| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ocvin | Structured version Visualization version GIF version | ||
| Description: An orthocomplement has trivial intersection with the original subspace. (Contributed by Mario Carneiro, 16-Oct-2015.) |
| Ref | Expression |
|---|---|
| ocv2ss.o | ⊢ ⊥ = (ocv‘𝑊) |
| ocvin.l | ⊢ 𝐿 = (LSubSp‘𝑊) |
| ocvin.z | ⊢ 0 = (0g‘𝑊) |
| Ref | Expression |
|---|---|
| ocvin | ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿) → (𝑆 ∩ ( ⊥ ‘𝑆)) = { 0 }) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . . . . . . 9 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | eqid 2731 | . . . . . . . . 9 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
| 3 | eqid 2731 | . . . . . . . . 9 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 4 | eqid 2731 | . . . . . . . . 9 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
| 5 | ocv2ss.o | . . . . . . . . 9 ⊢ ⊥ = (ocv‘𝑊) | |
| 6 | 1, 2, 3, 4, 5 | ocvi 21601 | . . . . . . . 8 ⊢ ((𝑥 ∈ ( ⊥ ‘𝑆) ∧ 𝑥 ∈ 𝑆) → (𝑥(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊))) |
| 7 | 6 | ancoms 458 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( ⊥ ‘𝑆)) → (𝑥(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊))) |
| 8 | 7 | adantl 481 | . . . . . 6 ⊢ (((𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿) ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( ⊥ ‘𝑆))) → (𝑥(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊))) |
| 9 | simpll 766 | . . . . . . 7 ⊢ (((𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿) ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( ⊥ ‘𝑆))) → 𝑊 ∈ PreHil) | |
| 10 | ocvin.l | . . . . . . . . 9 ⊢ 𝐿 = (LSubSp‘𝑊) | |
| 11 | 1, 10 | lssel 20865 | . . . . . . . 8 ⊢ ((𝑆 ∈ 𝐿 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ (Base‘𝑊)) |
| 12 | 11 | ad2ant2lr 748 | . . . . . . 7 ⊢ (((𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿) ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( ⊥ ‘𝑆))) → 𝑥 ∈ (Base‘𝑊)) |
| 13 | ocvin.z | . . . . . . . 8 ⊢ 0 = (0g‘𝑊) | |
| 14 | 3, 2, 1, 4, 13 | ipeq0 21570 | . . . . . . 7 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ (Base‘𝑊)) → ((𝑥(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊)) ↔ 𝑥 = 0 )) |
| 15 | 9, 12, 14 | syl2anc 584 | . . . . . 6 ⊢ (((𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿) ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( ⊥ ‘𝑆))) → ((𝑥(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊)) ↔ 𝑥 = 0 )) |
| 16 | 8, 15 | mpbid 232 | . . . . 5 ⊢ (((𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿) ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( ⊥ ‘𝑆))) → 𝑥 = 0 ) |
| 17 | 16 | ex 412 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿) → ((𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( ⊥ ‘𝑆)) → 𝑥 = 0 )) |
| 18 | elin 3913 | . . . 4 ⊢ (𝑥 ∈ (𝑆 ∩ ( ⊥ ‘𝑆)) ↔ (𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( ⊥ ‘𝑆))) | |
| 19 | velsn 4587 | . . . 4 ⊢ (𝑥 ∈ { 0 } ↔ 𝑥 = 0 ) | |
| 20 | 17, 18, 19 | 3imtr4g 296 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿) → (𝑥 ∈ (𝑆 ∩ ( ⊥ ‘𝑆)) → 𝑥 ∈ { 0 })) |
| 21 | 20 | ssrdv 3935 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿) → (𝑆 ∩ ( ⊥ ‘𝑆)) ⊆ { 0 }) |
| 22 | phllmod 21562 | . . 3 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
| 23 | 1, 10 | lssss 20864 | . . . . 5 ⊢ (𝑆 ∈ 𝐿 → 𝑆 ⊆ (Base‘𝑊)) |
| 24 | 1, 5, 10 | ocvlss 21604 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ (Base‘𝑊)) → ( ⊥ ‘𝑆) ∈ 𝐿) |
| 25 | 23, 24 | sylan2 593 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿) → ( ⊥ ‘𝑆) ∈ 𝐿) |
| 26 | 10 | lssincl 20893 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝐿 ∧ ( ⊥ ‘𝑆) ∈ 𝐿) → (𝑆 ∩ ( ⊥ ‘𝑆)) ∈ 𝐿) |
| 27 | 22, 26 | syl3an1 1163 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿 ∧ ( ⊥ ‘𝑆) ∈ 𝐿) → (𝑆 ∩ ( ⊥ ‘𝑆)) ∈ 𝐿) |
| 28 | 25, 27 | mpd3an3 1464 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿) → (𝑆 ∩ ( ⊥ ‘𝑆)) ∈ 𝐿) |
| 29 | 13, 10 | lss0ss 20877 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑆 ∩ ( ⊥ ‘𝑆)) ∈ 𝐿) → { 0 } ⊆ (𝑆 ∩ ( ⊥ ‘𝑆))) |
| 30 | 22, 28, 29 | syl2an2r 685 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿) → { 0 } ⊆ (𝑆 ∩ ( ⊥ ‘𝑆))) |
| 31 | 21, 30 | eqssd 3947 | 1 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿) → (𝑆 ∩ ( ⊥ ‘𝑆)) = { 0 }) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∩ cin 3896 ⊆ wss 3897 {csn 4571 ‘cfv 6476 (class class class)co 7341 Basecbs 17115 Scalarcsca 17159 ·𝑖cip 17161 0gc0g 17338 LModclmod 20788 LSubSpclss 20859 PreHilcphl 21556 ocvcocv 21592 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-plusg 17169 df-sca 17172 df-vsca 17173 df-ip 17174 df-0g 17340 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-minusg 18845 df-sbg 18846 df-ghm 19120 df-cmn 19689 df-abl 19690 df-mgp 20054 df-rng 20066 df-ur 20095 df-ring 20148 df-lmod 20790 df-lss 20860 df-lmhm 20951 df-lvec 21032 df-sra 21102 df-rgmod 21103 df-phl 21558 df-ocv 21595 |
| This theorem is referenced by: ocv1 21611 pjdm2 21643 pjff 21644 pjf2 21646 pjfo 21647 obselocv 21660 |
| Copyright terms: Public domain | W3C validator |