MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ocvlss Structured version   Visualization version   GIF version

Theorem ocvlss 20361
Description: The orthocomplement of a subset is a linear subspace of the pre-Hilbert space. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
ocvss.v 𝑉 = (Base‘𝑊)
ocvss.o = (ocv‘𝑊)
ocvlss.l 𝐿 = (LSubSp‘𝑊)
Assertion
Ref Expression
ocvlss ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( 𝑆) ∈ 𝐿)

Proof of Theorem ocvlss
Dummy variables 𝑥 𝑟 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ocvss.v . . . 4 𝑉 = (Base‘𝑊)
2 ocvss.o . . . 4 = (ocv‘𝑊)
31, 2ocvss 20359 . . 3 ( 𝑆) ⊆ 𝑉
43a1i 11 . 2 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( 𝑆) ⊆ 𝑉)
5 simpr 488 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → 𝑆𝑉)
6 phllmod 20319 . . . . . 6 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
76adantr 484 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → 𝑊 ∈ LMod)
8 eqid 2798 . . . . . 6 (0g𝑊) = (0g𝑊)
91, 8lmod0vcl 19656 . . . . 5 (𝑊 ∈ LMod → (0g𝑊) ∈ 𝑉)
107, 9syl 17 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → (0g𝑊) ∈ 𝑉)
11 simpll 766 . . . . . 6 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ 𝑥𝑆) → 𝑊 ∈ PreHil)
125sselda 3915 . . . . . 6 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ 𝑥𝑆) → 𝑥𝑉)
13 eqid 2798 . . . . . . 7 (Scalar‘𝑊) = (Scalar‘𝑊)
14 eqid 2798 . . . . . . 7 (·𝑖𝑊) = (·𝑖𝑊)
15 eqid 2798 . . . . . . 7 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
1613, 14, 1, 15, 8ip0l 20325 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝑥𝑉) → ((0g𝑊)(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
1711, 12, 16syl2anc 587 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ 𝑥𝑆) → ((0g𝑊)(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
1817ralrimiva 3149 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ∀𝑥𝑆 ((0g𝑊)(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
191, 14, 13, 15, 2elocv 20357 . . . 4 ((0g𝑊) ∈ ( 𝑆) ↔ (𝑆𝑉 ∧ (0g𝑊) ∈ 𝑉 ∧ ∀𝑥𝑆 ((0g𝑊)(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))))
205, 10, 18, 19syl3anbrc 1340 . . 3 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → (0g𝑊) ∈ ( 𝑆))
2120ne0d 4251 . 2 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( 𝑆) ≠ ∅)
225adantr 484 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) → 𝑆𝑉)
237adantr 484 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) → 𝑊 ∈ LMod)
24 simpr1 1191 . . . . . 6 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) → 𝑟 ∈ (Base‘(Scalar‘𝑊)))
25 simpr2 1192 . . . . . . 7 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) → 𝑦 ∈ ( 𝑆))
263, 25sseldi 3913 . . . . . 6 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) → 𝑦𝑉)
27 eqid 2798 . . . . . . 7 ( ·𝑠𝑊) = ( ·𝑠𝑊)
28 eqid 2798 . . . . . . 7 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
291, 13, 27, 28lmodvscl 19644 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝑉) → (𝑟( ·𝑠𝑊)𝑦) ∈ 𝑉)
3023, 24, 26, 29syl3anc 1368 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) → (𝑟( ·𝑠𝑊)𝑦) ∈ 𝑉)
31 simpr3 1193 . . . . . 6 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) → 𝑧 ∈ ( 𝑆))
323, 31sseldi 3913 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) → 𝑧𝑉)
33 eqid 2798 . . . . . 6 (+g𝑊) = (+g𝑊)
341, 33lmodvacl 19641 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑟( ·𝑠𝑊)𝑦) ∈ 𝑉𝑧𝑉) → ((𝑟( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) ∈ 𝑉)
3523, 30, 32, 34syl3anc 1368 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) → ((𝑟( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) ∈ 𝑉)
3611adantlr 714 . . . . . . 7 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → 𝑊 ∈ PreHil)
3730adantr 484 . . . . . . 7 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → (𝑟( ·𝑠𝑊)𝑦) ∈ 𝑉)
3832adantr 484 . . . . . . 7 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → 𝑧𝑉)
3912adantlr 714 . . . . . . 7 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → 𝑥𝑉)
40 eqid 2798 . . . . . . . 8 (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊))
4113, 14, 1, 33, 40ipdir 20328 . . . . . . 7 ((𝑊 ∈ PreHil ∧ ((𝑟( ·𝑠𝑊)𝑦) ∈ 𝑉𝑧𝑉𝑥𝑉)) → (((𝑟( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)(·𝑖𝑊)𝑥) = (((𝑟( ·𝑠𝑊)𝑦)(·𝑖𝑊)𝑥)(+g‘(Scalar‘𝑊))(𝑧(·𝑖𝑊)𝑥)))
4236, 37, 38, 39, 41syl13anc 1369 . . . . . 6 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → (((𝑟( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)(·𝑖𝑊)𝑥) = (((𝑟( ·𝑠𝑊)𝑦)(·𝑖𝑊)𝑥)(+g‘(Scalar‘𝑊))(𝑧(·𝑖𝑊)𝑥)))
4324adantr 484 . . . . . . . . 9 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → 𝑟 ∈ (Base‘(Scalar‘𝑊)))
4426adantr 484 . . . . . . . . 9 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → 𝑦𝑉)
45 eqid 2798 . . . . . . . . . 10 (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊))
4613, 14, 1, 28, 27, 45ipass 20334 . . . . . . . . 9 ((𝑊 ∈ PreHil ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝑉𝑥𝑉)) → ((𝑟( ·𝑠𝑊)𝑦)(·𝑖𝑊)𝑥) = (𝑟(.r‘(Scalar‘𝑊))(𝑦(·𝑖𝑊)𝑥)))
4736, 43, 44, 39, 46syl13anc 1369 . . . . . . . 8 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → ((𝑟( ·𝑠𝑊)𝑦)(·𝑖𝑊)𝑥) = (𝑟(.r‘(Scalar‘𝑊))(𝑦(·𝑖𝑊)𝑥)))
481, 14, 13, 15, 2ocvi 20358 . . . . . . . . . 10 ((𝑦 ∈ ( 𝑆) ∧ 𝑥𝑆) → (𝑦(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
4925, 48sylan 583 . . . . . . . . 9 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → (𝑦(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
5049oveq2d 7151 . . . . . . . 8 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → (𝑟(.r‘(Scalar‘𝑊))(𝑦(·𝑖𝑊)𝑥)) = (𝑟(.r‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))))
5123adantr 484 . . . . . . . . . 10 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → 𝑊 ∈ LMod)
5213lmodring 19635 . . . . . . . . . 10 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Ring)
5351, 52syl 17 . . . . . . . . 9 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → (Scalar‘𝑊) ∈ Ring)
5428, 45, 15ringrz 19334 . . . . . . . . 9 (((Scalar‘𝑊) ∈ Ring ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) → (𝑟(.r‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))) = (0g‘(Scalar‘𝑊)))
5553, 43, 54syl2anc 587 . . . . . . . 8 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → (𝑟(.r‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))) = (0g‘(Scalar‘𝑊)))
5647, 50, 553eqtrd 2837 . . . . . . 7 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → ((𝑟( ·𝑠𝑊)𝑦)(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
571, 14, 13, 15, 2ocvi 20358 . . . . . . . 8 ((𝑧 ∈ ( 𝑆) ∧ 𝑥𝑆) → (𝑧(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
5831, 57sylan 583 . . . . . . 7 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → (𝑧(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
5956, 58oveq12d 7153 . . . . . 6 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → (((𝑟( ·𝑠𝑊)𝑦)(·𝑖𝑊)𝑥)(+g‘(Scalar‘𝑊))(𝑧(·𝑖𝑊)𝑥)) = ((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))))
6013lmodfgrp 19636 . . . . . . 7 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Grp)
6128, 15grpidcl 18123 . . . . . . . 8 ((Scalar‘𝑊) ∈ Grp → (0g‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)))
6228, 40, 15grplid 18125 . . . . . . . 8 (((Scalar‘𝑊) ∈ Grp ∧ (0g‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) → ((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))) = (0g‘(Scalar‘𝑊)))
6361, 62mpdan 686 . . . . . . 7 ((Scalar‘𝑊) ∈ Grp → ((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))) = (0g‘(Scalar‘𝑊)))
6451, 60, 633syl 18 . . . . . 6 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → ((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))) = (0g‘(Scalar‘𝑊)))
6542, 59, 643eqtrd 2837 . . . . 5 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → (((𝑟( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
6665ralrimiva 3149 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) → ∀𝑥𝑆 (((𝑟( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
671, 14, 13, 15, 2elocv 20357 . . . 4 (((𝑟( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) ∈ ( 𝑆) ↔ (𝑆𝑉 ∧ ((𝑟( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) ∈ 𝑉 ∧ ∀𝑥𝑆 (((𝑟( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))))
6822, 35, 66, 67syl3anbrc 1340 . . 3 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) → ((𝑟( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) ∈ ( 𝑆))
6968ralrimivvva 3157 . 2 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ ( 𝑆)∀𝑧 ∈ ( 𝑆)((𝑟( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) ∈ ( 𝑆))
70 ocvlss.l . . 3 𝐿 = (LSubSp‘𝑊)
7113, 28, 1, 33, 27, 70islss 19699 . 2 (( 𝑆) ∈ 𝐿 ↔ (( 𝑆) ⊆ 𝑉 ∧ ( 𝑆) ≠ ∅ ∧ ∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ ( 𝑆)∀𝑧 ∈ ( 𝑆)((𝑟( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) ∈ ( 𝑆)))
724, 21, 69, 71syl3anbrc 1340 1 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( 𝑆) ∈ 𝐿)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  wss 3881  c0 4243  cfv 6324  (class class class)co 7135  Basecbs 16475  +gcplusg 16557  .rcmulr 16558  Scalarcsca 16560   ·𝑠 cvsca 16561  ·𝑖cip 16562  0gc0g 16705  Grpcgrp 18095  Ringcrg 19290  LModclmod 19627  LSubSpclss 19696  PreHilcphl 20313  ocvcocv 20349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-plusg 16570  df-sca 16573  df-vsca 16574  df-ip 16575  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-ghm 18348  df-mgp 19233  df-ring 19292  df-lmod 19629  df-lss 19697  df-lmhm 19787  df-lvec 19868  df-sra 19937  df-rgmod 19938  df-phl 20315  df-ocv 20352
This theorem is referenced by:  ocvin  20363  ocvlsp  20365  csslss  20380  pjdm2  20400  pjff  20401  pjf2  20403  pjfo  20404  ocvpj  20406  pjthlem2  24042  pjth  24043
  Copyright terms: Public domain W3C validator