MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ocvocv Structured version   Visualization version   GIF version

Theorem ocvocv 20986
Description: A set is contained in its double orthocomplement. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
ocvss.v 𝑉 = (Base‘𝑊)
ocvss.o = (ocv‘𝑊)
Assertion
Ref Expression
ocvocv ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → 𝑆 ⊆ ( ‘( 𝑆)))

Proof of Theorem ocvocv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ocvss.v . . . . . 6 𝑉 = (Base‘𝑊)
2 ocvss.o . . . . . 6 = (ocv‘𝑊)
31, 2ocvss 20985 . . . . 5 ( 𝑆) ⊆ 𝑉
43a1i 11 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ 𝑥𝑆) → ( 𝑆) ⊆ 𝑉)
5 simpr 486 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → 𝑆𝑉)
65sselda 3939 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ 𝑥𝑆) → 𝑥𝑉)
7 eqid 2737 . . . . . . . . 9 (·𝑖𝑊) = (·𝑖𝑊)
8 eqid 2737 . . . . . . . . 9 (Scalar‘𝑊) = (Scalar‘𝑊)
9 eqid 2737 . . . . . . . . 9 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
101, 7, 8, 9, 2ocvi 20984 . . . . . . . 8 ((𝑦 ∈ ( 𝑆) ∧ 𝑥𝑆) → (𝑦(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
1110ancoms 460 . . . . . . 7 ((𝑥𝑆𝑦 ∈ ( 𝑆)) → (𝑦(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
1211adantll 712 . . . . . 6 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ 𝑥𝑆) ∧ 𝑦 ∈ ( 𝑆)) → (𝑦(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
13 simplll 773 . . . . . . 7 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ 𝑥𝑆) ∧ 𝑦 ∈ ( 𝑆)) → 𝑊 ∈ PreHil)
144sselda 3939 . . . . . . 7 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ 𝑥𝑆) ∧ 𝑦 ∈ ( 𝑆)) → 𝑦𝑉)
156adantr 482 . . . . . . 7 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ 𝑥𝑆) ∧ 𝑦 ∈ ( 𝑆)) → 𝑥𝑉)
168, 7, 1, 9iporthcom 20950 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝑦𝑉𝑥𝑉) → ((𝑦(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)) ↔ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
1713, 14, 15, 16syl3anc 1371 . . . . . 6 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ 𝑥𝑆) ∧ 𝑦 ∈ ( 𝑆)) → ((𝑦(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)) ↔ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
1812, 17mpbid 231 . . . . 5 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ 𝑥𝑆) ∧ 𝑦 ∈ ( 𝑆)) → (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))
1918ralrimiva 3141 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ 𝑥𝑆) → ∀𝑦 ∈ ( 𝑆)(𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))
201, 7, 8, 9, 2elocv 20983 . . . 4 (𝑥 ∈ ( ‘( 𝑆)) ↔ (( 𝑆) ⊆ 𝑉𝑥𝑉 ∧ ∀𝑦 ∈ ( 𝑆)(𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
214, 6, 19, 20syl3anbrc 1343 . . 3 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ 𝑥𝑆) → 𝑥 ∈ ( ‘( 𝑆)))
2221ex 414 . 2 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → (𝑥𝑆𝑥 ∈ ( ‘( 𝑆))))
2322ssrdv 3945 1 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → 𝑆 ⊆ ( ‘( 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1541  wcel 2106  wral 3062  wss 3905  cfv 6488  (class class class)co 7346  Basecbs 17014  Scalarcsca 17067  ·𝑖cip 17069  0gc0g 17252  PreHilcphl 20939  ocvcocv 20975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5237  ax-sep 5251  ax-nul 5258  ax-pow 5315  ax-pr 5379  ax-un 7659  ax-cnex 11037  ax-resscn 11038  ax-1cn 11039  ax-icn 11040  ax-addcl 11041  ax-addrcl 11042  ax-mulcl 11043  ax-mulrcl 11044  ax-mulcom 11045  ax-addass 11046  ax-mulass 11047  ax-distr 11048  ax-i2m1 11049  ax-1ne0 11050  ax-1rid 11051  ax-rnegex 11052  ax-rrecex 11053  ax-cnre 11054  ax-pre-lttri 11055  ax-pre-lttrn 11056  ax-pre-ltadd 11057  ax-pre-mulgt0 11058
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3735  df-csb 3851  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3924  df-nul 4278  df-if 4482  df-pw 4557  df-sn 4582  df-pr 4584  df-op 4588  df-uni 4861  df-iun 4951  df-br 5101  df-opab 5163  df-mpt 5184  df-tr 5218  df-id 5525  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5582  df-we 5584  df-xp 5633  df-rel 5634  df-cnv 5635  df-co 5636  df-dm 5637  df-rn 5638  df-res 5639  df-ima 5640  df-pred 6246  df-ord 6313  df-on 6314  df-lim 6315  df-suc 6316  df-iota 6440  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7302  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7790  df-2nd 7909  df-tpos 8121  df-frecs 8176  df-wrecs 8207  df-recs 8281  df-rdg 8320  df-er 8578  df-map 8697  df-en 8814  df-dom 8815  df-sdom 8816  df-pnf 11121  df-mnf 11122  df-xr 11123  df-ltxr 11124  df-le 11125  df-sub 11317  df-neg 11318  df-nn 12084  df-2 12146  df-3 12147  df-4 12148  df-5 12149  df-6 12150  df-7 12151  df-8 12152  df-sets 16967  df-slot 16985  df-ndx 16997  df-base 17015  df-plusg 17077  df-mulr 17078  df-sca 17080  df-vsca 17081  df-ip 17082  df-0g 17254  df-mgm 18428  df-sgrp 18477  df-mnd 18488  df-mhm 18532  df-grp 18681  df-ghm 18933  df-mgp 19820  df-ur 19837  df-ring 19884  df-oppr 19961  df-rnghom 20058  df-staf 20215  df-srng 20216  df-lmod 20235  df-lmhm 20394  df-lvec 20475  df-sra 20544  df-rgmod 20545  df-phl 20941  df-ocv 20978
This theorem is referenced by:  ocvsscon  20990  ocvlsp  20991  iscss2  21001  ocvcss  21002  mrccss  21009
  Copyright terms: Public domain W3C validator