![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ocvocv | Structured version Visualization version GIF version |
Description: A set is contained in its double orthocomplement. (Contributed by Mario Carneiro, 13-Oct-2015.) |
Ref | Expression |
---|---|
ocvss.v | ⊢ 𝑉 = (Base‘𝑊) |
ocvss.o | ⊢ ⊥ = (ocv‘𝑊) |
Ref | Expression |
---|---|
ocvocv | ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → 𝑆 ⊆ ( ⊥ ‘( ⊥ ‘𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ocvss.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
2 | ocvss.o | . . . . . 6 ⊢ ⊥ = (ocv‘𝑊) | |
3 | 1, 2 | ocvss 20413 | . . . . 5 ⊢ ( ⊥ ‘𝑆) ⊆ 𝑉 |
4 | 3 | a1i 11 | . . . 4 ⊢ (((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) ∧ 𝑥 ∈ 𝑆) → ( ⊥ ‘𝑆) ⊆ 𝑉) |
5 | simpr 479 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → 𝑆 ⊆ 𝑉) | |
6 | 5 | sselda 3820 | . . . 4 ⊢ (((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑉) |
7 | eqid 2777 | . . . . . . . . 9 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
8 | eqid 2777 | . . . . . . . . 9 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
9 | eqid 2777 | . . . . . . . . 9 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
10 | 1, 7, 8, 9, 2 | ocvi 20412 | . . . . . . . 8 ⊢ ((𝑦 ∈ ( ⊥ ‘𝑆) ∧ 𝑥 ∈ 𝑆) → (𝑦(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊))) |
11 | 10 | ancoms 452 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ ( ⊥ ‘𝑆)) → (𝑦(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊))) |
12 | 11 | adantll 704 | . . . . . 6 ⊢ ((((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ ( ⊥ ‘𝑆)) → (𝑦(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊))) |
13 | simplll 765 | . . . . . . 7 ⊢ ((((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ ( ⊥ ‘𝑆)) → 𝑊 ∈ PreHil) | |
14 | 4 | sselda 3820 | . . . . . . 7 ⊢ ((((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ ( ⊥ ‘𝑆)) → 𝑦 ∈ 𝑉) |
15 | 6 | adantr 474 | . . . . . . 7 ⊢ ((((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ ( ⊥ ‘𝑆)) → 𝑥 ∈ 𝑉) |
16 | 8, 7, 1, 9 | iporthcom 20378 | . . . . . . 7 ⊢ ((𝑊 ∈ PreHil ∧ 𝑦 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉) → ((𝑦(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊)) ↔ (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) |
17 | 13, 14, 15, 16 | syl3anc 1439 | . . . . . 6 ⊢ ((((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ ( ⊥ ‘𝑆)) → ((𝑦(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊)) ↔ (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) |
18 | 12, 17 | mpbid 224 | . . . . 5 ⊢ ((((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ ( ⊥ ‘𝑆)) → (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) |
19 | 18 | ralrimiva 3147 | . . . 4 ⊢ (((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) ∧ 𝑥 ∈ 𝑆) → ∀𝑦 ∈ ( ⊥ ‘𝑆)(𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) |
20 | 1, 7, 8, 9, 2 | elocv 20411 | . . . 4 ⊢ (𝑥 ∈ ( ⊥ ‘( ⊥ ‘𝑆)) ↔ (( ⊥ ‘𝑆) ⊆ 𝑉 ∧ 𝑥 ∈ 𝑉 ∧ ∀𝑦 ∈ ( ⊥ ‘𝑆)(𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) |
21 | 4, 6, 19, 20 | syl3anbrc 1400 | . . 3 ⊢ (((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ ( ⊥ ‘( ⊥ ‘𝑆))) |
22 | 21 | ex 403 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → (𝑥 ∈ 𝑆 → 𝑥 ∈ ( ⊥ ‘( ⊥ ‘𝑆)))) |
23 | 22 | ssrdv 3826 | 1 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → 𝑆 ⊆ ( ⊥ ‘( ⊥ ‘𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2106 ∀wral 3089 ⊆ wss 3791 ‘cfv 6135 (class class class)co 6922 Basecbs 16255 Scalarcsca 16341 ·𝑖cip 16343 0gc0g 16486 PreHilcphl 20367 ocvcocv 20403 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-pss 3807 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-tpos 7634 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-er 8026 df-map 8142 df-en 8242 df-dom 8243 df-sdom 8244 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-nn 11375 df-2 11438 df-3 11439 df-4 11440 df-5 11441 df-6 11442 df-7 11443 df-8 11444 df-ndx 16258 df-slot 16259 df-base 16261 df-sets 16262 df-plusg 16351 df-mulr 16352 df-sca 16354 df-vsca 16355 df-ip 16356 df-0g 16488 df-mgm 17628 df-sgrp 17670 df-mnd 17681 df-mhm 17721 df-grp 17812 df-ghm 18042 df-mgp 18877 df-ur 18889 df-ring 18936 df-oppr 19010 df-rnghom 19104 df-staf 19237 df-srng 19238 df-lmod 19257 df-lmhm 19417 df-lvec 19498 df-sra 19569 df-rgmod 19570 df-phl 20369 df-ocv 20406 |
This theorem is referenced by: ocvsscon 20418 ocvlsp 20419 iscss2 20429 ocvcss 20430 mrccss 20437 |
Copyright terms: Public domain | W3C validator |