Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ocvocv | Structured version Visualization version GIF version |
Description: A set is contained in its double orthocomplement. (Contributed by Mario Carneiro, 13-Oct-2015.) |
Ref | Expression |
---|---|
ocvss.v | ⊢ 𝑉 = (Base‘𝑊) |
ocvss.o | ⊢ ⊥ = (ocv‘𝑊) |
Ref | Expression |
---|---|
ocvocv | ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → 𝑆 ⊆ ( ⊥ ‘( ⊥ ‘𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ocvss.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
2 | ocvss.o | . . . . . 6 ⊢ ⊥ = (ocv‘𝑊) | |
3 | 1, 2 | ocvss 20985 | . . . . 5 ⊢ ( ⊥ ‘𝑆) ⊆ 𝑉 |
4 | 3 | a1i 11 | . . . 4 ⊢ (((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) ∧ 𝑥 ∈ 𝑆) → ( ⊥ ‘𝑆) ⊆ 𝑉) |
5 | simpr 486 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → 𝑆 ⊆ 𝑉) | |
6 | 5 | sselda 3939 | . . . 4 ⊢ (((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑉) |
7 | eqid 2737 | . . . . . . . . 9 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
8 | eqid 2737 | . . . . . . . . 9 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
9 | eqid 2737 | . . . . . . . . 9 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
10 | 1, 7, 8, 9, 2 | ocvi 20984 | . . . . . . . 8 ⊢ ((𝑦 ∈ ( ⊥ ‘𝑆) ∧ 𝑥 ∈ 𝑆) → (𝑦(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊))) |
11 | 10 | ancoms 460 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ ( ⊥ ‘𝑆)) → (𝑦(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊))) |
12 | 11 | adantll 712 | . . . . . 6 ⊢ ((((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ ( ⊥ ‘𝑆)) → (𝑦(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊))) |
13 | simplll 773 | . . . . . . 7 ⊢ ((((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ ( ⊥ ‘𝑆)) → 𝑊 ∈ PreHil) | |
14 | 4 | sselda 3939 | . . . . . . 7 ⊢ ((((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ ( ⊥ ‘𝑆)) → 𝑦 ∈ 𝑉) |
15 | 6 | adantr 482 | . . . . . . 7 ⊢ ((((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ ( ⊥ ‘𝑆)) → 𝑥 ∈ 𝑉) |
16 | 8, 7, 1, 9 | iporthcom 20950 | . . . . . . 7 ⊢ ((𝑊 ∈ PreHil ∧ 𝑦 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉) → ((𝑦(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊)) ↔ (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) |
17 | 13, 14, 15, 16 | syl3anc 1371 | . . . . . 6 ⊢ ((((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ ( ⊥ ‘𝑆)) → ((𝑦(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊)) ↔ (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) |
18 | 12, 17 | mpbid 231 | . . . . 5 ⊢ ((((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ ( ⊥ ‘𝑆)) → (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) |
19 | 18 | ralrimiva 3141 | . . . 4 ⊢ (((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) ∧ 𝑥 ∈ 𝑆) → ∀𝑦 ∈ ( ⊥ ‘𝑆)(𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) |
20 | 1, 7, 8, 9, 2 | elocv 20983 | . . . 4 ⊢ (𝑥 ∈ ( ⊥ ‘( ⊥ ‘𝑆)) ↔ (( ⊥ ‘𝑆) ⊆ 𝑉 ∧ 𝑥 ∈ 𝑉 ∧ ∀𝑦 ∈ ( ⊥ ‘𝑆)(𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)))) |
21 | 4, 6, 19, 20 | syl3anbrc 1343 | . . 3 ⊢ (((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ ( ⊥ ‘( ⊥ ‘𝑆))) |
22 | 21 | ex 414 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → (𝑥 ∈ 𝑆 → 𝑥 ∈ ( ⊥ ‘( ⊥ ‘𝑆)))) |
23 | 22 | ssrdv 3945 | 1 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → 𝑆 ⊆ ( ⊥ ‘( ⊥ ‘𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1541 ∈ wcel 2106 ∀wral 3062 ⊆ wss 3905 ‘cfv 6488 (class class class)co 7346 Basecbs 17014 Scalarcsca 17067 ·𝑖cip 17069 0gc0g 17252 PreHilcphl 20939 ocvcocv 20975 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5237 ax-sep 5251 ax-nul 5258 ax-pow 5315 ax-pr 5379 ax-un 7659 ax-cnex 11037 ax-resscn 11038 ax-1cn 11039 ax-icn 11040 ax-addcl 11041 ax-addrcl 11042 ax-mulcl 11043 ax-mulrcl 11044 ax-mulcom 11045 ax-addass 11046 ax-mulass 11047 ax-distr 11048 ax-i2m1 11049 ax-1ne0 11050 ax-1rid 11051 ax-rnegex 11052 ax-rrecex 11053 ax-cnre 11054 ax-pre-lttri 11055 ax-pre-lttrn 11056 ax-pre-ltadd 11057 ax-pre-mulgt0 11058 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3351 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3735 df-csb 3851 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3924 df-nul 4278 df-if 4482 df-pw 4557 df-sn 4582 df-pr 4584 df-op 4588 df-uni 4861 df-iun 4951 df-br 5101 df-opab 5163 df-mpt 5184 df-tr 5218 df-id 5525 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5582 df-we 5584 df-xp 5633 df-rel 5634 df-cnv 5635 df-co 5636 df-dm 5637 df-rn 5638 df-res 5639 df-ima 5640 df-pred 6246 df-ord 6313 df-on 6314 df-lim 6315 df-suc 6316 df-iota 6440 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7302 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7790 df-2nd 7909 df-tpos 8121 df-frecs 8176 df-wrecs 8207 df-recs 8281 df-rdg 8320 df-er 8578 df-map 8697 df-en 8814 df-dom 8815 df-sdom 8816 df-pnf 11121 df-mnf 11122 df-xr 11123 df-ltxr 11124 df-le 11125 df-sub 11317 df-neg 11318 df-nn 12084 df-2 12146 df-3 12147 df-4 12148 df-5 12149 df-6 12150 df-7 12151 df-8 12152 df-sets 16967 df-slot 16985 df-ndx 16997 df-base 17015 df-plusg 17077 df-mulr 17078 df-sca 17080 df-vsca 17081 df-ip 17082 df-0g 17254 df-mgm 18428 df-sgrp 18477 df-mnd 18488 df-mhm 18532 df-grp 18681 df-ghm 18933 df-mgp 19820 df-ur 19837 df-ring 19884 df-oppr 19961 df-rnghom 20058 df-staf 20215 df-srng 20216 df-lmod 20235 df-lmhm 20394 df-lvec 20475 df-sra 20544 df-rgmod 20545 df-phl 20941 df-ocv 20978 |
This theorem is referenced by: ocvsscon 20990 ocvlsp 20991 iscss2 21001 ocvcss 21002 mrccss 21009 |
Copyright terms: Public domain | W3C validator |