MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ocvlss Structured version   Visualization version   GIF version

Theorem ocvlss 21713
Description: The orthocomplement of a subset is a linear subspace of the pre-Hilbert space. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
ocvss.v 𝑉 = (Base‘𝑊)
ocvss.o = (ocv‘𝑊)
ocvlss.l 𝐿 = (LSubSp‘𝑊)
Assertion
Ref Expression
ocvlss ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( 𝑆) ∈ 𝐿)

Proof of Theorem ocvlss
Dummy variables 𝑥 𝑟 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ocvss.v . . . 4 𝑉 = (Base‘𝑊)
2 ocvss.o . . . 4 = (ocv‘𝑊)
31, 2ocvss 21711 . . 3 ( 𝑆) ⊆ 𝑉
43a1i 11 . 2 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( 𝑆) ⊆ 𝑉)
5 simpr 484 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → 𝑆𝑉)
6 phllmod 21671 . . . . . 6 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
76adantr 480 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → 𝑊 ∈ LMod)
8 eqid 2740 . . . . . 6 (0g𝑊) = (0g𝑊)
91, 8lmod0vcl 20911 . . . . 5 (𝑊 ∈ LMod → (0g𝑊) ∈ 𝑉)
107, 9syl 17 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → (0g𝑊) ∈ 𝑉)
11 simpll 766 . . . . . 6 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ 𝑥𝑆) → 𝑊 ∈ PreHil)
125sselda 4008 . . . . . 6 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ 𝑥𝑆) → 𝑥𝑉)
13 eqid 2740 . . . . . . 7 (Scalar‘𝑊) = (Scalar‘𝑊)
14 eqid 2740 . . . . . . 7 (·𝑖𝑊) = (·𝑖𝑊)
15 eqid 2740 . . . . . . 7 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
1613, 14, 1, 15, 8ip0l 21677 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝑥𝑉) → ((0g𝑊)(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
1711, 12, 16syl2anc 583 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ 𝑥𝑆) → ((0g𝑊)(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
1817ralrimiva 3152 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ∀𝑥𝑆 ((0g𝑊)(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
191, 14, 13, 15, 2elocv 21709 . . . 4 ((0g𝑊) ∈ ( 𝑆) ↔ (𝑆𝑉 ∧ (0g𝑊) ∈ 𝑉 ∧ ∀𝑥𝑆 ((0g𝑊)(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))))
205, 10, 18, 19syl3anbrc 1343 . . 3 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → (0g𝑊) ∈ ( 𝑆))
2120ne0d 4365 . 2 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( 𝑆) ≠ ∅)
225adantr 480 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) → 𝑆𝑉)
237adantr 480 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) → 𝑊 ∈ LMod)
24 simpr1 1194 . . . . . 6 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) → 𝑟 ∈ (Base‘(Scalar‘𝑊)))
25 simpr2 1195 . . . . . . 7 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) → 𝑦 ∈ ( 𝑆))
263, 25sselid 4006 . . . . . 6 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) → 𝑦𝑉)
27 eqid 2740 . . . . . . 7 ( ·𝑠𝑊) = ( ·𝑠𝑊)
28 eqid 2740 . . . . . . 7 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
291, 13, 27, 28lmodvscl 20898 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝑉) → (𝑟( ·𝑠𝑊)𝑦) ∈ 𝑉)
3023, 24, 26, 29syl3anc 1371 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) → (𝑟( ·𝑠𝑊)𝑦) ∈ 𝑉)
31 simpr3 1196 . . . . . 6 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) → 𝑧 ∈ ( 𝑆))
323, 31sselid 4006 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) → 𝑧𝑉)
33 eqid 2740 . . . . . 6 (+g𝑊) = (+g𝑊)
341, 33lmodvacl 20895 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑟( ·𝑠𝑊)𝑦) ∈ 𝑉𝑧𝑉) → ((𝑟( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) ∈ 𝑉)
3523, 30, 32, 34syl3anc 1371 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) → ((𝑟( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) ∈ 𝑉)
3611adantlr 714 . . . . . . 7 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → 𝑊 ∈ PreHil)
3730adantr 480 . . . . . . 7 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → (𝑟( ·𝑠𝑊)𝑦) ∈ 𝑉)
3832adantr 480 . . . . . . 7 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → 𝑧𝑉)
3912adantlr 714 . . . . . . 7 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → 𝑥𝑉)
40 eqid 2740 . . . . . . . 8 (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊))
4113, 14, 1, 33, 40ipdir 21680 . . . . . . 7 ((𝑊 ∈ PreHil ∧ ((𝑟( ·𝑠𝑊)𝑦) ∈ 𝑉𝑧𝑉𝑥𝑉)) → (((𝑟( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)(·𝑖𝑊)𝑥) = (((𝑟( ·𝑠𝑊)𝑦)(·𝑖𝑊)𝑥)(+g‘(Scalar‘𝑊))(𝑧(·𝑖𝑊)𝑥)))
4236, 37, 38, 39, 41syl13anc 1372 . . . . . 6 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → (((𝑟( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)(·𝑖𝑊)𝑥) = (((𝑟( ·𝑠𝑊)𝑦)(·𝑖𝑊)𝑥)(+g‘(Scalar‘𝑊))(𝑧(·𝑖𝑊)𝑥)))
4324adantr 480 . . . . . . . . 9 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → 𝑟 ∈ (Base‘(Scalar‘𝑊)))
4426adantr 480 . . . . . . . . 9 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → 𝑦𝑉)
45 eqid 2740 . . . . . . . . . 10 (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊))
4613, 14, 1, 28, 27, 45ipass 21686 . . . . . . . . 9 ((𝑊 ∈ PreHil ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝑉𝑥𝑉)) → ((𝑟( ·𝑠𝑊)𝑦)(·𝑖𝑊)𝑥) = (𝑟(.r‘(Scalar‘𝑊))(𝑦(·𝑖𝑊)𝑥)))
4736, 43, 44, 39, 46syl13anc 1372 . . . . . . . 8 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → ((𝑟( ·𝑠𝑊)𝑦)(·𝑖𝑊)𝑥) = (𝑟(.r‘(Scalar‘𝑊))(𝑦(·𝑖𝑊)𝑥)))
481, 14, 13, 15, 2ocvi 21710 . . . . . . . . . 10 ((𝑦 ∈ ( 𝑆) ∧ 𝑥𝑆) → (𝑦(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
4925, 48sylan 579 . . . . . . . . 9 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → (𝑦(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
5049oveq2d 7464 . . . . . . . 8 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → (𝑟(.r‘(Scalar‘𝑊))(𝑦(·𝑖𝑊)𝑥)) = (𝑟(.r‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))))
5123adantr 480 . . . . . . . . . 10 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → 𝑊 ∈ LMod)
5213lmodring 20888 . . . . . . . . . 10 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Ring)
5351, 52syl 17 . . . . . . . . 9 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → (Scalar‘𝑊) ∈ Ring)
5428, 45, 15ringrz 20317 . . . . . . . . 9 (((Scalar‘𝑊) ∈ Ring ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) → (𝑟(.r‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))) = (0g‘(Scalar‘𝑊)))
5553, 43, 54syl2anc 583 . . . . . . . 8 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → (𝑟(.r‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))) = (0g‘(Scalar‘𝑊)))
5647, 50, 553eqtrd 2784 . . . . . . 7 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → ((𝑟( ·𝑠𝑊)𝑦)(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
571, 14, 13, 15, 2ocvi 21710 . . . . . . . 8 ((𝑧 ∈ ( 𝑆) ∧ 𝑥𝑆) → (𝑧(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
5831, 57sylan 579 . . . . . . 7 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → (𝑧(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
5956, 58oveq12d 7466 . . . . . 6 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → (((𝑟( ·𝑠𝑊)𝑦)(·𝑖𝑊)𝑥)(+g‘(Scalar‘𝑊))(𝑧(·𝑖𝑊)𝑥)) = ((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))))
6013lmodfgrp 20889 . . . . . . 7 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Grp)
6128, 15grpidcl 19005 . . . . . . . 8 ((Scalar‘𝑊) ∈ Grp → (0g‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)))
6228, 40, 15grplid 19007 . . . . . . . 8 (((Scalar‘𝑊) ∈ Grp ∧ (0g‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) → ((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))) = (0g‘(Scalar‘𝑊)))
6361, 62mpdan 686 . . . . . . 7 ((Scalar‘𝑊) ∈ Grp → ((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))) = (0g‘(Scalar‘𝑊)))
6451, 60, 633syl 18 . . . . . 6 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → ((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))) = (0g‘(Scalar‘𝑊)))
6542, 59, 643eqtrd 2784 . . . . 5 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → (((𝑟( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
6665ralrimiva 3152 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) → ∀𝑥𝑆 (((𝑟( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
671, 14, 13, 15, 2elocv 21709 . . . 4 (((𝑟( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) ∈ ( 𝑆) ↔ (𝑆𝑉 ∧ ((𝑟( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) ∈ 𝑉 ∧ ∀𝑥𝑆 (((𝑟( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))))
6822, 35, 66, 67syl3anbrc 1343 . . 3 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) → ((𝑟( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) ∈ ( 𝑆))
6968ralrimivvva 3211 . 2 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ ( 𝑆)∀𝑧 ∈ ( 𝑆)((𝑟( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) ∈ ( 𝑆))
70 ocvlss.l . . 3 𝐿 = (LSubSp‘𝑊)
7113, 28, 1, 33, 27, 70islss 20955 . 2 (( 𝑆) ∈ 𝐿 ↔ (( 𝑆) ⊆ 𝑉 ∧ ( 𝑆) ≠ ∅ ∧ ∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ ( 𝑆)∀𝑧 ∈ ( 𝑆)((𝑟( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) ∈ ( 𝑆)))
724, 21, 69, 71syl3anbrc 1343 1 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( 𝑆) ∈ 𝐿)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wss 3976  c0 4352  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  .rcmulr 17312  Scalarcsca 17314   ·𝑠 cvsca 17315  ·𝑖cip 17316  0gc0g 17499  Grpcgrp 18973  Ringcrg 20260  LModclmod 20880  LSubSpclss 20952  PreHilcphl 21665  ocvcocv 21701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-sca 17327  df-vsca 17328  df-ip 17329  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-ghm 19253  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-lmod 20882  df-lss 20953  df-lmhm 21044  df-lvec 21125  df-sra 21195  df-rgmod 21196  df-phl 21667  df-ocv 21704
This theorem is referenced by:  ocvin  21715  ocvlsp  21717  csslss  21732  pjdm2  21754  pjff  21755  pjf2  21757  pjfo  21758  ocvpj  21760  pjthlem2  25491  pjth  25492
  Copyright terms: Public domain W3C validator