MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ocvi Structured version   Visualization version   GIF version

Theorem ocvi 21710
Description: Property of a member of the orthocomplement of a subset. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
ocvfval.v 𝑉 = (Base‘𝑊)
ocvfval.i , = (·𝑖𝑊)
ocvfval.f 𝐹 = (Scalar‘𝑊)
ocvfval.z 0 = (0g𝐹)
ocvfval.o = (ocv‘𝑊)
Assertion
Ref Expression
ocvi ((𝐴 ∈ ( 𝑆) ∧ 𝐵𝑆) → (𝐴 , 𝐵) = 0 )

Proof of Theorem ocvi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ocvfval.v . . . 4 𝑉 = (Base‘𝑊)
2 ocvfval.i . . . 4 , = (·𝑖𝑊)
3 ocvfval.f . . . 4 𝐹 = (Scalar‘𝑊)
4 ocvfval.z . . . 4 0 = (0g𝐹)
5 ocvfval.o . . . 4 = (ocv‘𝑊)
61, 2, 3, 4, 5elocv 21709 . . 3 (𝐴 ∈ ( 𝑆) ↔ (𝑆𝑉𝐴𝑉 ∧ ∀𝑥𝑆 (𝐴 , 𝑥) = 0 ))
76simp3bi 1147 . 2 (𝐴 ∈ ( 𝑆) → ∀𝑥𝑆 (𝐴 , 𝑥) = 0 )
8 oveq2 7456 . . . 4 (𝑥 = 𝐵 → (𝐴 , 𝑥) = (𝐴 , 𝐵))
98eqeq1d 2742 . . 3 (𝑥 = 𝐵 → ((𝐴 , 𝑥) = 0 ↔ (𝐴 , 𝐵) = 0 ))
109rspccva 3634 . 2 ((∀𝑥𝑆 (𝐴 , 𝑥) = 0𝐵𝑆) → (𝐴 , 𝐵) = 0 )
117, 10sylan 579 1 ((𝐴 ∈ ( 𝑆) ∧ 𝐵𝑆) → (𝐴 , 𝐵) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  wss 3976  cfv 6573  (class class class)co 7448  Basecbs 17258  Scalarcsca 17314  ·𝑖cip 17316  0gc0g 17499  ocvcocv 21701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-ocv 21704
This theorem is referenced by:  ocvocv  21712  ocvlss  21713  ocvin  21715  lsmcss  21733  clsocv  25303
  Copyright terms: Public domain W3C validator