℋ → (𝑦 ∈ 𝐴 → 𝑦 ∈ ℋ)) | |
2 | ocorth 29653 | . . . . . 6 ⊢ (𝐴 ⊆ ℋ → ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ (⊥‘𝐴)) → (𝑦 ·ih 𝑥) = 0)) | |
3 | 2 | expd 416 | . . . . 5 ⊢ (𝐴 ⊆ ℋ → (𝑦 ∈ 𝐴 → (𝑥 ∈ (⊥‘𝐴) → (𝑦 ·ih 𝑥) = 0))) |
4 | 3 | ralrimdv 3105 | . . . 4 ⊢ (𝐴 ⊆ ℋ → (𝑦 ∈ 𝐴 → ∀𝑥 ∈ (⊥‘𝐴)(𝑦 ·ih 𝑥) = 0)) |
5 | 1, 4 | jcad 513 | . . 3 ⊢ (𝐴 ⊆ ℋ → (𝑦 ∈ 𝐴 → (𝑦 ∈ ℋ ∧ ∀𝑥 ∈ (⊥‘𝐴)(𝑦 ·ih 𝑥) = 0))) |
6 | ocss 29647 | . . . 4 ⊢ (𝐴 ⊆ ℋ → (⊥‘𝐴) ⊆ ℋ) | |
7 | ocel 29643 | . . . 4 ⊢ ((⊥‘𝐴) ⊆ ℋ → (𝑦 ∈ (⊥‘(⊥‘𝐴)) ↔ (𝑦 ∈ ℋ ∧ ∀𝑥 ∈ (⊥‘𝐴)(𝑦 ·ih 𝑥) = 0))) | |
8 | 6, 7 | syl 17 | . . 3 ⊢ (𝐴 ⊆ ℋ → (𝑦 ∈ (⊥‘(⊥‘𝐴)) ↔ (𝑦 ∈ ℋ ∧ ∀𝑥 ∈ (⊥‘𝐴)(𝑦 ·ih 𝑥) = 0))) |
9 | 5, 8 | sylibrd 258 | . 2 ⊢ (𝐴 ⊆ ℋ → (𝑦 ∈ 𝐴 → 𝑦 ∈ (⊥‘(⊥‘𝐴)))) |
10 | 9 | ssrdv 3927 | 1 ⊢ (𝐴 ⊆ ℋ → 𝐴 ⊆ (⊥‘(⊥‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ⊆ wss 3887 ‘cfv 6433 (class class class)co 7275 0cc0 10871 ℋchba 29281 ·ih csp 29284 ⊥cort 29292 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-hilex 29361 ax-hfvadd 29362 ax-hv0cl 29365 ax-hfvmul 29367 ax-hvmul0 29372 ax-hfi 29441 ax-his1 29444 ax-his2 29445 ax-his3 29446 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-2 12036 df-cj 14810 df-re 14811 df-im 14812 df-sh 29569 df-oc 29614 |
This theorem is referenced by: shococss 29656 occon3 29659 hsupunss 29705 spanssoc 29711 shunssji 29731 ococin 29770 sshhococi 29908 h1did 29913 spansnpji 29940 pjoccoi 30540 |
Copyright terms: Public domain | W3C validator |