MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ocvin Structured version   Visualization version   GIF version

Theorem ocvin 21535
Description: An orthocomplement has trivial intersection with the original subspace. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
ocv2ss.o = (ocv‘𝑊)
ocvin.l 𝐿 = (LSubSp‘𝑊)
ocvin.z 0 = (0g𝑊)
Assertion
Ref Expression
ocvin ((𝑊 ∈ PreHil ∧ 𝑆𝐿) → (𝑆 ∩ ( 𝑆)) = { 0 })

Proof of Theorem ocvin
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2724 . . . . . . . . 9 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2724 . . . . . . . . 9 (·𝑖𝑊) = (·𝑖𝑊)
3 eqid 2724 . . . . . . . . 9 (Scalar‘𝑊) = (Scalar‘𝑊)
4 eqid 2724 . . . . . . . . 9 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
5 ocv2ss.o . . . . . . . . 9 = (ocv‘𝑊)
61, 2, 3, 4, 5ocvi 21530 . . . . . . . 8 ((𝑥 ∈ ( 𝑆) ∧ 𝑥𝑆) → (𝑥(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
76ancoms 458 . . . . . . 7 ((𝑥𝑆𝑥 ∈ ( 𝑆)) → (𝑥(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
87adantl 481 . . . . . 6 (((𝑊 ∈ PreHil ∧ 𝑆𝐿) ∧ (𝑥𝑆𝑥 ∈ ( 𝑆))) → (𝑥(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
9 simpll 764 . . . . . . 7 (((𝑊 ∈ PreHil ∧ 𝑆𝐿) ∧ (𝑥𝑆𝑥 ∈ ( 𝑆))) → 𝑊 ∈ PreHil)
10 ocvin.l . . . . . . . . 9 𝐿 = (LSubSp‘𝑊)
111, 10lssel 20774 . . . . . . . 8 ((𝑆𝐿𝑥𝑆) → 𝑥 ∈ (Base‘𝑊))
1211ad2ant2lr 745 . . . . . . 7 (((𝑊 ∈ PreHil ∧ 𝑆𝐿) ∧ (𝑥𝑆𝑥 ∈ ( 𝑆))) → 𝑥 ∈ (Base‘𝑊))
13 ocvin.z . . . . . . . 8 0 = (0g𝑊)
143, 2, 1, 4, 13ipeq0 21499 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ (Base‘𝑊)) → ((𝑥(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)) ↔ 𝑥 = 0 ))
159, 12, 14syl2anc 583 . . . . . 6 (((𝑊 ∈ PreHil ∧ 𝑆𝐿) ∧ (𝑥𝑆𝑥 ∈ ( 𝑆))) → ((𝑥(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)) ↔ 𝑥 = 0 ))
168, 15mpbid 231 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑆𝐿) ∧ (𝑥𝑆𝑥 ∈ ( 𝑆))) → 𝑥 = 0 )
1716ex 412 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑆𝐿) → ((𝑥𝑆𝑥 ∈ ( 𝑆)) → 𝑥 = 0 ))
18 elin 3956 . . . 4 (𝑥 ∈ (𝑆 ∩ ( 𝑆)) ↔ (𝑥𝑆𝑥 ∈ ( 𝑆)))
19 velsn 4636 . . . 4 (𝑥 ∈ { 0 } ↔ 𝑥 = 0 )
2017, 18, 193imtr4g 296 . . 3 ((𝑊 ∈ PreHil ∧ 𝑆𝐿) → (𝑥 ∈ (𝑆 ∩ ( 𝑆)) → 𝑥 ∈ { 0 }))
2120ssrdv 3980 . 2 ((𝑊 ∈ PreHil ∧ 𝑆𝐿) → (𝑆 ∩ ( 𝑆)) ⊆ { 0 })
22 phllmod 21491 . . 3 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
231, 10lssss 20773 . . . . 5 (𝑆𝐿𝑆 ⊆ (Base‘𝑊))
241, 5, 10ocvlss 21533 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ (Base‘𝑊)) → ( 𝑆) ∈ 𝐿)
2523, 24sylan2 592 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑆𝐿) → ( 𝑆) ∈ 𝐿)
2610lssincl 20802 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑆𝐿 ∧ ( 𝑆) ∈ 𝐿) → (𝑆 ∩ ( 𝑆)) ∈ 𝐿)
2722, 26syl3an1 1160 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑆𝐿 ∧ ( 𝑆) ∈ 𝐿) → (𝑆 ∩ ( 𝑆)) ∈ 𝐿)
2825, 27mpd3an3 1458 . . 3 ((𝑊 ∈ PreHil ∧ 𝑆𝐿) → (𝑆 ∩ ( 𝑆)) ∈ 𝐿)
2913, 10lss0ss 20786 . . 3 ((𝑊 ∈ LMod ∧ (𝑆 ∩ ( 𝑆)) ∈ 𝐿) → { 0 } ⊆ (𝑆 ∩ ( 𝑆)))
3022, 28, 29syl2an2r 682 . 2 ((𝑊 ∈ PreHil ∧ 𝑆𝐿) → { 0 } ⊆ (𝑆 ∩ ( 𝑆)))
3121, 30eqssd 3991 1 ((𝑊 ∈ PreHil ∧ 𝑆𝐿) → (𝑆 ∩ ( 𝑆)) = { 0 })
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  cin 3939  wss 3940  {csn 4620  cfv 6533  (class class class)co 7401  Basecbs 17143  Scalarcsca 17199  ·𝑖cip 17201  0gc0g 17384  LModclmod 20696  LSubSpclss 20768  PreHilcphl 21485  ocvcocv 21521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-2 12272  df-3 12273  df-4 12274  df-5 12275  df-6 12276  df-7 12277  df-8 12278  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-plusg 17209  df-sca 17212  df-vsca 17213  df-ip 17214  df-0g 17386  df-mgm 18563  df-sgrp 18642  df-mnd 18658  df-grp 18856  df-minusg 18857  df-sbg 18858  df-ghm 19129  df-cmn 19692  df-abl 19693  df-mgp 20030  df-rng 20048  df-ur 20077  df-ring 20130  df-lmod 20698  df-lss 20769  df-lmhm 20860  df-lvec 20941  df-sra 21011  df-rgmod 21012  df-phl 21487  df-ocv 21524
This theorem is referenced by:  ocv1  21540  pjdm2  21574  pjff  21575  pjf2  21577  pjfo  21578  obselocv  21591
  Copyright terms: Public domain W3C validator