MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ocvin Structured version   Visualization version   GIF version

Theorem ocvin 20791
Description: An orthocomplement has trivial intersection with the original subspace. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
ocv2ss.o = (ocv‘𝑊)
ocvin.l 𝐿 = (LSubSp‘𝑊)
ocvin.z 0 = (0g𝑊)
Assertion
Ref Expression
ocvin ((𝑊 ∈ PreHil ∧ 𝑆𝐿) → (𝑆 ∩ ( 𝑆)) = { 0 })

Proof of Theorem ocvin
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . . . . . . 9 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2738 . . . . . . . . 9 (·𝑖𝑊) = (·𝑖𝑊)
3 eqid 2738 . . . . . . . . 9 (Scalar‘𝑊) = (Scalar‘𝑊)
4 eqid 2738 . . . . . . . . 9 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
5 ocv2ss.o . . . . . . . . 9 = (ocv‘𝑊)
61, 2, 3, 4, 5ocvi 20786 . . . . . . . 8 ((𝑥 ∈ ( 𝑆) ∧ 𝑥𝑆) → (𝑥(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
76ancoms 458 . . . . . . 7 ((𝑥𝑆𝑥 ∈ ( 𝑆)) → (𝑥(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
87adantl 481 . . . . . 6 (((𝑊 ∈ PreHil ∧ 𝑆𝐿) ∧ (𝑥𝑆𝑥 ∈ ( 𝑆))) → (𝑥(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
9 simpll 763 . . . . . . 7 (((𝑊 ∈ PreHil ∧ 𝑆𝐿) ∧ (𝑥𝑆𝑥 ∈ ( 𝑆))) → 𝑊 ∈ PreHil)
10 ocvin.l . . . . . . . . 9 𝐿 = (LSubSp‘𝑊)
111, 10lssel 20114 . . . . . . . 8 ((𝑆𝐿𝑥𝑆) → 𝑥 ∈ (Base‘𝑊))
1211ad2ant2lr 744 . . . . . . 7 (((𝑊 ∈ PreHil ∧ 𝑆𝐿) ∧ (𝑥𝑆𝑥 ∈ ( 𝑆))) → 𝑥 ∈ (Base‘𝑊))
13 ocvin.z . . . . . . . 8 0 = (0g𝑊)
143, 2, 1, 4, 13ipeq0 20755 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ (Base‘𝑊)) → ((𝑥(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)) ↔ 𝑥 = 0 ))
159, 12, 14syl2anc 583 . . . . . 6 (((𝑊 ∈ PreHil ∧ 𝑆𝐿) ∧ (𝑥𝑆𝑥 ∈ ( 𝑆))) → ((𝑥(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)) ↔ 𝑥 = 0 ))
168, 15mpbid 231 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑆𝐿) ∧ (𝑥𝑆𝑥 ∈ ( 𝑆))) → 𝑥 = 0 )
1716ex 412 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑆𝐿) → ((𝑥𝑆𝑥 ∈ ( 𝑆)) → 𝑥 = 0 ))
18 elin 3899 . . . 4 (𝑥 ∈ (𝑆 ∩ ( 𝑆)) ↔ (𝑥𝑆𝑥 ∈ ( 𝑆)))
19 velsn 4574 . . . 4 (𝑥 ∈ { 0 } ↔ 𝑥 = 0 )
2017, 18, 193imtr4g 295 . . 3 ((𝑊 ∈ PreHil ∧ 𝑆𝐿) → (𝑥 ∈ (𝑆 ∩ ( 𝑆)) → 𝑥 ∈ { 0 }))
2120ssrdv 3923 . 2 ((𝑊 ∈ PreHil ∧ 𝑆𝐿) → (𝑆 ∩ ( 𝑆)) ⊆ { 0 })
22 phllmod 20747 . . 3 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
231, 10lssss 20113 . . . . 5 (𝑆𝐿𝑆 ⊆ (Base‘𝑊))
241, 5, 10ocvlss 20789 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ (Base‘𝑊)) → ( 𝑆) ∈ 𝐿)
2523, 24sylan2 592 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑆𝐿) → ( 𝑆) ∈ 𝐿)
2610lssincl 20142 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑆𝐿 ∧ ( 𝑆) ∈ 𝐿) → (𝑆 ∩ ( 𝑆)) ∈ 𝐿)
2722, 26syl3an1 1161 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑆𝐿 ∧ ( 𝑆) ∈ 𝐿) → (𝑆 ∩ ( 𝑆)) ∈ 𝐿)
2825, 27mpd3an3 1460 . . 3 ((𝑊 ∈ PreHil ∧ 𝑆𝐿) → (𝑆 ∩ ( 𝑆)) ∈ 𝐿)
2913, 10lss0ss 20125 . . 3 ((𝑊 ∈ LMod ∧ (𝑆 ∩ ( 𝑆)) ∈ 𝐿) → { 0 } ⊆ (𝑆 ∩ ( 𝑆)))
3022, 28, 29syl2an2r 681 . 2 ((𝑊 ∈ PreHil ∧ 𝑆𝐿) → { 0 } ⊆ (𝑆 ∩ ( 𝑆)))
3121, 30eqssd 3934 1 ((𝑊 ∈ PreHil ∧ 𝑆𝐿) → (𝑆 ∩ ( 𝑆)) = { 0 })
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  cin 3882  wss 3883  {csn 4558  cfv 6418  (class class class)co 7255  Basecbs 16840  Scalarcsca 16891  ·𝑖cip 16893  0gc0g 17067  LModclmod 20038  LSubSpclss 20108  PreHilcphl 20741  ocvcocv 20777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-sca 16904  df-vsca 16905  df-ip 16906  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-sbg 18497  df-ghm 18747  df-mgp 19636  df-ur 19653  df-ring 19700  df-lmod 20040  df-lss 20109  df-lmhm 20199  df-lvec 20280  df-sra 20349  df-rgmod 20350  df-phl 20743  df-ocv 20780
This theorem is referenced by:  ocv1  20796  pjdm2  20828  pjff  20829  pjf2  20831  pjfo  20832  obselocv  20845
  Copyright terms: Public domain W3C validator