MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ocvi Structured version   Visualization version   GIF version

Theorem ocvi 20786
Description: Property of a member of the orthocomplement of a subset. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
ocvfval.v 𝑉 = (Base‘𝑊)
ocvfval.i , = (·𝑖𝑊)
ocvfval.f 𝐹 = (Scalar‘𝑊)
ocvfval.z 0 = (0g𝐹)
ocvfval.o = (ocv‘𝑊)
Assertion
Ref Expression
ocvi ((𝐴 ∈ ( 𝑆) ∧ 𝐵𝑆) → (𝐴 , 𝐵) = 0 )

Proof of Theorem ocvi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ocvfval.v . . . 4 𝑉 = (Base‘𝑊)
2 ocvfval.i . . . 4 , = (·𝑖𝑊)
3 ocvfval.f . . . 4 𝐹 = (Scalar‘𝑊)
4 ocvfval.z . . . 4 0 = (0g𝐹)
5 ocvfval.o . . . 4 = (ocv‘𝑊)
61, 2, 3, 4, 5elocv 20785 . . 3 (𝐴 ∈ ( 𝑆) ↔ (𝑆𝑉𝐴𝑉 ∧ ∀𝑥𝑆 (𝐴 , 𝑥) = 0 ))
76simp3bi 1145 . 2 (𝐴 ∈ ( 𝑆) → ∀𝑥𝑆 (𝐴 , 𝑥) = 0 )
8 oveq2 7263 . . . 4 (𝑥 = 𝐵 → (𝐴 , 𝑥) = (𝐴 , 𝐵))
98eqeq1d 2740 . . 3 (𝑥 = 𝐵 → ((𝐴 , 𝑥) = 0 ↔ (𝐴 , 𝐵) = 0 ))
109rspccva 3551 . 2 ((∀𝑥𝑆 (𝐴 , 𝑥) = 0𝐵𝑆) → (𝐴 , 𝐵) = 0 )
117, 10sylan 579 1 ((𝐴 ∈ ( 𝑆) ∧ 𝐵𝑆) → (𝐴 , 𝐵) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  wss 3883  cfv 6418  (class class class)co 7255  Basecbs 16840  Scalarcsca 16891  ·𝑖cip 16893  0gc0g 17067  ocvcocv 20777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-ocv 20780
This theorem is referenced by:  ocvocv  20788  ocvlss  20789  ocvin  20791  lsmcss  20809  clsocv  24319
  Copyright terms: Public domain W3C validator