MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ocvlss Structured version   Visualization version   GIF version

Theorem ocvlss 21603
Description: The orthocomplement of a subset is a linear subspace of the pre-Hilbert space. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
ocvss.v 𝑉 = (Base‘𝑊)
ocvss.o = (ocv‘𝑊)
ocvlss.l 𝐿 = (LSubSp‘𝑊)
Assertion
Ref Expression
ocvlss ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( 𝑆) ∈ 𝐿)

Proof of Theorem ocvlss
Dummy variables 𝑥 𝑟 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ocvss.v . . . 4 𝑉 = (Base‘𝑊)
2 ocvss.o . . . 4 = (ocv‘𝑊)
31, 2ocvss 21601 . . 3 ( 𝑆) ⊆ 𝑉
43a1i 11 . 2 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( 𝑆) ⊆ 𝑉)
5 simpr 484 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → 𝑆𝑉)
6 phllmod 21561 . . . . . 6 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
76adantr 480 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → 𝑊 ∈ LMod)
8 eqid 2728 . . . . . 6 (0g𝑊) = (0g𝑊)
91, 8lmod0vcl 20773 . . . . 5 (𝑊 ∈ LMod → (0g𝑊) ∈ 𝑉)
107, 9syl 17 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → (0g𝑊) ∈ 𝑉)
11 simpll 766 . . . . . 6 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ 𝑥𝑆) → 𝑊 ∈ PreHil)
125sselda 3980 . . . . . 6 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ 𝑥𝑆) → 𝑥𝑉)
13 eqid 2728 . . . . . . 7 (Scalar‘𝑊) = (Scalar‘𝑊)
14 eqid 2728 . . . . . . 7 (·𝑖𝑊) = (·𝑖𝑊)
15 eqid 2728 . . . . . . 7 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
1613, 14, 1, 15, 8ip0l 21567 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝑥𝑉) → ((0g𝑊)(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
1711, 12, 16syl2anc 583 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ 𝑥𝑆) → ((0g𝑊)(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
1817ralrimiva 3143 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ∀𝑥𝑆 ((0g𝑊)(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
191, 14, 13, 15, 2elocv 21599 . . . 4 ((0g𝑊) ∈ ( 𝑆) ↔ (𝑆𝑉 ∧ (0g𝑊) ∈ 𝑉 ∧ ∀𝑥𝑆 ((0g𝑊)(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))))
205, 10, 18, 19syl3anbrc 1341 . . 3 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → (0g𝑊) ∈ ( 𝑆))
2120ne0d 4336 . 2 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( 𝑆) ≠ ∅)
225adantr 480 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) → 𝑆𝑉)
237adantr 480 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) → 𝑊 ∈ LMod)
24 simpr1 1192 . . . . . 6 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) → 𝑟 ∈ (Base‘(Scalar‘𝑊)))
25 simpr2 1193 . . . . . . 7 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) → 𝑦 ∈ ( 𝑆))
263, 25sselid 3978 . . . . . 6 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) → 𝑦𝑉)
27 eqid 2728 . . . . . . 7 ( ·𝑠𝑊) = ( ·𝑠𝑊)
28 eqid 2728 . . . . . . 7 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
291, 13, 27, 28lmodvscl 20760 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝑉) → (𝑟( ·𝑠𝑊)𝑦) ∈ 𝑉)
3023, 24, 26, 29syl3anc 1369 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) → (𝑟( ·𝑠𝑊)𝑦) ∈ 𝑉)
31 simpr3 1194 . . . . . 6 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) → 𝑧 ∈ ( 𝑆))
323, 31sselid 3978 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) → 𝑧𝑉)
33 eqid 2728 . . . . . 6 (+g𝑊) = (+g𝑊)
341, 33lmodvacl 20757 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑟( ·𝑠𝑊)𝑦) ∈ 𝑉𝑧𝑉) → ((𝑟( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) ∈ 𝑉)
3523, 30, 32, 34syl3anc 1369 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) → ((𝑟( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) ∈ 𝑉)
3611adantlr 714 . . . . . . 7 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → 𝑊 ∈ PreHil)
3730adantr 480 . . . . . . 7 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → (𝑟( ·𝑠𝑊)𝑦) ∈ 𝑉)
3832adantr 480 . . . . . . 7 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → 𝑧𝑉)
3912adantlr 714 . . . . . . 7 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → 𝑥𝑉)
40 eqid 2728 . . . . . . . 8 (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊))
4113, 14, 1, 33, 40ipdir 21570 . . . . . . 7 ((𝑊 ∈ PreHil ∧ ((𝑟( ·𝑠𝑊)𝑦) ∈ 𝑉𝑧𝑉𝑥𝑉)) → (((𝑟( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)(·𝑖𝑊)𝑥) = (((𝑟( ·𝑠𝑊)𝑦)(·𝑖𝑊)𝑥)(+g‘(Scalar‘𝑊))(𝑧(·𝑖𝑊)𝑥)))
4236, 37, 38, 39, 41syl13anc 1370 . . . . . 6 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → (((𝑟( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)(·𝑖𝑊)𝑥) = (((𝑟( ·𝑠𝑊)𝑦)(·𝑖𝑊)𝑥)(+g‘(Scalar‘𝑊))(𝑧(·𝑖𝑊)𝑥)))
4324adantr 480 . . . . . . . . 9 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → 𝑟 ∈ (Base‘(Scalar‘𝑊)))
4426adantr 480 . . . . . . . . 9 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → 𝑦𝑉)
45 eqid 2728 . . . . . . . . . 10 (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊))
4613, 14, 1, 28, 27, 45ipass 21576 . . . . . . . . 9 ((𝑊 ∈ PreHil ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝑉𝑥𝑉)) → ((𝑟( ·𝑠𝑊)𝑦)(·𝑖𝑊)𝑥) = (𝑟(.r‘(Scalar‘𝑊))(𝑦(·𝑖𝑊)𝑥)))
4736, 43, 44, 39, 46syl13anc 1370 . . . . . . . 8 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → ((𝑟( ·𝑠𝑊)𝑦)(·𝑖𝑊)𝑥) = (𝑟(.r‘(Scalar‘𝑊))(𝑦(·𝑖𝑊)𝑥)))
481, 14, 13, 15, 2ocvi 21600 . . . . . . . . . 10 ((𝑦 ∈ ( 𝑆) ∧ 𝑥𝑆) → (𝑦(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
4925, 48sylan 579 . . . . . . . . 9 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → (𝑦(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
5049oveq2d 7436 . . . . . . . 8 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → (𝑟(.r‘(Scalar‘𝑊))(𝑦(·𝑖𝑊)𝑥)) = (𝑟(.r‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))))
5123adantr 480 . . . . . . . . . 10 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → 𝑊 ∈ LMod)
5213lmodring 20750 . . . . . . . . . 10 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Ring)
5351, 52syl 17 . . . . . . . . 9 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → (Scalar‘𝑊) ∈ Ring)
5428, 45, 15ringrz 20229 . . . . . . . . 9 (((Scalar‘𝑊) ∈ Ring ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) → (𝑟(.r‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))) = (0g‘(Scalar‘𝑊)))
5553, 43, 54syl2anc 583 . . . . . . . 8 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → (𝑟(.r‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))) = (0g‘(Scalar‘𝑊)))
5647, 50, 553eqtrd 2772 . . . . . . 7 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → ((𝑟( ·𝑠𝑊)𝑦)(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
571, 14, 13, 15, 2ocvi 21600 . . . . . . . 8 ((𝑧 ∈ ( 𝑆) ∧ 𝑥𝑆) → (𝑧(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
5831, 57sylan 579 . . . . . . 7 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → (𝑧(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
5956, 58oveq12d 7438 . . . . . 6 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → (((𝑟( ·𝑠𝑊)𝑦)(·𝑖𝑊)𝑥)(+g‘(Scalar‘𝑊))(𝑧(·𝑖𝑊)𝑥)) = ((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))))
6013lmodfgrp 20751 . . . . . . 7 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Grp)
6128, 15grpidcl 18921 . . . . . . . 8 ((Scalar‘𝑊) ∈ Grp → (0g‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)))
6228, 40, 15grplid 18923 . . . . . . . 8 (((Scalar‘𝑊) ∈ Grp ∧ (0g‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) → ((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))) = (0g‘(Scalar‘𝑊)))
6361, 62mpdan 686 . . . . . . 7 ((Scalar‘𝑊) ∈ Grp → ((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))) = (0g‘(Scalar‘𝑊)))
6451, 60, 633syl 18 . . . . . 6 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → ((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))) = (0g‘(Scalar‘𝑊)))
6542, 59, 643eqtrd 2772 . . . . 5 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → (((𝑟( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
6665ralrimiva 3143 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) → ∀𝑥𝑆 (((𝑟( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
671, 14, 13, 15, 2elocv 21599 . . . 4 (((𝑟( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) ∈ ( 𝑆) ↔ (𝑆𝑉 ∧ ((𝑟( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) ∈ 𝑉 ∧ ∀𝑥𝑆 (((𝑟( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))))
6822, 35, 66, 67syl3anbrc 1341 . . 3 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) → ((𝑟( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) ∈ ( 𝑆))
6968ralrimivvva 3200 . 2 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ ( 𝑆)∀𝑧 ∈ ( 𝑆)((𝑟( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) ∈ ( 𝑆))
70 ocvlss.l . . 3 𝐿 = (LSubSp‘𝑊)
7113, 28, 1, 33, 27, 70islss 20817 . 2 (( 𝑆) ∈ 𝐿 ↔ (( 𝑆) ⊆ 𝑉 ∧ ( 𝑆) ≠ ∅ ∧ ∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ ( 𝑆)∀𝑧 ∈ ( 𝑆)((𝑟( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) ∈ ( 𝑆)))
724, 21, 69, 71syl3anbrc 1341 1 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( 𝑆) ∈ 𝐿)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099  wne 2937  wral 3058  wss 3947  c0 4323  cfv 6548  (class class class)co 7420  Basecbs 17179  +gcplusg 17232  .rcmulr 17233  Scalarcsca 17235   ·𝑠 cvsca 17236  ·𝑖cip 17237  0gc0g 17420  Grpcgrp 18889  Ringcrg 20172  LModclmod 20742  LSubSpclss 20814  PreHilcphl 21555  ocvcocv 21591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-2nd 7994  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-er 8724  df-en 8964  df-dom 8965  df-sdom 8966  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-2 12305  df-3 12306  df-4 12307  df-5 12308  df-6 12309  df-7 12310  df-8 12311  df-sets 17132  df-slot 17150  df-ndx 17162  df-base 17180  df-plusg 17245  df-sca 17248  df-vsca 17249  df-ip 17250  df-0g 17422  df-mgm 18599  df-sgrp 18678  df-mnd 18694  df-grp 18892  df-minusg 18893  df-ghm 19167  df-cmn 19736  df-abl 19737  df-mgp 20074  df-rng 20092  df-ur 20121  df-ring 20174  df-lmod 20744  df-lss 20815  df-lmhm 20906  df-lvec 20987  df-sra 21057  df-rgmod 21058  df-phl 21557  df-ocv 21594
This theorem is referenced by:  ocvin  21605  ocvlsp  21607  csslss  21622  pjdm2  21644  pjff  21645  pjf2  21647  pjfo  21648  ocvpj  21650  pjthlem2  25365  pjth  25366
  Copyright terms: Public domain W3C validator