| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ocvocv | Structured version Visualization version GIF version | ||
| Description: A set is contained in its double orthocomplement. (Contributed by Mario Carneiro, 13-Oct-2015.) |
| Ref | Expression |
|---|---|
| ocvss.v | ⊢ 𝑉 = (Base‘𝑊) |
| ocvss.o | ⊢ ⊥ = (ocv‘𝑊) |
| Ref | Expression |
|---|---|
| ocvocv | ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → 𝑆 ⊆ ( ⊥ ‘( ⊥ ‘𝑆))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ocvss.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | ocvss.o | . . . . . 6 ⊢ ⊥ = (ocv‘𝑊) | |
| 3 | 1, 2 | ocvss 21561 | . . . . 5 ⊢ ( ⊥ ‘𝑆) ⊆ 𝑉 |
| 4 | 3 | a1i 11 | . . . 4 ⊢ (((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) ∧ 𝑥 ∈ 𝑆) → ( ⊥ ‘𝑆) ⊆ 𝑉) |
| 5 | simpr 484 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → 𝑆 ⊆ 𝑉) | |
| 6 | 5 | sselda 3931 | . . . 4 ⊢ (((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑉) |
| 7 | eqid 2729 | . . . . . . . . 9 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
| 8 | eqid 2729 | . . . . . . . . 9 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 9 | eqid 2729 | . . . . . . . . 9 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
| 10 | 1, 7, 8, 9, 2 | ocvi 21560 | . . . . . . . 8 ⊢ ((𝑦 ∈ ( ⊥ ‘𝑆) ∧ 𝑥 ∈ 𝑆) → (𝑦(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊))) |
| 11 | 10 | ancoms 458 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ ( ⊥ ‘𝑆)) → (𝑦(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊))) |
| 12 | 11 | adantll 714 | . . . . . 6 ⊢ ((((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ ( ⊥ ‘𝑆)) → (𝑦(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊))) |
| 13 | simplll 774 | . . . . . . 7 ⊢ ((((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ ( ⊥ ‘𝑆)) → 𝑊 ∈ PreHil) | |
| 14 | 4 | sselda 3931 | . . . . . . 7 ⊢ ((((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ ( ⊥ ‘𝑆)) → 𝑦 ∈ 𝑉) |
| 15 | 6 | adantr 480 | . . . . . . 7 ⊢ ((((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ ( ⊥ ‘𝑆)) → 𝑥 ∈ 𝑉) |
| 16 | 8, 7, 1, 9 | iporthcom 21526 | . . . . . . 7 ⊢ ((𝑊 ∈ PreHil ∧ 𝑦 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉) → ((𝑦(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊)) ↔ (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) |
| 17 | 13, 14, 15, 16 | syl3anc 1373 | . . . . . 6 ⊢ ((((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ ( ⊥ ‘𝑆)) → ((𝑦(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊)) ↔ (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) |
| 18 | 12, 17 | mpbid 232 | . . . . 5 ⊢ ((((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ ( ⊥ ‘𝑆)) → (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) |
| 19 | 18 | ralrimiva 3121 | . . . 4 ⊢ (((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) ∧ 𝑥 ∈ 𝑆) → ∀𝑦 ∈ ( ⊥ ‘𝑆)(𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) |
| 20 | 1, 7, 8, 9, 2 | elocv 21559 | . . . 4 ⊢ (𝑥 ∈ ( ⊥ ‘( ⊥ ‘𝑆)) ↔ (( ⊥ ‘𝑆) ⊆ 𝑉 ∧ 𝑥 ∈ 𝑉 ∧ ∀𝑦 ∈ ( ⊥ ‘𝑆)(𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) |
| 21 | 4, 6, 19, 20 | syl3anbrc 1344 | . . 3 ⊢ (((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ ( ⊥ ‘( ⊥ ‘𝑆))) |
| 22 | 21 | ex 412 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → (𝑥 ∈ 𝑆 → 𝑥 ∈ ( ⊥ ‘( ⊥ ‘𝑆)))) |
| 23 | 22 | ssrdv 3937 | 1 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → 𝑆 ⊆ ( ⊥ ‘( ⊥ ‘𝑆))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3899 ‘cfv 6476 (class class class)co 7340 Basecbs 17107 Scalarcsca 17151 ·𝑖cip 17153 0gc0g 17330 PreHilcphl 21515 ocvcocv 21551 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5214 ax-sep 5231 ax-nul 5241 ax-pow 5300 ax-pr 5367 ax-un 7662 ax-cnex 11053 ax-resscn 11054 ax-1cn 11055 ax-icn 11056 ax-addcl 11057 ax-addrcl 11058 ax-mulcl 11059 ax-mulrcl 11060 ax-mulcom 11061 ax-addass 11062 ax-mulass 11063 ax-distr 11064 ax-i2m1 11065 ax-1ne0 11066 ax-1rid 11067 ax-rnegex 11068 ax-rrecex 11069 ax-cnre 11070 ax-pre-lttri 11071 ax-pre-lttrn 11072 ax-pre-ltadd 11073 ax-pre-mulgt0 11074 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3393 df-v 3435 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4940 df-br 5089 df-opab 5151 df-mpt 5170 df-tr 5196 df-id 5508 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5566 df-we 5568 df-xp 5619 df-rel 5620 df-cnv 5621 df-co 5622 df-dm 5623 df-rn 5624 df-res 5625 df-ima 5626 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7297 df-ov 7343 df-oprab 7344 df-mpo 7345 df-om 7791 df-1st 7915 df-2nd 7916 df-tpos 8150 df-frecs 8205 df-wrecs 8236 df-recs 8285 df-rdg 8323 df-er 8616 df-map 8746 df-en 8864 df-dom 8865 df-sdom 8866 df-pnf 11139 df-mnf 11140 df-xr 11141 df-ltxr 11142 df-le 11143 df-sub 11337 df-neg 11338 df-nn 12117 df-2 12179 df-3 12180 df-4 12181 df-5 12182 df-6 12183 df-7 12184 df-8 12185 df-sets 17062 df-slot 17080 df-ndx 17092 df-base 17108 df-plusg 17161 df-mulr 17162 df-sca 17164 df-vsca 17165 df-ip 17166 df-0g 17332 df-mgm 18501 df-sgrp 18580 df-mnd 18596 df-mhm 18644 df-grp 18802 df-ghm 19079 df-mgp 20013 df-ur 20054 df-ring 20107 df-oppr 20209 df-rhm 20344 df-staf 20708 df-srng 20709 df-lmod 20749 df-lmhm 20910 df-lvec 20991 df-sra 21061 df-rgmod 21062 df-phl 21517 df-ocv 21554 |
| This theorem is referenced by: ocvsscon 21566 ocvlsp 21567 iscss2 21577 ocvcss 21578 mrccss 21585 |
| Copyright terms: Public domain | W3C validator |