| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ocvi | Structured version Visualization version GIF version | ||
| Description: Property of a member of the orthocomplement of a subset. (Contributed by Mario Carneiro, 13-Oct-2015.) |
| Ref | Expression |
|---|---|
| ocvfval.v | ⊢ 𝑉 = (Base‘𝑊) |
| ocvfval.i | ⊢ , = (·𝑖‘𝑊) |
| ocvfval.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| ocvfval.z | ⊢ 0 = (0g‘𝐹) |
| ocvfval.o | ⊢ ⊥ = (ocv‘𝑊) |
| Ref | Expression |
|---|---|
| ocvi | ⊢ ((𝐴 ∈ ( ⊥ ‘𝑆) ∧ 𝐵 ∈ 𝑆) → (𝐴 , 𝐵) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ocvfval.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | ocvfval.i | . . . 4 ⊢ , = (·𝑖‘𝑊) | |
| 3 | ocvfval.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 4 | ocvfval.z | . . . 4 ⊢ 0 = (0g‘𝐹) | |
| 5 | ocvfval.o | . . . 4 ⊢ ⊥ = (ocv‘𝑊) | |
| 6 | 1, 2, 3, 4, 5 | elocv 21600 | . . 3 ⊢ (𝐴 ∈ ( ⊥ ‘𝑆) ↔ (𝑆 ⊆ 𝑉 ∧ 𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝑆 (𝐴 , 𝑥) = 0 )) |
| 7 | 6 | simp3bi 1147 | . 2 ⊢ (𝐴 ∈ ( ⊥ ‘𝑆) → ∀𝑥 ∈ 𝑆 (𝐴 , 𝑥) = 0 ) |
| 8 | oveq2 7349 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝐴 , 𝑥) = (𝐴 , 𝐵)) | |
| 9 | 8 | eqeq1d 2733 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝐴 , 𝑥) = 0 ↔ (𝐴 , 𝐵) = 0 )) |
| 10 | 9 | rspccva 3571 | . 2 ⊢ ((∀𝑥 ∈ 𝑆 (𝐴 , 𝑥) = 0 ∧ 𝐵 ∈ 𝑆) → (𝐴 , 𝐵) = 0 ) |
| 11 | 7, 10 | sylan 580 | 1 ⊢ ((𝐴 ∈ ( ⊥ ‘𝑆) ∧ 𝐵 ∈ 𝑆) → (𝐴 , 𝐵) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ⊆ wss 3897 ‘cfv 6476 (class class class)co 7341 Basecbs 17115 Scalarcsca 17159 ·𝑖cip 17161 0gc0g 17338 ocvcocv 21592 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-fv 6484 df-ov 7344 df-ocv 21595 |
| This theorem is referenced by: ocvocv 21603 ocvlss 21604 ocvin 21606 lsmcss 21624 clsocv 25172 |
| Copyright terms: Public domain | W3C validator |