![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ocvocv | Structured version Visualization version GIF version |
Description: A set is contained in its double orthocomplement. (Contributed by Mario Carneiro, 13-Oct-2015.) |
Ref | Expression |
---|---|
ocvss.v | ⊢ 𝑉 = (Base‘𝑊) |
ocvss.o | ⊢ ⊥ = (ocv‘𝑊) |
Ref | Expression |
---|---|
ocvocv | ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → 𝑆 ⊆ ( ⊥ ‘( ⊥ ‘𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ocvss.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
2 | ocvss.o | . . . . . 6 ⊢ ⊥ = (ocv‘𝑊) | |
3 | 1, 2 | ocvss 21624 | . . . . 5 ⊢ ( ⊥ ‘𝑆) ⊆ 𝑉 |
4 | 3 | a1i 11 | . . . 4 ⊢ (((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) ∧ 𝑥 ∈ 𝑆) → ( ⊥ ‘𝑆) ⊆ 𝑉) |
5 | simpr 483 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → 𝑆 ⊆ 𝑉) | |
6 | 5 | sselda 3976 | . . . 4 ⊢ (((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑉) |
7 | eqid 2725 | . . . . . . . . 9 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
8 | eqid 2725 | . . . . . . . . 9 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
9 | eqid 2725 | . . . . . . . . 9 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
10 | 1, 7, 8, 9, 2 | ocvi 21623 | . . . . . . . 8 ⊢ ((𝑦 ∈ ( ⊥ ‘𝑆) ∧ 𝑥 ∈ 𝑆) → (𝑦(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊))) |
11 | 10 | ancoms 457 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ ( ⊥ ‘𝑆)) → (𝑦(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊))) |
12 | 11 | adantll 712 | . . . . . 6 ⊢ ((((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ ( ⊥ ‘𝑆)) → (𝑦(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊))) |
13 | simplll 773 | . . . . . . 7 ⊢ ((((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ ( ⊥ ‘𝑆)) → 𝑊 ∈ PreHil) | |
14 | 4 | sselda 3976 | . . . . . . 7 ⊢ ((((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ ( ⊥ ‘𝑆)) → 𝑦 ∈ 𝑉) |
15 | 6 | adantr 479 | . . . . . . 7 ⊢ ((((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ ( ⊥ ‘𝑆)) → 𝑥 ∈ 𝑉) |
16 | 8, 7, 1, 9 | iporthcom 21589 | . . . . . . 7 ⊢ ((𝑊 ∈ PreHil ∧ 𝑦 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉) → ((𝑦(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊)) ↔ (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) |
17 | 13, 14, 15, 16 | syl3anc 1368 | . . . . . 6 ⊢ ((((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ ( ⊥ ‘𝑆)) → ((𝑦(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊)) ↔ (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) |
18 | 12, 17 | mpbid 231 | . . . . 5 ⊢ ((((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ ( ⊥ ‘𝑆)) → (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) |
19 | 18 | ralrimiva 3135 | . . . 4 ⊢ (((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) ∧ 𝑥 ∈ 𝑆) → ∀𝑦 ∈ ( ⊥ ‘𝑆)(𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) |
20 | 1, 7, 8, 9, 2 | elocv 21622 | . . . 4 ⊢ (𝑥 ∈ ( ⊥ ‘( ⊥ ‘𝑆)) ↔ (( ⊥ ‘𝑆) ⊆ 𝑉 ∧ 𝑥 ∈ 𝑉 ∧ ∀𝑦 ∈ ( ⊥ ‘𝑆)(𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) |
21 | 4, 6, 19, 20 | syl3anbrc 1340 | . . 3 ⊢ (((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ ( ⊥ ‘( ⊥ ‘𝑆))) |
22 | 21 | ex 411 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → (𝑥 ∈ 𝑆 → 𝑥 ∈ ( ⊥ ‘( ⊥ ‘𝑆)))) |
23 | 22 | ssrdv 3982 | 1 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → 𝑆 ⊆ ( ⊥ ‘( ⊥ ‘𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∀wral 3050 ⊆ wss 3944 ‘cfv 6549 (class class class)co 7419 Basecbs 17188 Scalarcsca 17244 ·𝑖cip 17246 0gc0g 17429 PreHilcphl 21578 ocvcocv 21614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11201 ax-resscn 11202 ax-1cn 11203 ax-icn 11204 ax-addcl 11205 ax-addrcl 11206 ax-mulcl 11207 ax-mulrcl 11208 ax-mulcom 11209 ax-addass 11210 ax-mulass 11211 ax-distr 11212 ax-i2m1 11213 ax-1ne0 11214 ax-1rid 11215 ax-rnegex 11216 ax-rrecex 11217 ax-cnre 11218 ax-pre-lttri 11219 ax-pre-lttrn 11220 ax-pre-ltadd 11221 ax-pre-mulgt0 11222 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-tpos 8232 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11287 df-mnf 11288 df-xr 11289 df-ltxr 11290 df-le 11291 df-sub 11483 df-neg 11484 df-nn 12251 df-2 12313 df-3 12314 df-4 12315 df-5 12316 df-6 12317 df-7 12318 df-8 12319 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17189 df-plusg 17254 df-mulr 17255 df-sca 17257 df-vsca 17258 df-ip 17259 df-0g 17431 df-mgm 18608 df-sgrp 18687 df-mnd 18703 df-mhm 18748 df-grp 18906 df-ghm 19181 df-mgp 20092 df-ur 20139 df-ring 20192 df-oppr 20290 df-rhm 20428 df-staf 20742 df-srng 20743 df-lmod 20762 df-lmhm 20924 df-lvec 21005 df-sra 21075 df-rgmod 21076 df-phl 21580 df-ocv 21617 |
This theorem is referenced by: ocvsscon 21629 ocvlsp 21630 iscss2 21640 ocvcss 21641 mrccss 21648 |
Copyright terms: Public domain | W3C validator |