| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ocvin | Structured version Visualization version GIF version | ||
| Description: An orthocomplement has trivial intersection with the original subspace. (Contributed by Mario Carneiro, 16-Oct-2015.) |
| Ref | Expression |
|---|---|
| ocv2ss.o | ⊢ ⊥ = (ocv‘𝑊) |
| ocvin.l | ⊢ 𝐿 = (LSubSp‘𝑊) |
| ocvin.z | ⊢ 0 = (0g‘𝑊) |
| Ref | Expression |
|---|---|
| ocvin | ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿) → (𝑆 ∩ ( ⊥ ‘𝑆)) = { 0 }) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . . . . . . . 9 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | eqid 2733 | . . . . . . . . 9 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
| 3 | eqid 2733 | . . . . . . . . 9 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 4 | eqid 2733 | . . . . . . . . 9 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
| 5 | ocv2ss.o | . . . . . . . . 9 ⊢ ⊥ = (ocv‘𝑊) | |
| 6 | 1, 2, 3, 4, 5 | ocvi 21615 | . . . . . . . 8 ⊢ ((𝑥 ∈ ( ⊥ ‘𝑆) ∧ 𝑥 ∈ 𝑆) → (𝑥(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊))) |
| 7 | 6 | ancoms 458 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( ⊥ ‘𝑆)) → (𝑥(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊))) |
| 8 | 7 | adantl 481 | . . . . . 6 ⊢ (((𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿) ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( ⊥ ‘𝑆))) → (𝑥(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊))) |
| 9 | simpll 766 | . . . . . . 7 ⊢ (((𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿) ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( ⊥ ‘𝑆))) → 𝑊 ∈ PreHil) | |
| 10 | ocvin.l | . . . . . . . . 9 ⊢ 𝐿 = (LSubSp‘𝑊) | |
| 11 | 1, 10 | lssel 20879 | . . . . . . . 8 ⊢ ((𝑆 ∈ 𝐿 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ (Base‘𝑊)) |
| 12 | 11 | ad2ant2lr 748 | . . . . . . 7 ⊢ (((𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿) ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( ⊥ ‘𝑆))) → 𝑥 ∈ (Base‘𝑊)) |
| 13 | ocvin.z | . . . . . . . 8 ⊢ 0 = (0g‘𝑊) | |
| 14 | 3, 2, 1, 4, 13 | ipeq0 21584 | . . . . . . 7 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ (Base‘𝑊)) → ((𝑥(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊)) ↔ 𝑥 = 0 )) |
| 15 | 9, 12, 14 | syl2anc 584 | . . . . . 6 ⊢ (((𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿) ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( ⊥ ‘𝑆))) → ((𝑥(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊)) ↔ 𝑥 = 0 )) |
| 16 | 8, 15 | mpbid 232 | . . . . 5 ⊢ (((𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿) ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( ⊥ ‘𝑆))) → 𝑥 = 0 ) |
| 17 | 16 | ex 412 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿) → ((𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( ⊥ ‘𝑆)) → 𝑥 = 0 )) |
| 18 | elin 3914 | . . . 4 ⊢ (𝑥 ∈ (𝑆 ∩ ( ⊥ ‘𝑆)) ↔ (𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( ⊥ ‘𝑆))) | |
| 19 | velsn 4593 | . . . 4 ⊢ (𝑥 ∈ { 0 } ↔ 𝑥 = 0 ) | |
| 20 | 17, 18, 19 | 3imtr4g 296 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿) → (𝑥 ∈ (𝑆 ∩ ( ⊥ ‘𝑆)) → 𝑥 ∈ { 0 })) |
| 21 | 20 | ssrdv 3936 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿) → (𝑆 ∩ ( ⊥ ‘𝑆)) ⊆ { 0 }) |
| 22 | phllmod 21576 | . . 3 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
| 23 | 1, 10 | lssss 20878 | . . . . 5 ⊢ (𝑆 ∈ 𝐿 → 𝑆 ⊆ (Base‘𝑊)) |
| 24 | 1, 5, 10 | ocvlss 21618 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ (Base‘𝑊)) → ( ⊥ ‘𝑆) ∈ 𝐿) |
| 25 | 23, 24 | sylan2 593 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿) → ( ⊥ ‘𝑆) ∈ 𝐿) |
| 26 | 10 | lssincl 20907 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝐿 ∧ ( ⊥ ‘𝑆) ∈ 𝐿) → (𝑆 ∩ ( ⊥ ‘𝑆)) ∈ 𝐿) |
| 27 | 22, 26 | syl3an1 1163 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿 ∧ ( ⊥ ‘𝑆) ∈ 𝐿) → (𝑆 ∩ ( ⊥ ‘𝑆)) ∈ 𝐿) |
| 28 | 25, 27 | mpd3an3 1464 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿) → (𝑆 ∩ ( ⊥ ‘𝑆)) ∈ 𝐿) |
| 29 | 13, 10 | lss0ss 20891 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑆 ∩ ( ⊥ ‘𝑆)) ∈ 𝐿) → { 0 } ⊆ (𝑆 ∩ ( ⊥ ‘𝑆))) |
| 30 | 22, 28, 29 | syl2an2r 685 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿) → { 0 } ⊆ (𝑆 ∩ ( ⊥ ‘𝑆))) |
| 31 | 21, 30 | eqssd 3948 | 1 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿) → (𝑆 ∩ ( ⊥ ‘𝑆)) = { 0 }) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∩ cin 3897 ⊆ wss 3898 {csn 4577 ‘cfv 6489 (class class class)co 7355 Basecbs 17127 Scalarcsca 17171 ·𝑖cip 17173 0gc0g 17350 LModclmod 20802 LSubSpclss 20873 PreHilcphl 21570 ocvcocv 21606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-map 8761 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-plusg 17181 df-sca 17184 df-vsca 17185 df-ip 17186 df-0g 17352 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-grp 18857 df-minusg 18858 df-sbg 18859 df-ghm 19133 df-cmn 19702 df-abl 19703 df-mgp 20067 df-rng 20079 df-ur 20108 df-ring 20161 df-lmod 20804 df-lss 20874 df-lmhm 20965 df-lvec 21046 df-sra 21116 df-rgmod 21117 df-phl 21572 df-ocv 21609 |
| This theorem is referenced by: ocv1 21625 pjdm2 21657 pjff 21658 pjf2 21660 pjfo 21661 obselocv 21674 |
| Copyright terms: Public domain | W3C validator |