| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ocvi | Structured version Visualization version GIF version | ||
| Description: Property of a member of the orthocomplement of a subset. (Contributed by Mario Carneiro, 13-Oct-2015.) |
| Ref | Expression |
|---|---|
| ocvfval.v | ⊢ 𝑉 = (Base‘𝑊) |
| ocvfval.i | ⊢ , = (·𝑖‘𝑊) |
| ocvfval.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| ocvfval.z | ⊢ 0 = (0g‘𝐹) |
| ocvfval.o | ⊢ ⊥ = (ocv‘𝑊) |
| Ref | Expression |
|---|---|
| ocvi | ⊢ ((𝐴 ∈ ( ⊥ ‘𝑆) ∧ 𝐵 ∈ 𝑆) → (𝐴 , 𝐵) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ocvfval.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | ocvfval.i | . . . 4 ⊢ , = (·𝑖‘𝑊) | |
| 3 | ocvfval.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 4 | ocvfval.z | . . . 4 ⊢ 0 = (0g‘𝐹) | |
| 5 | ocvfval.o | . . . 4 ⊢ ⊥ = (ocv‘𝑊) | |
| 6 | 1, 2, 3, 4, 5 | elocv 21584 | . . 3 ⊢ (𝐴 ∈ ( ⊥ ‘𝑆) ↔ (𝑆 ⊆ 𝑉 ∧ 𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝑆 (𝐴 , 𝑥) = 0 )) |
| 7 | 6 | simp3bi 1147 | . 2 ⊢ (𝐴 ∈ ( ⊥ ‘𝑆) → ∀𝑥 ∈ 𝑆 (𝐴 , 𝑥) = 0 ) |
| 8 | oveq2 7398 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝐴 , 𝑥) = (𝐴 , 𝐵)) | |
| 9 | 8 | eqeq1d 2732 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝐴 , 𝑥) = 0 ↔ (𝐴 , 𝐵) = 0 )) |
| 10 | 9 | rspccva 3590 | . 2 ⊢ ((∀𝑥 ∈ 𝑆 (𝐴 , 𝑥) = 0 ∧ 𝐵 ∈ 𝑆) → (𝐴 , 𝐵) = 0 ) |
| 11 | 7, 10 | sylan 580 | 1 ⊢ ((𝐴 ∈ ( ⊥ ‘𝑆) ∧ 𝐵 ∈ 𝑆) → (𝐴 , 𝐵) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ⊆ wss 3917 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 Scalarcsca 17230 ·𝑖cip 17232 0gc0g 17409 ocvcocv 21576 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-ocv 21579 |
| This theorem is referenced by: ocvocv 21587 ocvlss 21588 ocvin 21590 lsmcss 21608 clsocv 25157 |
| Copyright terms: Public domain | W3C validator |