| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ocvi | Structured version Visualization version GIF version | ||
| Description: Property of a member of the orthocomplement of a subset. (Contributed by Mario Carneiro, 13-Oct-2015.) |
| Ref | Expression |
|---|---|
| ocvfval.v | ⊢ 𝑉 = (Base‘𝑊) |
| ocvfval.i | ⊢ , = (·𝑖‘𝑊) |
| ocvfval.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| ocvfval.z | ⊢ 0 = (0g‘𝐹) |
| ocvfval.o | ⊢ ⊥ = (ocv‘𝑊) |
| Ref | Expression |
|---|---|
| ocvi | ⊢ ((𝐴 ∈ ( ⊥ ‘𝑆) ∧ 𝐵 ∈ 𝑆) → (𝐴 , 𝐵) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ocvfval.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | ocvfval.i | . . . 4 ⊢ , = (·𝑖‘𝑊) | |
| 3 | ocvfval.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 4 | ocvfval.z | . . . 4 ⊢ 0 = (0g‘𝐹) | |
| 5 | ocvfval.o | . . . 4 ⊢ ⊥ = (ocv‘𝑊) | |
| 6 | 1, 2, 3, 4, 5 | elocv 21614 | . . 3 ⊢ (𝐴 ∈ ( ⊥ ‘𝑆) ↔ (𝑆 ⊆ 𝑉 ∧ 𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝑆 (𝐴 , 𝑥) = 0 )) |
| 7 | 6 | simp3bi 1147 | . 2 ⊢ (𝐴 ∈ ( ⊥ ‘𝑆) → ∀𝑥 ∈ 𝑆 (𝐴 , 𝑥) = 0 ) |
| 8 | oveq2 7363 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝐴 , 𝑥) = (𝐴 , 𝐵)) | |
| 9 | 8 | eqeq1d 2735 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝐴 , 𝑥) = 0 ↔ (𝐴 , 𝐵) = 0 )) |
| 10 | 9 | rspccva 3572 | . 2 ⊢ ((∀𝑥 ∈ 𝑆 (𝐴 , 𝑥) = 0 ∧ 𝐵 ∈ 𝑆) → (𝐴 , 𝐵) = 0 ) |
| 11 | 7, 10 | sylan 580 | 1 ⊢ ((𝐴 ∈ ( ⊥ ‘𝑆) ∧ 𝐵 ∈ 𝑆) → (𝐴 , 𝐵) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ⊆ wss 3898 ‘cfv 6489 (class class class)co 7355 Basecbs 17127 Scalarcsca 17171 ·𝑖cip 17173 0gc0g 17350 ocvcocv 21606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-fv 6497 df-ov 7358 df-ocv 21609 |
| This theorem is referenced by: ocvocv 21617 ocvlss 21618 ocvin 21620 lsmcss 21638 clsocv 25197 |
| Copyright terms: Public domain | W3C validator |