![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ocvin | Structured version Visualization version GIF version |
Description: An orthocomplement has trivial intersection with the original subspace. (Contributed by Mario Carneiro, 16-Oct-2015.) |
Ref | Expression |
---|---|
ocv2ss.o | ⊢ ⊥ = (ocv‘𝑊) |
ocvin.l | ⊢ 𝐿 = (LSubSp‘𝑊) |
ocvin.z | ⊢ 0 = (0g‘𝑊) |
Ref | Expression |
---|---|
ocvin | ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿) → (𝑆 ∩ ( ⊥ ‘𝑆)) = { 0 }) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . . . . . . 9 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | eqid 2740 | . . . . . . . . 9 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
3 | eqid 2740 | . . . . . . . . 9 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
4 | eqid 2740 | . . . . . . . . 9 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
5 | ocv2ss.o | . . . . . . . . 9 ⊢ ⊥ = (ocv‘𝑊) | |
6 | 1, 2, 3, 4, 5 | ocvi 21710 | . . . . . . . 8 ⊢ ((𝑥 ∈ ( ⊥ ‘𝑆) ∧ 𝑥 ∈ 𝑆) → (𝑥(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊))) |
7 | 6 | ancoms 458 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( ⊥ ‘𝑆)) → (𝑥(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊))) |
8 | 7 | adantl 481 | . . . . . 6 ⊢ (((𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿) ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( ⊥ ‘𝑆))) → (𝑥(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊))) |
9 | simpll 766 | . . . . . . 7 ⊢ (((𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿) ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( ⊥ ‘𝑆))) → 𝑊 ∈ PreHil) | |
10 | ocvin.l | . . . . . . . . 9 ⊢ 𝐿 = (LSubSp‘𝑊) | |
11 | 1, 10 | lssel 20958 | . . . . . . . 8 ⊢ ((𝑆 ∈ 𝐿 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ (Base‘𝑊)) |
12 | 11 | ad2ant2lr 747 | . . . . . . 7 ⊢ (((𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿) ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( ⊥ ‘𝑆))) → 𝑥 ∈ (Base‘𝑊)) |
13 | ocvin.z | . . . . . . . 8 ⊢ 0 = (0g‘𝑊) | |
14 | 3, 2, 1, 4, 13 | ipeq0 21679 | . . . . . . 7 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ (Base‘𝑊)) → ((𝑥(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊)) ↔ 𝑥 = 0 )) |
15 | 9, 12, 14 | syl2anc 583 | . . . . . 6 ⊢ (((𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿) ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( ⊥ ‘𝑆))) → ((𝑥(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊)) ↔ 𝑥 = 0 )) |
16 | 8, 15 | mpbid 232 | . . . . 5 ⊢ (((𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿) ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( ⊥ ‘𝑆))) → 𝑥 = 0 ) |
17 | 16 | ex 412 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿) → ((𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( ⊥ ‘𝑆)) → 𝑥 = 0 )) |
18 | elin 3992 | . . . 4 ⊢ (𝑥 ∈ (𝑆 ∩ ( ⊥ ‘𝑆)) ↔ (𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( ⊥ ‘𝑆))) | |
19 | velsn 4664 | . . . 4 ⊢ (𝑥 ∈ { 0 } ↔ 𝑥 = 0 ) | |
20 | 17, 18, 19 | 3imtr4g 296 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿) → (𝑥 ∈ (𝑆 ∩ ( ⊥ ‘𝑆)) → 𝑥 ∈ { 0 })) |
21 | 20 | ssrdv 4014 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿) → (𝑆 ∩ ( ⊥ ‘𝑆)) ⊆ { 0 }) |
22 | phllmod 21671 | . . 3 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
23 | 1, 10 | lssss 20957 | . . . . 5 ⊢ (𝑆 ∈ 𝐿 → 𝑆 ⊆ (Base‘𝑊)) |
24 | 1, 5, 10 | ocvlss 21713 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ (Base‘𝑊)) → ( ⊥ ‘𝑆) ∈ 𝐿) |
25 | 23, 24 | sylan2 592 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿) → ( ⊥ ‘𝑆) ∈ 𝐿) |
26 | 10 | lssincl 20986 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝐿 ∧ ( ⊥ ‘𝑆) ∈ 𝐿) → (𝑆 ∩ ( ⊥ ‘𝑆)) ∈ 𝐿) |
27 | 22, 26 | syl3an1 1163 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿 ∧ ( ⊥ ‘𝑆) ∈ 𝐿) → (𝑆 ∩ ( ⊥ ‘𝑆)) ∈ 𝐿) |
28 | 25, 27 | mpd3an3 1462 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿) → (𝑆 ∩ ( ⊥ ‘𝑆)) ∈ 𝐿) |
29 | 13, 10 | lss0ss 20970 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑆 ∩ ( ⊥ ‘𝑆)) ∈ 𝐿) → { 0 } ⊆ (𝑆 ∩ ( ⊥ ‘𝑆))) |
30 | 22, 28, 29 | syl2an2r 684 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿) → { 0 } ⊆ (𝑆 ∩ ( ⊥ ‘𝑆))) |
31 | 21, 30 | eqssd 4026 | 1 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿) → (𝑆 ∩ ( ⊥ ‘𝑆)) = { 0 }) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∩ cin 3975 ⊆ wss 3976 {csn 4648 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 Scalarcsca 17314 ·𝑖cip 17316 0gc0g 17499 LModclmod 20880 LSubSpclss 20952 PreHilcphl 21665 ocvcocv 21701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-plusg 17324 df-sca 17327 df-vsca 17328 df-ip 17329 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-sbg 18978 df-ghm 19253 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-lmod 20882 df-lss 20953 df-lmhm 21044 df-lvec 21125 df-sra 21195 df-rgmod 21196 df-phl 21667 df-ocv 21704 |
This theorem is referenced by: ocv1 21720 pjdm2 21754 pjff 21755 pjf2 21757 pjfo 21758 obselocv 21771 |
Copyright terms: Public domain | W3C validator |