MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ocvin Structured version   Visualization version   GIF version

Theorem ocvin 21590
Description: An orthocomplement has trivial intersection with the original subspace. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
ocv2ss.o = (ocv‘𝑊)
ocvin.l 𝐿 = (LSubSp‘𝑊)
ocvin.z 0 = (0g𝑊)
Assertion
Ref Expression
ocvin ((𝑊 ∈ PreHil ∧ 𝑆𝐿) → (𝑆 ∩ ( 𝑆)) = { 0 })

Proof of Theorem ocvin
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . . . . . . . 9 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2730 . . . . . . . . 9 (·𝑖𝑊) = (·𝑖𝑊)
3 eqid 2730 . . . . . . . . 9 (Scalar‘𝑊) = (Scalar‘𝑊)
4 eqid 2730 . . . . . . . . 9 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
5 ocv2ss.o . . . . . . . . 9 = (ocv‘𝑊)
61, 2, 3, 4, 5ocvi 21585 . . . . . . . 8 ((𝑥 ∈ ( 𝑆) ∧ 𝑥𝑆) → (𝑥(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
76ancoms 458 . . . . . . 7 ((𝑥𝑆𝑥 ∈ ( 𝑆)) → (𝑥(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
87adantl 481 . . . . . 6 (((𝑊 ∈ PreHil ∧ 𝑆𝐿) ∧ (𝑥𝑆𝑥 ∈ ( 𝑆))) → (𝑥(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
9 simpll 766 . . . . . . 7 (((𝑊 ∈ PreHil ∧ 𝑆𝐿) ∧ (𝑥𝑆𝑥 ∈ ( 𝑆))) → 𝑊 ∈ PreHil)
10 ocvin.l . . . . . . . . 9 𝐿 = (LSubSp‘𝑊)
111, 10lssel 20850 . . . . . . . 8 ((𝑆𝐿𝑥𝑆) → 𝑥 ∈ (Base‘𝑊))
1211ad2ant2lr 748 . . . . . . 7 (((𝑊 ∈ PreHil ∧ 𝑆𝐿) ∧ (𝑥𝑆𝑥 ∈ ( 𝑆))) → 𝑥 ∈ (Base‘𝑊))
13 ocvin.z . . . . . . . 8 0 = (0g𝑊)
143, 2, 1, 4, 13ipeq0 21554 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ (Base‘𝑊)) → ((𝑥(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)) ↔ 𝑥 = 0 ))
159, 12, 14syl2anc 584 . . . . . 6 (((𝑊 ∈ PreHil ∧ 𝑆𝐿) ∧ (𝑥𝑆𝑥 ∈ ( 𝑆))) → ((𝑥(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)) ↔ 𝑥 = 0 ))
168, 15mpbid 232 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑆𝐿) ∧ (𝑥𝑆𝑥 ∈ ( 𝑆))) → 𝑥 = 0 )
1716ex 412 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑆𝐿) → ((𝑥𝑆𝑥 ∈ ( 𝑆)) → 𝑥 = 0 ))
18 elin 3933 . . . 4 (𝑥 ∈ (𝑆 ∩ ( 𝑆)) ↔ (𝑥𝑆𝑥 ∈ ( 𝑆)))
19 velsn 4608 . . . 4 (𝑥 ∈ { 0 } ↔ 𝑥 = 0 )
2017, 18, 193imtr4g 296 . . 3 ((𝑊 ∈ PreHil ∧ 𝑆𝐿) → (𝑥 ∈ (𝑆 ∩ ( 𝑆)) → 𝑥 ∈ { 0 }))
2120ssrdv 3955 . 2 ((𝑊 ∈ PreHil ∧ 𝑆𝐿) → (𝑆 ∩ ( 𝑆)) ⊆ { 0 })
22 phllmod 21546 . . 3 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
231, 10lssss 20849 . . . . 5 (𝑆𝐿𝑆 ⊆ (Base‘𝑊))
241, 5, 10ocvlss 21588 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ (Base‘𝑊)) → ( 𝑆) ∈ 𝐿)
2523, 24sylan2 593 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑆𝐿) → ( 𝑆) ∈ 𝐿)
2610lssincl 20878 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑆𝐿 ∧ ( 𝑆) ∈ 𝐿) → (𝑆 ∩ ( 𝑆)) ∈ 𝐿)
2722, 26syl3an1 1163 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑆𝐿 ∧ ( 𝑆) ∈ 𝐿) → (𝑆 ∩ ( 𝑆)) ∈ 𝐿)
2825, 27mpd3an3 1464 . . 3 ((𝑊 ∈ PreHil ∧ 𝑆𝐿) → (𝑆 ∩ ( 𝑆)) ∈ 𝐿)
2913, 10lss0ss 20862 . . 3 ((𝑊 ∈ LMod ∧ (𝑆 ∩ ( 𝑆)) ∈ 𝐿) → { 0 } ⊆ (𝑆 ∩ ( 𝑆)))
3022, 28, 29syl2an2r 685 . 2 ((𝑊 ∈ PreHil ∧ 𝑆𝐿) → { 0 } ⊆ (𝑆 ∩ ( 𝑆)))
3121, 30eqssd 3967 1 ((𝑊 ∈ PreHil ∧ 𝑆𝐿) → (𝑆 ∩ ( 𝑆)) = { 0 })
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cin 3916  wss 3917  {csn 4592  cfv 6514  (class class class)co 7390  Basecbs 17186  Scalarcsca 17230  ·𝑖cip 17232  0gc0g 17409  LModclmod 20773  LSubSpclss 20844  PreHilcphl 21540  ocvcocv 21576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-sca 17243  df-vsca 17244  df-ip 17245  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-sbg 18877  df-ghm 19152  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-lmod 20775  df-lss 20845  df-lmhm 20936  df-lvec 21017  df-sra 21087  df-rgmod 21088  df-phl 21542  df-ocv 21579
This theorem is referenced by:  ocv1  21595  pjdm2  21627  pjff  21628  pjf2  21630  pjfo  21631  obselocv  21644
  Copyright terms: Public domain W3C validator