MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ocvlss Structured version   Visualization version   GIF version

Theorem ocvlss 21076
Description: The orthocomplement of a subset is a linear subspace of the pre-Hilbert space. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
ocvss.v 𝑉 = (Base‘𝑊)
ocvss.o = (ocv‘𝑊)
ocvlss.l 𝐿 = (LSubSp‘𝑊)
Assertion
Ref Expression
ocvlss ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( 𝑆) ∈ 𝐿)

Proof of Theorem ocvlss
Dummy variables 𝑥 𝑟 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ocvss.v . . . 4 𝑉 = (Base‘𝑊)
2 ocvss.o . . . 4 = (ocv‘𝑊)
31, 2ocvss 21074 . . 3 ( 𝑆) ⊆ 𝑉
43a1i 11 . 2 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( 𝑆) ⊆ 𝑉)
5 simpr 485 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → 𝑆𝑉)
6 phllmod 21034 . . . . . 6 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
76adantr 481 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → 𝑊 ∈ LMod)
8 eqid 2736 . . . . . 6 (0g𝑊) = (0g𝑊)
91, 8lmod0vcl 20351 . . . . 5 (𝑊 ∈ LMod → (0g𝑊) ∈ 𝑉)
107, 9syl 17 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → (0g𝑊) ∈ 𝑉)
11 simpll 765 . . . . . 6 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ 𝑥𝑆) → 𝑊 ∈ PreHil)
125sselda 3944 . . . . . 6 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ 𝑥𝑆) → 𝑥𝑉)
13 eqid 2736 . . . . . . 7 (Scalar‘𝑊) = (Scalar‘𝑊)
14 eqid 2736 . . . . . . 7 (·𝑖𝑊) = (·𝑖𝑊)
15 eqid 2736 . . . . . . 7 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
1613, 14, 1, 15, 8ip0l 21040 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝑥𝑉) → ((0g𝑊)(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
1711, 12, 16syl2anc 584 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ 𝑥𝑆) → ((0g𝑊)(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
1817ralrimiva 3143 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ∀𝑥𝑆 ((0g𝑊)(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
191, 14, 13, 15, 2elocv 21072 . . . 4 ((0g𝑊) ∈ ( 𝑆) ↔ (𝑆𝑉 ∧ (0g𝑊) ∈ 𝑉 ∧ ∀𝑥𝑆 ((0g𝑊)(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))))
205, 10, 18, 19syl3anbrc 1343 . . 3 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → (0g𝑊) ∈ ( 𝑆))
2120ne0d 4295 . 2 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( 𝑆) ≠ ∅)
225adantr 481 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) → 𝑆𝑉)
237adantr 481 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) → 𝑊 ∈ LMod)
24 simpr1 1194 . . . . . 6 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) → 𝑟 ∈ (Base‘(Scalar‘𝑊)))
25 simpr2 1195 . . . . . . 7 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) → 𝑦 ∈ ( 𝑆))
263, 25sselid 3942 . . . . . 6 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) → 𝑦𝑉)
27 eqid 2736 . . . . . . 7 ( ·𝑠𝑊) = ( ·𝑠𝑊)
28 eqid 2736 . . . . . . 7 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
291, 13, 27, 28lmodvscl 20339 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝑉) → (𝑟( ·𝑠𝑊)𝑦) ∈ 𝑉)
3023, 24, 26, 29syl3anc 1371 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) → (𝑟( ·𝑠𝑊)𝑦) ∈ 𝑉)
31 simpr3 1196 . . . . . 6 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) → 𝑧 ∈ ( 𝑆))
323, 31sselid 3942 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) → 𝑧𝑉)
33 eqid 2736 . . . . . 6 (+g𝑊) = (+g𝑊)
341, 33lmodvacl 20336 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑟( ·𝑠𝑊)𝑦) ∈ 𝑉𝑧𝑉) → ((𝑟( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) ∈ 𝑉)
3523, 30, 32, 34syl3anc 1371 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) → ((𝑟( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) ∈ 𝑉)
3611adantlr 713 . . . . . . 7 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → 𝑊 ∈ PreHil)
3730adantr 481 . . . . . . 7 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → (𝑟( ·𝑠𝑊)𝑦) ∈ 𝑉)
3832adantr 481 . . . . . . 7 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → 𝑧𝑉)
3912adantlr 713 . . . . . . 7 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → 𝑥𝑉)
40 eqid 2736 . . . . . . . 8 (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊))
4113, 14, 1, 33, 40ipdir 21043 . . . . . . 7 ((𝑊 ∈ PreHil ∧ ((𝑟( ·𝑠𝑊)𝑦) ∈ 𝑉𝑧𝑉𝑥𝑉)) → (((𝑟( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)(·𝑖𝑊)𝑥) = (((𝑟( ·𝑠𝑊)𝑦)(·𝑖𝑊)𝑥)(+g‘(Scalar‘𝑊))(𝑧(·𝑖𝑊)𝑥)))
4236, 37, 38, 39, 41syl13anc 1372 . . . . . 6 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → (((𝑟( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)(·𝑖𝑊)𝑥) = (((𝑟( ·𝑠𝑊)𝑦)(·𝑖𝑊)𝑥)(+g‘(Scalar‘𝑊))(𝑧(·𝑖𝑊)𝑥)))
4324adantr 481 . . . . . . . . 9 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → 𝑟 ∈ (Base‘(Scalar‘𝑊)))
4426adantr 481 . . . . . . . . 9 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → 𝑦𝑉)
45 eqid 2736 . . . . . . . . . 10 (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊))
4613, 14, 1, 28, 27, 45ipass 21049 . . . . . . . . 9 ((𝑊 ∈ PreHil ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝑉𝑥𝑉)) → ((𝑟( ·𝑠𝑊)𝑦)(·𝑖𝑊)𝑥) = (𝑟(.r‘(Scalar‘𝑊))(𝑦(·𝑖𝑊)𝑥)))
4736, 43, 44, 39, 46syl13anc 1372 . . . . . . . 8 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → ((𝑟( ·𝑠𝑊)𝑦)(·𝑖𝑊)𝑥) = (𝑟(.r‘(Scalar‘𝑊))(𝑦(·𝑖𝑊)𝑥)))
481, 14, 13, 15, 2ocvi 21073 . . . . . . . . . 10 ((𝑦 ∈ ( 𝑆) ∧ 𝑥𝑆) → (𝑦(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
4925, 48sylan 580 . . . . . . . . 9 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → (𝑦(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
5049oveq2d 7373 . . . . . . . 8 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → (𝑟(.r‘(Scalar‘𝑊))(𝑦(·𝑖𝑊)𝑥)) = (𝑟(.r‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))))
5123adantr 481 . . . . . . . . . 10 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → 𝑊 ∈ LMod)
5213lmodring 20330 . . . . . . . . . 10 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Ring)
5351, 52syl 17 . . . . . . . . 9 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → (Scalar‘𝑊) ∈ Ring)
5428, 45, 15ringrz 20012 . . . . . . . . 9 (((Scalar‘𝑊) ∈ Ring ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) → (𝑟(.r‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))) = (0g‘(Scalar‘𝑊)))
5553, 43, 54syl2anc 584 . . . . . . . 8 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → (𝑟(.r‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))) = (0g‘(Scalar‘𝑊)))
5647, 50, 553eqtrd 2780 . . . . . . 7 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → ((𝑟( ·𝑠𝑊)𝑦)(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
571, 14, 13, 15, 2ocvi 21073 . . . . . . . 8 ((𝑧 ∈ ( 𝑆) ∧ 𝑥𝑆) → (𝑧(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
5831, 57sylan 580 . . . . . . 7 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → (𝑧(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
5956, 58oveq12d 7375 . . . . . 6 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → (((𝑟( ·𝑠𝑊)𝑦)(·𝑖𝑊)𝑥)(+g‘(Scalar‘𝑊))(𝑧(·𝑖𝑊)𝑥)) = ((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))))
6013lmodfgrp 20331 . . . . . . 7 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Grp)
6128, 15grpidcl 18778 . . . . . . . 8 ((Scalar‘𝑊) ∈ Grp → (0g‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)))
6228, 40, 15grplid 18780 . . . . . . . 8 (((Scalar‘𝑊) ∈ Grp ∧ (0g‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) → ((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))) = (0g‘(Scalar‘𝑊)))
6361, 62mpdan 685 . . . . . . 7 ((Scalar‘𝑊) ∈ Grp → ((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))) = (0g‘(Scalar‘𝑊)))
6451, 60, 633syl 18 . . . . . 6 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → ((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))) = (0g‘(Scalar‘𝑊)))
6542, 59, 643eqtrd 2780 . . . . 5 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → (((𝑟( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
6665ralrimiva 3143 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) → ∀𝑥𝑆 (((𝑟( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
671, 14, 13, 15, 2elocv 21072 . . . 4 (((𝑟( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) ∈ ( 𝑆) ↔ (𝑆𝑉 ∧ ((𝑟( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) ∈ 𝑉 ∧ ∀𝑥𝑆 (((𝑟( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))))
6822, 35, 66, 67syl3anbrc 1343 . . 3 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) → ((𝑟( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) ∈ ( 𝑆))
6968ralrimivvva 3200 . 2 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ ( 𝑆)∀𝑧 ∈ ( 𝑆)((𝑟( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) ∈ ( 𝑆))
70 ocvlss.l . . 3 𝐿 = (LSubSp‘𝑊)
7113, 28, 1, 33, 27, 70islss 20395 . 2 (( 𝑆) ∈ 𝐿 ↔ (( 𝑆) ⊆ 𝑉 ∧ ( 𝑆) ≠ ∅ ∧ ∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ ( 𝑆)∀𝑧 ∈ ( 𝑆)((𝑟( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) ∈ ( 𝑆)))
724, 21, 69, 71syl3anbrc 1343 1 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( 𝑆) ∈ 𝐿)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  wss 3910  c0 4282  cfv 6496  (class class class)co 7357  Basecbs 17083  +gcplusg 17133  .rcmulr 17134  Scalarcsca 17136   ·𝑠 cvsca 17137  ·𝑖cip 17138  0gc0g 17321  Grpcgrp 18748  Ringcrg 19964  LModclmod 20322  LSubSpclss 20392  PreHilcphl 21028  ocvcocv 21064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-plusg 17146  df-sca 17149  df-vsca 17150  df-ip 17151  df-0g 17323  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-grp 18751  df-ghm 19006  df-mgp 19897  df-ring 19966  df-lmod 20324  df-lss 20393  df-lmhm 20483  df-lvec 20564  df-sra 20633  df-rgmod 20634  df-phl 21030  df-ocv 21067
This theorem is referenced by:  ocvin  21078  ocvlsp  21080  csslss  21095  pjdm2  21117  pjff  21118  pjf2  21120  pjfo  21121  ocvpj  21123  pjthlem2  24802  pjth  24803
  Copyright terms: Public domain W3C validator