MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ocvocv Structured version   Visualization version   GIF version

Theorem ocvocv 21625
Description: A set is contained in its double orthocomplement. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
ocvss.v 𝑉 = (Base‘𝑊)
ocvss.o = (ocv‘𝑊)
Assertion
Ref Expression
ocvocv ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → 𝑆 ⊆ ( ‘( 𝑆)))

Proof of Theorem ocvocv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ocvss.v . . . . . 6 𝑉 = (Base‘𝑊)
2 ocvss.o . . . . . 6 = (ocv‘𝑊)
31, 2ocvss 21624 . . . . 5 ( 𝑆) ⊆ 𝑉
43a1i 11 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ 𝑥𝑆) → ( 𝑆) ⊆ 𝑉)
5 simpr 483 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → 𝑆𝑉)
65sselda 3976 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ 𝑥𝑆) → 𝑥𝑉)
7 eqid 2725 . . . . . . . . 9 (·𝑖𝑊) = (·𝑖𝑊)
8 eqid 2725 . . . . . . . . 9 (Scalar‘𝑊) = (Scalar‘𝑊)
9 eqid 2725 . . . . . . . . 9 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
101, 7, 8, 9, 2ocvi 21623 . . . . . . . 8 ((𝑦 ∈ ( 𝑆) ∧ 𝑥𝑆) → (𝑦(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
1110ancoms 457 . . . . . . 7 ((𝑥𝑆𝑦 ∈ ( 𝑆)) → (𝑦(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
1211adantll 712 . . . . . 6 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ 𝑥𝑆) ∧ 𝑦 ∈ ( 𝑆)) → (𝑦(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
13 simplll 773 . . . . . . 7 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ 𝑥𝑆) ∧ 𝑦 ∈ ( 𝑆)) → 𝑊 ∈ PreHil)
144sselda 3976 . . . . . . 7 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ 𝑥𝑆) ∧ 𝑦 ∈ ( 𝑆)) → 𝑦𝑉)
156adantr 479 . . . . . . 7 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ 𝑥𝑆) ∧ 𝑦 ∈ ( 𝑆)) → 𝑥𝑉)
168, 7, 1, 9iporthcom 21589 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝑦𝑉𝑥𝑉) → ((𝑦(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)) ↔ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
1713, 14, 15, 16syl3anc 1368 . . . . . 6 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ 𝑥𝑆) ∧ 𝑦 ∈ ( 𝑆)) → ((𝑦(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)) ↔ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
1812, 17mpbid 231 . . . . 5 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ 𝑥𝑆) ∧ 𝑦 ∈ ( 𝑆)) → (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))
1918ralrimiva 3135 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ 𝑥𝑆) → ∀𝑦 ∈ ( 𝑆)(𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))
201, 7, 8, 9, 2elocv 21622 . . . 4 (𝑥 ∈ ( ‘( 𝑆)) ↔ (( 𝑆) ⊆ 𝑉𝑥𝑉 ∧ ∀𝑦 ∈ ( 𝑆)(𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
214, 6, 19, 20syl3anbrc 1340 . . 3 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ 𝑥𝑆) → 𝑥 ∈ ( ‘( 𝑆)))
2221ex 411 . 2 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → (𝑥𝑆𝑥 ∈ ( ‘( 𝑆))))
2322ssrdv 3982 1 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → 𝑆 ⊆ ( ‘( 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wral 3050  wss 3944  cfv 6549  (class class class)co 7419  Basecbs 17188  Scalarcsca 17244  ·𝑖cip 17246  0gc0g 17429  PreHilcphl 21578  ocvcocv 21614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11201  ax-resscn 11202  ax-1cn 11203  ax-icn 11204  ax-addcl 11205  ax-addrcl 11206  ax-mulcl 11207  ax-mulrcl 11208  ax-mulcom 11209  ax-addass 11210  ax-mulass 11211  ax-distr 11212  ax-i2m1 11213  ax-1ne0 11214  ax-1rid 11215  ax-rnegex 11216  ax-rrecex 11217  ax-cnre 11218  ax-pre-lttri 11219  ax-pre-lttrn 11220  ax-pre-ltadd 11221  ax-pre-mulgt0 11222
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-tpos 8232  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11287  df-mnf 11288  df-xr 11289  df-ltxr 11290  df-le 11291  df-sub 11483  df-neg 11484  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17189  df-plusg 17254  df-mulr 17255  df-sca 17257  df-vsca 17258  df-ip 17259  df-0g 17431  df-mgm 18608  df-sgrp 18687  df-mnd 18703  df-mhm 18748  df-grp 18906  df-ghm 19181  df-mgp 20092  df-ur 20139  df-ring 20192  df-oppr 20290  df-rhm 20428  df-staf 20742  df-srng 20743  df-lmod 20762  df-lmhm 20924  df-lvec 21005  df-sra 21075  df-rgmod 21076  df-phl 21580  df-ocv 21617
This theorem is referenced by:  ocvsscon  21629  ocvlsp  21630  iscss2  21640  ocvcss  21641  mrccss  21648
  Copyright terms: Public domain W3C validator