![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > ococss | Structured version Visualization version GIF version |
Description: Inclusion in complement of complement. Part of Proposition 1 of [Kalmbach] p. 65. (Contributed by NM, 9-Aug-2000.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ococss | ⊢ (𝐴 ⊆ ℋ → 𝐴 ⊆ (⊥‘(⊥‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3746 | . . . 4 ⊢ (𝐴 ⊆ ℋ → (𝑦 ∈ 𝐴 → 𝑦 ∈ ℋ)) | |
2 | ocorth 28490 | . . . . . 6 ⊢ (𝐴 ⊆ ℋ → ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ (⊥‘𝐴)) → (𝑦 ·ih 𝑥) = 0)) | |
3 | 2 | expd 400 | . . . . 5 ⊢ (𝐴 ⊆ ℋ → (𝑦 ∈ 𝐴 → (𝑥 ∈ (⊥‘𝐴) → (𝑦 ·ih 𝑥) = 0))) |
4 | 3 | ralrimdv 3117 | . . . 4 ⊢ (𝐴 ⊆ ℋ → (𝑦 ∈ 𝐴 → ∀𝑥 ∈ (⊥‘𝐴)(𝑦 ·ih 𝑥) = 0)) |
5 | 1, 4 | jcad 502 | . . 3 ⊢ (𝐴 ⊆ ℋ → (𝑦 ∈ 𝐴 → (𝑦 ∈ ℋ ∧ ∀𝑥 ∈ (⊥‘𝐴)(𝑦 ·ih 𝑥) = 0))) |
6 | ocss 28484 | . . . 4 ⊢ (𝐴 ⊆ ℋ → (⊥‘𝐴) ⊆ ℋ) | |
7 | ocel 28480 | . . . 4 ⊢ ((⊥‘𝐴) ⊆ ℋ → (𝑦 ∈ (⊥‘(⊥‘𝐴)) ↔ (𝑦 ∈ ℋ ∧ ∀𝑥 ∈ (⊥‘𝐴)(𝑦 ·ih 𝑥) = 0))) | |
8 | 6, 7 | syl 17 | . . 3 ⊢ (𝐴 ⊆ ℋ → (𝑦 ∈ (⊥‘(⊥‘𝐴)) ↔ (𝑦 ∈ ℋ ∧ ∀𝑥 ∈ (⊥‘𝐴)(𝑦 ·ih 𝑥) = 0))) |
9 | 5, 8 | sylibrd 249 | . 2 ⊢ (𝐴 ⊆ ℋ → (𝑦 ∈ 𝐴 → 𝑦 ∈ (⊥‘(⊥‘𝐴)))) |
10 | 9 | ssrdv 3758 | 1 ⊢ (𝐴 ⊆ ℋ → 𝐴 ⊆ (⊥‘(⊥‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ∀wral 3061 ⊆ wss 3723 ‘cfv 6030 (class class class)co 6796 0cc0 10142 ℋchil 28116 ·ih csp 28119 ⊥cort 28127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 ax-hilex 28196 ax-hfvadd 28197 ax-hv0cl 28200 ax-hfvmul 28202 ax-hvmul0 28207 ax-hfi 28276 ax-his1 28279 ax-his2 28280 ax-his3 28281 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-id 5158 df-po 5171 df-so 5172 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-er 7900 df-en 8114 df-dom 8115 df-sdom 8116 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-div 10891 df-2 11285 df-cj 14047 df-re 14048 df-im 14049 df-sh 28404 df-oc 28449 |
This theorem is referenced by: shococss 28493 occon3 28496 hsupunss 28542 spanssoc 28548 shunssji 28568 ococin 28607 sshhococi 28745 h1did 28750 spansnpji 28777 pjoccoi 29377 |
Copyright terms: Public domain | W3C validator |