MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ocvlss Structured version   Visualization version   GIF version

Theorem ocvlss 21216
Description: The orthocomplement of a subset is a linear subspace of the pre-Hilbert space. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
ocvss.v 𝑉 = (Baseβ€˜π‘Š)
ocvss.o βŠ₯ = (ocvβ€˜π‘Š)
ocvlss.l 𝐿 = (LSubSpβ€˜π‘Š)
Assertion
Ref Expression
ocvlss ((π‘Š ∈ PreHil ∧ 𝑆 βŠ† 𝑉) β†’ ( βŠ₯ β€˜π‘†) ∈ 𝐿)

Proof of Theorem ocvlss
Dummy variables π‘₯ π‘Ÿ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ocvss.v . . . 4 𝑉 = (Baseβ€˜π‘Š)
2 ocvss.o . . . 4 βŠ₯ = (ocvβ€˜π‘Š)
31, 2ocvss 21214 . . 3 ( βŠ₯ β€˜π‘†) βŠ† 𝑉
43a1i 11 . 2 ((π‘Š ∈ PreHil ∧ 𝑆 βŠ† 𝑉) β†’ ( βŠ₯ β€˜π‘†) βŠ† 𝑉)
5 simpr 485 . . . 4 ((π‘Š ∈ PreHil ∧ 𝑆 βŠ† 𝑉) β†’ 𝑆 βŠ† 𝑉)
6 phllmod 21174 . . . . . 6 (π‘Š ∈ PreHil β†’ π‘Š ∈ LMod)
76adantr 481 . . . . 5 ((π‘Š ∈ PreHil ∧ 𝑆 βŠ† 𝑉) β†’ π‘Š ∈ LMod)
8 eqid 2732 . . . . . 6 (0gβ€˜π‘Š) = (0gβ€˜π‘Š)
91, 8lmod0vcl 20493 . . . . 5 (π‘Š ∈ LMod β†’ (0gβ€˜π‘Š) ∈ 𝑉)
107, 9syl 17 . . . 4 ((π‘Š ∈ PreHil ∧ 𝑆 βŠ† 𝑉) β†’ (0gβ€˜π‘Š) ∈ 𝑉)
11 simpll 765 . . . . . 6 (((π‘Š ∈ PreHil ∧ 𝑆 βŠ† 𝑉) ∧ π‘₯ ∈ 𝑆) β†’ π‘Š ∈ PreHil)
125sselda 3981 . . . . . 6 (((π‘Š ∈ PreHil ∧ 𝑆 βŠ† 𝑉) ∧ π‘₯ ∈ 𝑆) β†’ π‘₯ ∈ 𝑉)
13 eqid 2732 . . . . . . 7 (Scalarβ€˜π‘Š) = (Scalarβ€˜π‘Š)
14 eqid 2732 . . . . . . 7 (Β·π‘–β€˜π‘Š) = (Β·π‘–β€˜π‘Š)
15 eqid 2732 . . . . . . 7 (0gβ€˜(Scalarβ€˜π‘Š)) = (0gβ€˜(Scalarβ€˜π‘Š))
1613, 14, 1, 15, 8ip0l 21180 . . . . . 6 ((π‘Š ∈ PreHil ∧ π‘₯ ∈ 𝑉) β†’ ((0gβ€˜π‘Š)(Β·π‘–β€˜π‘Š)π‘₯) = (0gβ€˜(Scalarβ€˜π‘Š)))
1711, 12, 16syl2anc 584 . . . . 5 (((π‘Š ∈ PreHil ∧ 𝑆 βŠ† 𝑉) ∧ π‘₯ ∈ 𝑆) β†’ ((0gβ€˜π‘Š)(Β·π‘–β€˜π‘Š)π‘₯) = (0gβ€˜(Scalarβ€˜π‘Š)))
1817ralrimiva 3146 . . . 4 ((π‘Š ∈ PreHil ∧ 𝑆 βŠ† 𝑉) β†’ βˆ€π‘₯ ∈ 𝑆 ((0gβ€˜π‘Š)(Β·π‘–β€˜π‘Š)π‘₯) = (0gβ€˜(Scalarβ€˜π‘Š)))
191, 14, 13, 15, 2elocv 21212 . . . 4 ((0gβ€˜π‘Š) ∈ ( βŠ₯ β€˜π‘†) ↔ (𝑆 βŠ† 𝑉 ∧ (0gβ€˜π‘Š) ∈ 𝑉 ∧ βˆ€π‘₯ ∈ 𝑆 ((0gβ€˜π‘Š)(Β·π‘–β€˜π‘Š)π‘₯) = (0gβ€˜(Scalarβ€˜π‘Š))))
205, 10, 18, 19syl3anbrc 1343 . . 3 ((π‘Š ∈ PreHil ∧ 𝑆 βŠ† 𝑉) β†’ (0gβ€˜π‘Š) ∈ ( βŠ₯ β€˜π‘†))
2120ne0d 4334 . 2 ((π‘Š ∈ PreHil ∧ 𝑆 βŠ† 𝑉) β†’ ( βŠ₯ β€˜π‘†) β‰  βˆ…)
225adantr 481 . . . 4 (((π‘Š ∈ PreHil ∧ 𝑆 βŠ† 𝑉) ∧ (π‘Ÿ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ 𝑦 ∈ ( βŠ₯ β€˜π‘†) ∧ 𝑧 ∈ ( βŠ₯ β€˜π‘†))) β†’ 𝑆 βŠ† 𝑉)
237adantr 481 . . . . 5 (((π‘Š ∈ PreHil ∧ 𝑆 βŠ† 𝑉) ∧ (π‘Ÿ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ 𝑦 ∈ ( βŠ₯ β€˜π‘†) ∧ 𝑧 ∈ ( βŠ₯ β€˜π‘†))) β†’ π‘Š ∈ LMod)
24 simpr1 1194 . . . . . 6 (((π‘Š ∈ PreHil ∧ 𝑆 βŠ† 𝑉) ∧ (π‘Ÿ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ 𝑦 ∈ ( βŠ₯ β€˜π‘†) ∧ 𝑧 ∈ ( βŠ₯ β€˜π‘†))) β†’ π‘Ÿ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)))
25 simpr2 1195 . . . . . . 7 (((π‘Š ∈ PreHil ∧ 𝑆 βŠ† 𝑉) ∧ (π‘Ÿ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ 𝑦 ∈ ( βŠ₯ β€˜π‘†) ∧ 𝑧 ∈ ( βŠ₯ β€˜π‘†))) β†’ 𝑦 ∈ ( βŠ₯ β€˜π‘†))
263, 25sselid 3979 . . . . . 6 (((π‘Š ∈ PreHil ∧ 𝑆 βŠ† 𝑉) ∧ (π‘Ÿ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ 𝑦 ∈ ( βŠ₯ β€˜π‘†) ∧ 𝑧 ∈ ( βŠ₯ β€˜π‘†))) β†’ 𝑦 ∈ 𝑉)
27 eqid 2732 . . . . . . 7 ( ·𝑠 β€˜π‘Š) = ( ·𝑠 β€˜π‘Š)
28 eqid 2732 . . . . . . 7 (Baseβ€˜(Scalarβ€˜π‘Š)) = (Baseβ€˜(Scalarβ€˜π‘Š))
291, 13, 27, 28lmodvscl 20481 . . . . . 6 ((π‘Š ∈ LMod ∧ π‘Ÿ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ 𝑦 ∈ 𝑉) β†’ (π‘Ÿ( ·𝑠 β€˜π‘Š)𝑦) ∈ 𝑉)
3023, 24, 26, 29syl3anc 1371 . . . . 5 (((π‘Š ∈ PreHil ∧ 𝑆 βŠ† 𝑉) ∧ (π‘Ÿ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ 𝑦 ∈ ( βŠ₯ β€˜π‘†) ∧ 𝑧 ∈ ( βŠ₯ β€˜π‘†))) β†’ (π‘Ÿ( ·𝑠 β€˜π‘Š)𝑦) ∈ 𝑉)
31 simpr3 1196 . . . . . 6 (((π‘Š ∈ PreHil ∧ 𝑆 βŠ† 𝑉) ∧ (π‘Ÿ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ 𝑦 ∈ ( βŠ₯ β€˜π‘†) ∧ 𝑧 ∈ ( βŠ₯ β€˜π‘†))) β†’ 𝑧 ∈ ( βŠ₯ β€˜π‘†))
323, 31sselid 3979 . . . . 5 (((π‘Š ∈ PreHil ∧ 𝑆 βŠ† 𝑉) ∧ (π‘Ÿ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ 𝑦 ∈ ( βŠ₯ β€˜π‘†) ∧ 𝑧 ∈ ( βŠ₯ β€˜π‘†))) β†’ 𝑧 ∈ 𝑉)
33 eqid 2732 . . . . . 6 (+gβ€˜π‘Š) = (+gβ€˜π‘Š)
341, 33lmodvacl 20478 . . . . 5 ((π‘Š ∈ LMod ∧ (π‘Ÿ( ·𝑠 β€˜π‘Š)𝑦) ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) β†’ ((π‘Ÿ( ·𝑠 β€˜π‘Š)𝑦)(+gβ€˜π‘Š)𝑧) ∈ 𝑉)
3523, 30, 32, 34syl3anc 1371 . . . 4 (((π‘Š ∈ PreHil ∧ 𝑆 βŠ† 𝑉) ∧ (π‘Ÿ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ 𝑦 ∈ ( βŠ₯ β€˜π‘†) ∧ 𝑧 ∈ ( βŠ₯ β€˜π‘†))) β†’ ((π‘Ÿ( ·𝑠 β€˜π‘Š)𝑦)(+gβ€˜π‘Š)𝑧) ∈ 𝑉)
3611adantlr 713 . . . . . . 7 ((((π‘Š ∈ PreHil ∧ 𝑆 βŠ† 𝑉) ∧ (π‘Ÿ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ 𝑦 ∈ ( βŠ₯ β€˜π‘†) ∧ 𝑧 ∈ ( βŠ₯ β€˜π‘†))) ∧ π‘₯ ∈ 𝑆) β†’ π‘Š ∈ PreHil)
3730adantr 481 . . . . . . 7 ((((π‘Š ∈ PreHil ∧ 𝑆 βŠ† 𝑉) ∧ (π‘Ÿ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ 𝑦 ∈ ( βŠ₯ β€˜π‘†) ∧ 𝑧 ∈ ( βŠ₯ β€˜π‘†))) ∧ π‘₯ ∈ 𝑆) β†’ (π‘Ÿ( ·𝑠 β€˜π‘Š)𝑦) ∈ 𝑉)
3832adantr 481 . . . . . . 7 ((((π‘Š ∈ PreHil ∧ 𝑆 βŠ† 𝑉) ∧ (π‘Ÿ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ 𝑦 ∈ ( βŠ₯ β€˜π‘†) ∧ 𝑧 ∈ ( βŠ₯ β€˜π‘†))) ∧ π‘₯ ∈ 𝑆) β†’ 𝑧 ∈ 𝑉)
3912adantlr 713 . . . . . . 7 ((((π‘Š ∈ PreHil ∧ 𝑆 βŠ† 𝑉) ∧ (π‘Ÿ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ 𝑦 ∈ ( βŠ₯ β€˜π‘†) ∧ 𝑧 ∈ ( βŠ₯ β€˜π‘†))) ∧ π‘₯ ∈ 𝑆) β†’ π‘₯ ∈ 𝑉)
40 eqid 2732 . . . . . . . 8 (+gβ€˜(Scalarβ€˜π‘Š)) = (+gβ€˜(Scalarβ€˜π‘Š))
4113, 14, 1, 33, 40ipdir 21183 . . . . . . 7 ((π‘Š ∈ PreHil ∧ ((π‘Ÿ( ·𝑠 β€˜π‘Š)𝑦) ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ∧ π‘₯ ∈ 𝑉)) β†’ (((π‘Ÿ( ·𝑠 β€˜π‘Š)𝑦)(+gβ€˜π‘Š)𝑧)(Β·π‘–β€˜π‘Š)π‘₯) = (((π‘Ÿ( ·𝑠 β€˜π‘Š)𝑦)(Β·π‘–β€˜π‘Š)π‘₯)(+gβ€˜(Scalarβ€˜π‘Š))(𝑧(Β·π‘–β€˜π‘Š)π‘₯)))
4236, 37, 38, 39, 41syl13anc 1372 . . . . . 6 ((((π‘Š ∈ PreHil ∧ 𝑆 βŠ† 𝑉) ∧ (π‘Ÿ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ 𝑦 ∈ ( βŠ₯ β€˜π‘†) ∧ 𝑧 ∈ ( βŠ₯ β€˜π‘†))) ∧ π‘₯ ∈ 𝑆) β†’ (((π‘Ÿ( ·𝑠 β€˜π‘Š)𝑦)(+gβ€˜π‘Š)𝑧)(Β·π‘–β€˜π‘Š)π‘₯) = (((π‘Ÿ( ·𝑠 β€˜π‘Š)𝑦)(Β·π‘–β€˜π‘Š)π‘₯)(+gβ€˜(Scalarβ€˜π‘Š))(𝑧(Β·π‘–β€˜π‘Š)π‘₯)))
4324adantr 481 . . . . . . . . 9 ((((π‘Š ∈ PreHil ∧ 𝑆 βŠ† 𝑉) ∧ (π‘Ÿ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ 𝑦 ∈ ( βŠ₯ β€˜π‘†) ∧ 𝑧 ∈ ( βŠ₯ β€˜π‘†))) ∧ π‘₯ ∈ 𝑆) β†’ π‘Ÿ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)))
4426adantr 481 . . . . . . . . 9 ((((π‘Š ∈ PreHil ∧ 𝑆 βŠ† 𝑉) ∧ (π‘Ÿ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ 𝑦 ∈ ( βŠ₯ β€˜π‘†) ∧ 𝑧 ∈ ( βŠ₯ β€˜π‘†))) ∧ π‘₯ ∈ 𝑆) β†’ 𝑦 ∈ 𝑉)
45 eqid 2732 . . . . . . . . . 10 (.rβ€˜(Scalarβ€˜π‘Š)) = (.rβ€˜(Scalarβ€˜π‘Š))
4613, 14, 1, 28, 27, 45ipass 21189 . . . . . . . . 9 ((π‘Š ∈ PreHil ∧ (π‘Ÿ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ 𝑦 ∈ 𝑉 ∧ π‘₯ ∈ 𝑉)) β†’ ((π‘Ÿ( ·𝑠 β€˜π‘Š)𝑦)(Β·π‘–β€˜π‘Š)π‘₯) = (π‘Ÿ(.rβ€˜(Scalarβ€˜π‘Š))(𝑦(Β·π‘–β€˜π‘Š)π‘₯)))
4736, 43, 44, 39, 46syl13anc 1372 . . . . . . . 8 ((((π‘Š ∈ PreHil ∧ 𝑆 βŠ† 𝑉) ∧ (π‘Ÿ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ 𝑦 ∈ ( βŠ₯ β€˜π‘†) ∧ 𝑧 ∈ ( βŠ₯ β€˜π‘†))) ∧ π‘₯ ∈ 𝑆) β†’ ((π‘Ÿ( ·𝑠 β€˜π‘Š)𝑦)(Β·π‘–β€˜π‘Š)π‘₯) = (π‘Ÿ(.rβ€˜(Scalarβ€˜π‘Š))(𝑦(Β·π‘–β€˜π‘Š)π‘₯)))
481, 14, 13, 15, 2ocvi 21213 . . . . . . . . . 10 ((𝑦 ∈ ( βŠ₯ β€˜π‘†) ∧ π‘₯ ∈ 𝑆) β†’ (𝑦(Β·π‘–β€˜π‘Š)π‘₯) = (0gβ€˜(Scalarβ€˜π‘Š)))
4925, 48sylan 580 . . . . . . . . 9 ((((π‘Š ∈ PreHil ∧ 𝑆 βŠ† 𝑉) ∧ (π‘Ÿ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ 𝑦 ∈ ( βŠ₯ β€˜π‘†) ∧ 𝑧 ∈ ( βŠ₯ β€˜π‘†))) ∧ π‘₯ ∈ 𝑆) β†’ (𝑦(Β·π‘–β€˜π‘Š)π‘₯) = (0gβ€˜(Scalarβ€˜π‘Š)))
5049oveq2d 7421 . . . . . . . 8 ((((π‘Š ∈ PreHil ∧ 𝑆 βŠ† 𝑉) ∧ (π‘Ÿ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ 𝑦 ∈ ( βŠ₯ β€˜π‘†) ∧ 𝑧 ∈ ( βŠ₯ β€˜π‘†))) ∧ π‘₯ ∈ 𝑆) β†’ (π‘Ÿ(.rβ€˜(Scalarβ€˜π‘Š))(𝑦(Β·π‘–β€˜π‘Š)π‘₯)) = (π‘Ÿ(.rβ€˜(Scalarβ€˜π‘Š))(0gβ€˜(Scalarβ€˜π‘Š))))
5123adantr 481 . . . . . . . . . 10 ((((π‘Š ∈ PreHil ∧ 𝑆 βŠ† 𝑉) ∧ (π‘Ÿ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ 𝑦 ∈ ( βŠ₯ β€˜π‘†) ∧ 𝑧 ∈ ( βŠ₯ β€˜π‘†))) ∧ π‘₯ ∈ 𝑆) β†’ π‘Š ∈ LMod)
5213lmodring 20471 . . . . . . . . . 10 (π‘Š ∈ LMod β†’ (Scalarβ€˜π‘Š) ∈ Ring)
5351, 52syl 17 . . . . . . . . 9 ((((π‘Š ∈ PreHil ∧ 𝑆 βŠ† 𝑉) ∧ (π‘Ÿ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ 𝑦 ∈ ( βŠ₯ β€˜π‘†) ∧ 𝑧 ∈ ( βŠ₯ β€˜π‘†))) ∧ π‘₯ ∈ 𝑆) β†’ (Scalarβ€˜π‘Š) ∈ Ring)
5428, 45, 15ringrz 20101 . . . . . . . . 9 (((Scalarβ€˜π‘Š) ∈ Ring ∧ π‘Ÿ ∈ (Baseβ€˜(Scalarβ€˜π‘Š))) β†’ (π‘Ÿ(.rβ€˜(Scalarβ€˜π‘Š))(0gβ€˜(Scalarβ€˜π‘Š))) = (0gβ€˜(Scalarβ€˜π‘Š)))
5553, 43, 54syl2anc 584 . . . . . . . 8 ((((π‘Š ∈ PreHil ∧ 𝑆 βŠ† 𝑉) ∧ (π‘Ÿ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ 𝑦 ∈ ( βŠ₯ β€˜π‘†) ∧ 𝑧 ∈ ( βŠ₯ β€˜π‘†))) ∧ π‘₯ ∈ 𝑆) β†’ (π‘Ÿ(.rβ€˜(Scalarβ€˜π‘Š))(0gβ€˜(Scalarβ€˜π‘Š))) = (0gβ€˜(Scalarβ€˜π‘Š)))
5647, 50, 553eqtrd 2776 . . . . . . 7 ((((π‘Š ∈ PreHil ∧ 𝑆 βŠ† 𝑉) ∧ (π‘Ÿ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ 𝑦 ∈ ( βŠ₯ β€˜π‘†) ∧ 𝑧 ∈ ( βŠ₯ β€˜π‘†))) ∧ π‘₯ ∈ 𝑆) β†’ ((π‘Ÿ( ·𝑠 β€˜π‘Š)𝑦)(Β·π‘–β€˜π‘Š)π‘₯) = (0gβ€˜(Scalarβ€˜π‘Š)))
571, 14, 13, 15, 2ocvi 21213 . . . . . . . 8 ((𝑧 ∈ ( βŠ₯ β€˜π‘†) ∧ π‘₯ ∈ 𝑆) β†’ (𝑧(Β·π‘–β€˜π‘Š)π‘₯) = (0gβ€˜(Scalarβ€˜π‘Š)))
5831, 57sylan 580 . . . . . . 7 ((((π‘Š ∈ PreHil ∧ 𝑆 βŠ† 𝑉) ∧ (π‘Ÿ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ 𝑦 ∈ ( βŠ₯ β€˜π‘†) ∧ 𝑧 ∈ ( βŠ₯ β€˜π‘†))) ∧ π‘₯ ∈ 𝑆) β†’ (𝑧(Β·π‘–β€˜π‘Š)π‘₯) = (0gβ€˜(Scalarβ€˜π‘Š)))
5956, 58oveq12d 7423 . . . . . 6 ((((π‘Š ∈ PreHil ∧ 𝑆 βŠ† 𝑉) ∧ (π‘Ÿ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ 𝑦 ∈ ( βŠ₯ β€˜π‘†) ∧ 𝑧 ∈ ( βŠ₯ β€˜π‘†))) ∧ π‘₯ ∈ 𝑆) β†’ (((π‘Ÿ( ·𝑠 β€˜π‘Š)𝑦)(Β·π‘–β€˜π‘Š)π‘₯)(+gβ€˜(Scalarβ€˜π‘Š))(𝑧(Β·π‘–β€˜π‘Š)π‘₯)) = ((0gβ€˜(Scalarβ€˜π‘Š))(+gβ€˜(Scalarβ€˜π‘Š))(0gβ€˜(Scalarβ€˜π‘Š))))
6013lmodfgrp 20472 . . . . . . 7 (π‘Š ∈ LMod β†’ (Scalarβ€˜π‘Š) ∈ Grp)
6128, 15grpidcl 18846 . . . . . . . 8 ((Scalarβ€˜π‘Š) ∈ Grp β†’ (0gβ€˜(Scalarβ€˜π‘Š)) ∈ (Baseβ€˜(Scalarβ€˜π‘Š)))
6228, 40, 15grplid 18848 . . . . . . . 8 (((Scalarβ€˜π‘Š) ∈ Grp ∧ (0gβ€˜(Scalarβ€˜π‘Š)) ∈ (Baseβ€˜(Scalarβ€˜π‘Š))) β†’ ((0gβ€˜(Scalarβ€˜π‘Š))(+gβ€˜(Scalarβ€˜π‘Š))(0gβ€˜(Scalarβ€˜π‘Š))) = (0gβ€˜(Scalarβ€˜π‘Š)))
6361, 62mpdan 685 . . . . . . 7 ((Scalarβ€˜π‘Š) ∈ Grp β†’ ((0gβ€˜(Scalarβ€˜π‘Š))(+gβ€˜(Scalarβ€˜π‘Š))(0gβ€˜(Scalarβ€˜π‘Š))) = (0gβ€˜(Scalarβ€˜π‘Š)))
6451, 60, 633syl 18 . . . . . 6 ((((π‘Š ∈ PreHil ∧ 𝑆 βŠ† 𝑉) ∧ (π‘Ÿ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ 𝑦 ∈ ( βŠ₯ β€˜π‘†) ∧ 𝑧 ∈ ( βŠ₯ β€˜π‘†))) ∧ π‘₯ ∈ 𝑆) β†’ ((0gβ€˜(Scalarβ€˜π‘Š))(+gβ€˜(Scalarβ€˜π‘Š))(0gβ€˜(Scalarβ€˜π‘Š))) = (0gβ€˜(Scalarβ€˜π‘Š)))
6542, 59, 643eqtrd 2776 . . . . 5 ((((π‘Š ∈ PreHil ∧ 𝑆 βŠ† 𝑉) ∧ (π‘Ÿ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ 𝑦 ∈ ( βŠ₯ β€˜π‘†) ∧ 𝑧 ∈ ( βŠ₯ β€˜π‘†))) ∧ π‘₯ ∈ 𝑆) β†’ (((π‘Ÿ( ·𝑠 β€˜π‘Š)𝑦)(+gβ€˜π‘Š)𝑧)(Β·π‘–β€˜π‘Š)π‘₯) = (0gβ€˜(Scalarβ€˜π‘Š)))
6665ralrimiva 3146 . . . 4 (((π‘Š ∈ PreHil ∧ 𝑆 βŠ† 𝑉) ∧ (π‘Ÿ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ 𝑦 ∈ ( βŠ₯ β€˜π‘†) ∧ 𝑧 ∈ ( βŠ₯ β€˜π‘†))) β†’ βˆ€π‘₯ ∈ 𝑆 (((π‘Ÿ( ·𝑠 β€˜π‘Š)𝑦)(+gβ€˜π‘Š)𝑧)(Β·π‘–β€˜π‘Š)π‘₯) = (0gβ€˜(Scalarβ€˜π‘Š)))
671, 14, 13, 15, 2elocv 21212 . . . 4 (((π‘Ÿ( ·𝑠 β€˜π‘Š)𝑦)(+gβ€˜π‘Š)𝑧) ∈ ( βŠ₯ β€˜π‘†) ↔ (𝑆 βŠ† 𝑉 ∧ ((π‘Ÿ( ·𝑠 β€˜π‘Š)𝑦)(+gβ€˜π‘Š)𝑧) ∈ 𝑉 ∧ βˆ€π‘₯ ∈ 𝑆 (((π‘Ÿ( ·𝑠 β€˜π‘Š)𝑦)(+gβ€˜π‘Š)𝑧)(Β·π‘–β€˜π‘Š)π‘₯) = (0gβ€˜(Scalarβ€˜π‘Š))))
6822, 35, 66, 67syl3anbrc 1343 . . 3 (((π‘Š ∈ PreHil ∧ 𝑆 βŠ† 𝑉) ∧ (π‘Ÿ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ 𝑦 ∈ ( βŠ₯ β€˜π‘†) ∧ 𝑧 ∈ ( βŠ₯ β€˜π‘†))) β†’ ((π‘Ÿ( ·𝑠 β€˜π‘Š)𝑦)(+gβ€˜π‘Š)𝑧) ∈ ( βŠ₯ β€˜π‘†))
6968ralrimivvva 3203 . 2 ((π‘Š ∈ PreHil ∧ 𝑆 βŠ† 𝑉) β†’ βˆ€π‘Ÿ ∈ (Baseβ€˜(Scalarβ€˜π‘Š))βˆ€π‘¦ ∈ ( βŠ₯ β€˜π‘†)βˆ€π‘§ ∈ ( βŠ₯ β€˜π‘†)((π‘Ÿ( ·𝑠 β€˜π‘Š)𝑦)(+gβ€˜π‘Š)𝑧) ∈ ( βŠ₯ β€˜π‘†))
70 ocvlss.l . . 3 𝐿 = (LSubSpβ€˜π‘Š)
7113, 28, 1, 33, 27, 70islss 20537 . 2 (( βŠ₯ β€˜π‘†) ∈ 𝐿 ↔ (( βŠ₯ β€˜π‘†) βŠ† 𝑉 ∧ ( βŠ₯ β€˜π‘†) β‰  βˆ… ∧ βˆ€π‘Ÿ ∈ (Baseβ€˜(Scalarβ€˜π‘Š))βˆ€π‘¦ ∈ ( βŠ₯ β€˜π‘†)βˆ€π‘§ ∈ ( βŠ₯ β€˜π‘†)((π‘Ÿ( ·𝑠 β€˜π‘Š)𝑦)(+gβ€˜π‘Š)𝑧) ∈ ( βŠ₯ β€˜π‘†)))
724, 21, 69, 71syl3anbrc 1343 1 ((π‘Š ∈ PreHil ∧ 𝑆 βŠ† 𝑉) β†’ ( βŠ₯ β€˜π‘†) ∈ 𝐿)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061   βŠ† wss 3947  βˆ…c0 4321  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140  +gcplusg 17193  .rcmulr 17194  Scalarcsca 17196   ·𝑠 cvsca 17197  Β·π‘–cip 17198  0gc0g 17381  Grpcgrp 18815  Ringcrg 20049  LModclmod 20463  LSubSpclss 20534  PreHilcphl 21168  ocvcocv 21204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-plusg 17206  df-sca 17209  df-vsca 17210  df-ip 17211  df-0g 17383  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-grp 18818  df-ghm 19084  df-mgp 19982  df-ring 20051  df-lmod 20465  df-lss 20535  df-lmhm 20625  df-lvec 20706  df-sra 20777  df-rgmod 20778  df-phl 21170  df-ocv 21207
This theorem is referenced by:  ocvin  21218  ocvlsp  21220  csslss  21235  pjdm2  21257  pjff  21258  pjf2  21260  pjfo  21261  ocvpj  21263  pjthlem2  24946  pjth  24947
  Copyright terms: Public domain W3C validator