MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ocvlss Structured version   Visualization version   GIF version

Theorem ocvlss 20359
Description: The orthocomplement of a subset is a linear subspace of the pre-Hilbert space. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
ocvss.v 𝑉 = (Base‘𝑊)
ocvss.o = (ocv‘𝑊)
ocvlss.l 𝐿 = (LSubSp‘𝑊)
Assertion
Ref Expression
ocvlss ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( 𝑆) ∈ 𝐿)

Proof of Theorem ocvlss
Dummy variables 𝑥 𝑟 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ocvss.v . . . 4 𝑉 = (Base‘𝑊)
2 ocvss.o . . . 4 = (ocv‘𝑊)
31, 2ocvss 20357 . . 3 ( 𝑆) ⊆ 𝑉
43a1i 11 . 2 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( 𝑆) ⊆ 𝑉)
5 simpr 488 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → 𝑆𝑉)
6 phllmod 20317 . . . . . 6 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
76adantr 484 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → 𝑊 ∈ LMod)
8 eqid 2822 . . . . . 6 (0g𝑊) = (0g𝑊)
91, 8lmod0vcl 19654 . . . . 5 (𝑊 ∈ LMod → (0g𝑊) ∈ 𝑉)
107, 9syl 17 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → (0g𝑊) ∈ 𝑉)
11 simpll 766 . . . . . 6 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ 𝑥𝑆) → 𝑊 ∈ PreHil)
125sselda 3942 . . . . . 6 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ 𝑥𝑆) → 𝑥𝑉)
13 eqid 2822 . . . . . . 7 (Scalar‘𝑊) = (Scalar‘𝑊)
14 eqid 2822 . . . . . . 7 (·𝑖𝑊) = (·𝑖𝑊)
15 eqid 2822 . . . . . . 7 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
1613, 14, 1, 15, 8ip0l 20323 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝑥𝑉) → ((0g𝑊)(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
1711, 12, 16syl2anc 587 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ 𝑥𝑆) → ((0g𝑊)(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
1817ralrimiva 3174 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ∀𝑥𝑆 ((0g𝑊)(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
191, 14, 13, 15, 2elocv 20355 . . . 4 ((0g𝑊) ∈ ( 𝑆) ↔ (𝑆𝑉 ∧ (0g𝑊) ∈ 𝑉 ∧ ∀𝑥𝑆 ((0g𝑊)(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))))
205, 10, 18, 19syl3anbrc 1340 . . 3 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → (0g𝑊) ∈ ( 𝑆))
2120ne0d 4273 . 2 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( 𝑆) ≠ ∅)
225adantr 484 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) → 𝑆𝑉)
237adantr 484 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) → 𝑊 ∈ LMod)
24 simpr1 1191 . . . . . 6 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) → 𝑟 ∈ (Base‘(Scalar‘𝑊)))
25 simpr2 1192 . . . . . . 7 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) → 𝑦 ∈ ( 𝑆))
263, 25sseldi 3940 . . . . . 6 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) → 𝑦𝑉)
27 eqid 2822 . . . . . . 7 ( ·𝑠𝑊) = ( ·𝑠𝑊)
28 eqid 2822 . . . . . . 7 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
291, 13, 27, 28lmodvscl 19642 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝑉) → (𝑟( ·𝑠𝑊)𝑦) ∈ 𝑉)
3023, 24, 26, 29syl3anc 1368 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) → (𝑟( ·𝑠𝑊)𝑦) ∈ 𝑉)
31 simpr3 1193 . . . . . 6 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) → 𝑧 ∈ ( 𝑆))
323, 31sseldi 3940 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) → 𝑧𝑉)
33 eqid 2822 . . . . . 6 (+g𝑊) = (+g𝑊)
341, 33lmodvacl 19639 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑟( ·𝑠𝑊)𝑦) ∈ 𝑉𝑧𝑉) → ((𝑟( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) ∈ 𝑉)
3523, 30, 32, 34syl3anc 1368 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) → ((𝑟( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) ∈ 𝑉)
3611adantlr 714 . . . . . . 7 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → 𝑊 ∈ PreHil)
3730adantr 484 . . . . . . 7 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → (𝑟( ·𝑠𝑊)𝑦) ∈ 𝑉)
3832adantr 484 . . . . . . 7 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → 𝑧𝑉)
3912adantlr 714 . . . . . . 7 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → 𝑥𝑉)
40 eqid 2822 . . . . . . . 8 (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊))
4113, 14, 1, 33, 40ipdir 20326 . . . . . . 7 ((𝑊 ∈ PreHil ∧ ((𝑟( ·𝑠𝑊)𝑦) ∈ 𝑉𝑧𝑉𝑥𝑉)) → (((𝑟( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)(·𝑖𝑊)𝑥) = (((𝑟( ·𝑠𝑊)𝑦)(·𝑖𝑊)𝑥)(+g‘(Scalar‘𝑊))(𝑧(·𝑖𝑊)𝑥)))
4236, 37, 38, 39, 41syl13anc 1369 . . . . . 6 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → (((𝑟( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)(·𝑖𝑊)𝑥) = (((𝑟( ·𝑠𝑊)𝑦)(·𝑖𝑊)𝑥)(+g‘(Scalar‘𝑊))(𝑧(·𝑖𝑊)𝑥)))
4324adantr 484 . . . . . . . . 9 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → 𝑟 ∈ (Base‘(Scalar‘𝑊)))
4426adantr 484 . . . . . . . . 9 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → 𝑦𝑉)
45 eqid 2822 . . . . . . . . . 10 (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊))
4613, 14, 1, 28, 27, 45ipass 20332 . . . . . . . . 9 ((𝑊 ∈ PreHil ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝑉𝑥𝑉)) → ((𝑟( ·𝑠𝑊)𝑦)(·𝑖𝑊)𝑥) = (𝑟(.r‘(Scalar‘𝑊))(𝑦(·𝑖𝑊)𝑥)))
4736, 43, 44, 39, 46syl13anc 1369 . . . . . . . 8 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → ((𝑟( ·𝑠𝑊)𝑦)(·𝑖𝑊)𝑥) = (𝑟(.r‘(Scalar‘𝑊))(𝑦(·𝑖𝑊)𝑥)))
481, 14, 13, 15, 2ocvi 20356 . . . . . . . . . 10 ((𝑦 ∈ ( 𝑆) ∧ 𝑥𝑆) → (𝑦(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
4925, 48sylan 583 . . . . . . . . 9 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → (𝑦(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
5049oveq2d 7156 . . . . . . . 8 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → (𝑟(.r‘(Scalar‘𝑊))(𝑦(·𝑖𝑊)𝑥)) = (𝑟(.r‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))))
5123adantr 484 . . . . . . . . . 10 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → 𝑊 ∈ LMod)
5213lmodring 19633 . . . . . . . . . 10 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Ring)
5351, 52syl 17 . . . . . . . . 9 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → (Scalar‘𝑊) ∈ Ring)
5428, 45, 15ringrz 19332 . . . . . . . . 9 (((Scalar‘𝑊) ∈ Ring ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) → (𝑟(.r‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))) = (0g‘(Scalar‘𝑊)))
5553, 43, 54syl2anc 587 . . . . . . . 8 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → (𝑟(.r‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))) = (0g‘(Scalar‘𝑊)))
5647, 50, 553eqtrd 2861 . . . . . . 7 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → ((𝑟( ·𝑠𝑊)𝑦)(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
571, 14, 13, 15, 2ocvi 20356 . . . . . . . 8 ((𝑧 ∈ ( 𝑆) ∧ 𝑥𝑆) → (𝑧(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
5831, 57sylan 583 . . . . . . 7 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → (𝑧(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
5956, 58oveq12d 7158 . . . . . 6 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → (((𝑟( ·𝑠𝑊)𝑦)(·𝑖𝑊)𝑥)(+g‘(Scalar‘𝑊))(𝑧(·𝑖𝑊)𝑥)) = ((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))))
6013lmodfgrp 19634 . . . . . . 7 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Grp)
6128, 15grpidcl 18122 . . . . . . . 8 ((Scalar‘𝑊) ∈ Grp → (0g‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)))
6228, 40, 15grplid 18124 . . . . . . . 8 (((Scalar‘𝑊) ∈ Grp ∧ (0g‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) → ((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))) = (0g‘(Scalar‘𝑊)))
6361, 62mpdan 686 . . . . . . 7 ((Scalar‘𝑊) ∈ Grp → ((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))) = (0g‘(Scalar‘𝑊)))
6451, 60, 633syl 18 . . . . . 6 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → ((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))) = (0g‘(Scalar‘𝑊)))
6542, 59, 643eqtrd 2861 . . . . 5 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) ∧ 𝑥𝑆) → (((𝑟( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
6665ralrimiva 3174 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) → ∀𝑥𝑆 (((𝑟( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
671, 14, 13, 15, 2elocv 20355 . . . 4 (((𝑟( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) ∈ ( 𝑆) ↔ (𝑆𝑉 ∧ ((𝑟( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) ∈ 𝑉 ∧ ∀𝑥𝑆 (((𝑟( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))))
6822, 35, 66, 67syl3anbrc 1340 . . 3 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ ( 𝑆) ∧ 𝑧 ∈ ( 𝑆))) → ((𝑟( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) ∈ ( 𝑆))
6968ralrimivvva 3182 . 2 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ ( 𝑆)∀𝑧 ∈ ( 𝑆)((𝑟( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) ∈ ( 𝑆))
70 ocvlss.l . . 3 𝐿 = (LSubSp‘𝑊)
7113, 28, 1, 33, 27, 70islss 19697 . 2 (( 𝑆) ∈ 𝐿 ↔ (( 𝑆) ⊆ 𝑉 ∧ ( 𝑆) ≠ ∅ ∧ ∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ ( 𝑆)∀𝑧 ∈ ( 𝑆)((𝑟( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) ∈ ( 𝑆)))
724, 21, 69, 71syl3anbrc 1340 1 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( 𝑆) ∈ 𝐿)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2114  wne 3011  wral 3130  wss 3908  c0 4265  cfv 6334  (class class class)co 7140  Basecbs 16474  +gcplusg 16556  .rcmulr 16557  Scalarcsca 16559   ·𝑠 cvsca 16560  ·𝑖cip 16561  0gc0g 16704  Grpcgrp 18094  Ringcrg 19288  LModclmod 19625  LSubSpclss 19694  PreHilcphl 20311  ocvcocv 20347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-ndx 16477  df-slot 16478  df-base 16480  df-sets 16481  df-plusg 16569  df-sca 16572  df-vsca 16573  df-ip 16574  df-0g 16706  df-mgm 17843  df-sgrp 17892  df-mnd 17903  df-grp 18097  df-ghm 18347  df-mgp 19231  df-ring 19290  df-lmod 19627  df-lss 19695  df-lmhm 19785  df-lvec 19866  df-sra 19935  df-rgmod 19936  df-phl 20313  df-ocv 20350
This theorem is referenced by:  ocvin  20361  ocvlsp  20363  csslss  20378  pjdm2  20398  pjff  20399  pjf2  20401  pjfo  20402  ocvpj  20404  pjthlem2  24040  pjth  24041
  Copyright terms: Public domain W3C validator