| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ocvin | Structured version Visualization version GIF version | ||
| Description: An orthocomplement has trivial intersection with the original subspace. (Contributed by Mario Carneiro, 16-Oct-2015.) |
| Ref | Expression |
|---|---|
| ocv2ss.o | ⊢ ⊥ = (ocv‘𝑊) |
| ocvin.l | ⊢ 𝐿 = (LSubSp‘𝑊) |
| ocvin.z | ⊢ 0 = (0g‘𝑊) |
| Ref | Expression |
|---|---|
| ocvin | ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿) → (𝑆 ∩ ( ⊥ ‘𝑆)) = { 0 }) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . . . . . . 9 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | eqid 2729 | . . . . . . . . 9 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
| 3 | eqid 2729 | . . . . . . . . 9 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 4 | eqid 2729 | . . . . . . . . 9 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
| 5 | ocv2ss.o | . . . . . . . . 9 ⊢ ⊥ = (ocv‘𝑊) | |
| 6 | 1, 2, 3, 4, 5 | ocvi 21595 | . . . . . . . 8 ⊢ ((𝑥 ∈ ( ⊥ ‘𝑆) ∧ 𝑥 ∈ 𝑆) → (𝑥(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊))) |
| 7 | 6 | ancoms 458 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( ⊥ ‘𝑆)) → (𝑥(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊))) |
| 8 | 7 | adantl 481 | . . . . . 6 ⊢ (((𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿) ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( ⊥ ‘𝑆))) → (𝑥(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊))) |
| 9 | simpll 766 | . . . . . . 7 ⊢ (((𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿) ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( ⊥ ‘𝑆))) → 𝑊 ∈ PreHil) | |
| 10 | ocvin.l | . . . . . . . . 9 ⊢ 𝐿 = (LSubSp‘𝑊) | |
| 11 | 1, 10 | lssel 20859 | . . . . . . . 8 ⊢ ((𝑆 ∈ 𝐿 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ (Base‘𝑊)) |
| 12 | 11 | ad2ant2lr 748 | . . . . . . 7 ⊢ (((𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿) ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( ⊥ ‘𝑆))) → 𝑥 ∈ (Base‘𝑊)) |
| 13 | ocvin.z | . . . . . . . 8 ⊢ 0 = (0g‘𝑊) | |
| 14 | 3, 2, 1, 4, 13 | ipeq0 21564 | . . . . . . 7 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ (Base‘𝑊)) → ((𝑥(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊)) ↔ 𝑥 = 0 )) |
| 15 | 9, 12, 14 | syl2anc 584 | . . . . . 6 ⊢ (((𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿) ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( ⊥ ‘𝑆))) → ((𝑥(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊)) ↔ 𝑥 = 0 )) |
| 16 | 8, 15 | mpbid 232 | . . . . 5 ⊢ (((𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿) ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( ⊥ ‘𝑆))) → 𝑥 = 0 ) |
| 17 | 16 | ex 412 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿) → ((𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( ⊥ ‘𝑆)) → 𝑥 = 0 )) |
| 18 | elin 3921 | . . . 4 ⊢ (𝑥 ∈ (𝑆 ∩ ( ⊥ ‘𝑆)) ↔ (𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( ⊥ ‘𝑆))) | |
| 19 | velsn 4595 | . . . 4 ⊢ (𝑥 ∈ { 0 } ↔ 𝑥 = 0 ) | |
| 20 | 17, 18, 19 | 3imtr4g 296 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿) → (𝑥 ∈ (𝑆 ∩ ( ⊥ ‘𝑆)) → 𝑥 ∈ { 0 })) |
| 21 | 20 | ssrdv 3943 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿) → (𝑆 ∩ ( ⊥ ‘𝑆)) ⊆ { 0 }) |
| 22 | phllmod 21556 | . . 3 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
| 23 | 1, 10 | lssss 20858 | . . . . 5 ⊢ (𝑆 ∈ 𝐿 → 𝑆 ⊆ (Base‘𝑊)) |
| 24 | 1, 5, 10 | ocvlss 21598 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ (Base‘𝑊)) → ( ⊥ ‘𝑆) ∈ 𝐿) |
| 25 | 23, 24 | sylan2 593 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿) → ( ⊥ ‘𝑆) ∈ 𝐿) |
| 26 | 10 | lssincl 20887 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝐿 ∧ ( ⊥ ‘𝑆) ∈ 𝐿) → (𝑆 ∩ ( ⊥ ‘𝑆)) ∈ 𝐿) |
| 27 | 22, 26 | syl3an1 1163 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿 ∧ ( ⊥ ‘𝑆) ∈ 𝐿) → (𝑆 ∩ ( ⊥ ‘𝑆)) ∈ 𝐿) |
| 28 | 25, 27 | mpd3an3 1464 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿) → (𝑆 ∩ ( ⊥ ‘𝑆)) ∈ 𝐿) |
| 29 | 13, 10 | lss0ss 20871 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑆 ∩ ( ⊥ ‘𝑆)) ∈ 𝐿) → { 0 } ⊆ (𝑆 ∩ ( ⊥ ‘𝑆))) |
| 30 | 22, 28, 29 | syl2an2r 685 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿) → { 0 } ⊆ (𝑆 ∩ ( ⊥ ‘𝑆))) |
| 31 | 21, 30 | eqssd 3955 | 1 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿) → (𝑆 ∩ ( ⊥ ‘𝑆)) = { 0 }) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3904 ⊆ wss 3905 {csn 4579 ‘cfv 6486 (class class class)co 7353 Basecbs 17139 Scalarcsca 17183 ·𝑖cip 17185 0gc0g 17362 LModclmod 20782 LSubSpclss 20853 PreHilcphl 21550 ocvcocv 21586 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-nn 12148 df-2 12210 df-3 12211 df-4 12212 df-5 12213 df-6 12214 df-7 12215 df-8 12216 df-sets 17094 df-slot 17112 df-ndx 17124 df-base 17140 df-plusg 17193 df-sca 17196 df-vsca 17197 df-ip 17198 df-0g 17364 df-mgm 18533 df-sgrp 18612 df-mnd 18628 df-grp 18834 df-minusg 18835 df-sbg 18836 df-ghm 19111 df-cmn 19680 df-abl 19681 df-mgp 20045 df-rng 20057 df-ur 20086 df-ring 20139 df-lmod 20784 df-lss 20854 df-lmhm 20945 df-lvec 21026 df-sra 21096 df-rgmod 21097 df-phl 21552 df-ocv 21589 |
| This theorem is referenced by: ocv1 21605 pjdm2 21637 pjff 21638 pjf2 21640 pjfo 21641 obselocv 21654 |
| Copyright terms: Public domain | W3C validator |