MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ocvin Structured version   Visualization version   GIF version

Theorem ocvin 21709
Description: An orthocomplement has trivial intersection with the original subspace. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
ocv2ss.o = (ocv‘𝑊)
ocvin.l 𝐿 = (LSubSp‘𝑊)
ocvin.z 0 = (0g𝑊)
Assertion
Ref Expression
ocvin ((𝑊 ∈ PreHil ∧ 𝑆𝐿) → (𝑆 ∩ ( 𝑆)) = { 0 })

Proof of Theorem ocvin
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2734 . . . . . . . . 9 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2734 . . . . . . . . 9 (·𝑖𝑊) = (·𝑖𝑊)
3 eqid 2734 . . . . . . . . 9 (Scalar‘𝑊) = (Scalar‘𝑊)
4 eqid 2734 . . . . . . . . 9 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
5 ocv2ss.o . . . . . . . . 9 = (ocv‘𝑊)
61, 2, 3, 4, 5ocvi 21704 . . . . . . . 8 ((𝑥 ∈ ( 𝑆) ∧ 𝑥𝑆) → (𝑥(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
76ancoms 458 . . . . . . 7 ((𝑥𝑆𝑥 ∈ ( 𝑆)) → (𝑥(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
87adantl 481 . . . . . 6 (((𝑊 ∈ PreHil ∧ 𝑆𝐿) ∧ (𝑥𝑆𝑥 ∈ ( 𝑆))) → (𝑥(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
9 simpll 767 . . . . . . 7 (((𝑊 ∈ PreHil ∧ 𝑆𝐿) ∧ (𝑥𝑆𝑥 ∈ ( 𝑆))) → 𝑊 ∈ PreHil)
10 ocvin.l . . . . . . . . 9 𝐿 = (LSubSp‘𝑊)
111, 10lssel 20952 . . . . . . . 8 ((𝑆𝐿𝑥𝑆) → 𝑥 ∈ (Base‘𝑊))
1211ad2ant2lr 748 . . . . . . 7 (((𝑊 ∈ PreHil ∧ 𝑆𝐿) ∧ (𝑥𝑆𝑥 ∈ ( 𝑆))) → 𝑥 ∈ (Base‘𝑊))
13 ocvin.z . . . . . . . 8 0 = (0g𝑊)
143, 2, 1, 4, 13ipeq0 21673 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ (Base‘𝑊)) → ((𝑥(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)) ↔ 𝑥 = 0 ))
159, 12, 14syl2anc 584 . . . . . 6 (((𝑊 ∈ PreHil ∧ 𝑆𝐿) ∧ (𝑥𝑆𝑥 ∈ ( 𝑆))) → ((𝑥(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)) ↔ 𝑥 = 0 ))
168, 15mpbid 232 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑆𝐿) ∧ (𝑥𝑆𝑥 ∈ ( 𝑆))) → 𝑥 = 0 )
1716ex 412 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑆𝐿) → ((𝑥𝑆𝑥 ∈ ( 𝑆)) → 𝑥 = 0 ))
18 elin 3978 . . . 4 (𝑥 ∈ (𝑆 ∩ ( 𝑆)) ↔ (𝑥𝑆𝑥 ∈ ( 𝑆)))
19 velsn 4646 . . . 4 (𝑥 ∈ { 0 } ↔ 𝑥 = 0 )
2017, 18, 193imtr4g 296 . . 3 ((𝑊 ∈ PreHil ∧ 𝑆𝐿) → (𝑥 ∈ (𝑆 ∩ ( 𝑆)) → 𝑥 ∈ { 0 }))
2120ssrdv 4000 . 2 ((𝑊 ∈ PreHil ∧ 𝑆𝐿) → (𝑆 ∩ ( 𝑆)) ⊆ { 0 })
22 phllmod 21665 . . 3 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
231, 10lssss 20951 . . . . 5 (𝑆𝐿𝑆 ⊆ (Base‘𝑊))
241, 5, 10ocvlss 21707 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ (Base‘𝑊)) → ( 𝑆) ∈ 𝐿)
2523, 24sylan2 593 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑆𝐿) → ( 𝑆) ∈ 𝐿)
2610lssincl 20980 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑆𝐿 ∧ ( 𝑆) ∈ 𝐿) → (𝑆 ∩ ( 𝑆)) ∈ 𝐿)
2722, 26syl3an1 1162 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑆𝐿 ∧ ( 𝑆) ∈ 𝐿) → (𝑆 ∩ ( 𝑆)) ∈ 𝐿)
2825, 27mpd3an3 1461 . . 3 ((𝑊 ∈ PreHil ∧ 𝑆𝐿) → (𝑆 ∩ ( 𝑆)) ∈ 𝐿)
2913, 10lss0ss 20964 . . 3 ((𝑊 ∈ LMod ∧ (𝑆 ∩ ( 𝑆)) ∈ 𝐿) → { 0 } ⊆ (𝑆 ∩ ( 𝑆)))
3022, 28, 29syl2an2r 685 . 2 ((𝑊 ∈ PreHil ∧ 𝑆𝐿) → { 0 } ⊆ (𝑆 ∩ ( 𝑆)))
3121, 30eqssd 4012 1 ((𝑊 ∈ PreHil ∧ 𝑆𝐿) → (𝑆 ∩ ( 𝑆)) = { 0 })
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  cin 3961  wss 3962  {csn 4630  cfv 6562  (class class class)co 7430  Basecbs 17244  Scalarcsca 17300  ·𝑖cip 17302  0gc0g 17485  LModclmod 20874  LSubSpclss 20946  PreHilcphl 21659  ocvcocv 21695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-plusg 17310  df-sca 17313  df-vsca 17314  df-ip 17315  df-0g 17487  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-grp 18966  df-minusg 18967  df-sbg 18968  df-ghm 19243  df-cmn 19814  df-abl 19815  df-mgp 20152  df-rng 20170  df-ur 20199  df-ring 20252  df-lmod 20876  df-lss 20947  df-lmhm 21038  df-lvec 21119  df-sra 21189  df-rgmod 21190  df-phl 21661  df-ocv 21698
This theorem is referenced by:  ocv1  21714  pjdm2  21748  pjff  21749  pjf2  21751  pjfo  21752  obselocv  21765
  Copyright terms: Public domain W3C validator