| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | elfvdm 6943 | . . . . 5
⊢ (𝐴 ∈ ( ⊥ ‘𝑆) → 𝑆 ∈ dom ⊥ ) | 
| 2 |  | n0i 4340 | . . . . . . . . 9
⊢ (𝐴 ∈ ( ⊥ ‘𝑆) → ¬ ( ⊥
‘𝑆) =
∅) | 
| 3 |  | ocvfval.o | . . . . . . . . . . . 12
⊢  ⊥ =
(ocv‘𝑊) | 
| 4 |  | fvprc 6898 | . . . . . . . . . . . 12
⊢ (¬
𝑊 ∈ V →
(ocv‘𝑊) =
∅) | 
| 5 | 3, 4 | eqtrid 2789 | . . . . . . . . . . 11
⊢ (¬
𝑊 ∈ V → ⊥ =
∅) | 
| 6 | 5 | fveq1d 6908 | . . . . . . . . . 10
⊢ (¬
𝑊 ∈ V → ( ⊥
‘𝑆) =
(∅‘𝑆)) | 
| 7 |  | 0fv 6950 | . . . . . . . . . 10
⊢
(∅‘𝑆) =
∅ | 
| 8 | 6, 7 | eqtrdi 2793 | . . . . . . . . 9
⊢ (¬
𝑊 ∈ V → ( ⊥
‘𝑆) =
∅) | 
| 9 | 2, 8 | nsyl2 141 | . . . . . . . 8
⊢ (𝐴 ∈ ( ⊥ ‘𝑆) → 𝑊 ∈ V) | 
| 10 |  | ocvfval.v | . . . . . . . . 9
⊢ 𝑉 = (Base‘𝑊) | 
| 11 |  | ocvfval.i | . . . . . . . . 9
⊢  , =
(·𝑖‘𝑊) | 
| 12 |  | ocvfval.f | . . . . . . . . 9
⊢ 𝐹 = (Scalar‘𝑊) | 
| 13 |  | ocvfval.z | . . . . . . . . 9
⊢  0 =
(0g‘𝐹) | 
| 14 | 10, 11, 12, 13, 3 | ocvfval 21684 | . . . . . . . 8
⊢ (𝑊 ∈ V → ⊥ =
(𝑠 ∈ 𝒫 𝑉 ↦ {𝑦 ∈ 𝑉 ∣ ∀𝑥 ∈ 𝑠 (𝑦 , 𝑥) = 0 })) | 
| 15 | 9, 14 | syl 17 | . . . . . . 7
⊢ (𝐴 ∈ ( ⊥ ‘𝑆) → ⊥ = (𝑠 ∈ 𝒫 𝑉 ↦ {𝑦 ∈ 𝑉 ∣ ∀𝑥 ∈ 𝑠 (𝑦 , 𝑥) = 0 })) | 
| 16 | 15 | dmeqd 5916 | . . . . . 6
⊢ (𝐴 ∈ ( ⊥ ‘𝑆) → dom ⊥ = dom (𝑠 ∈ 𝒫 𝑉 ↦ {𝑦 ∈ 𝑉 ∣ ∀𝑥 ∈ 𝑠 (𝑦 , 𝑥) = 0 })) | 
| 17 | 10 | fvexi 6920 | . . . . . . . 8
⊢ 𝑉 ∈ V | 
| 18 | 17 | rabex 5339 | . . . . . . 7
⊢ {𝑦 ∈ 𝑉 ∣ ∀𝑥 ∈ 𝑠 (𝑦 , 𝑥) = 0 } ∈
V | 
| 19 |  | eqid 2737 | . . . . . . 7
⊢ (𝑠 ∈ 𝒫 𝑉 ↦ {𝑦 ∈ 𝑉 ∣ ∀𝑥 ∈ 𝑠 (𝑦 , 𝑥) = 0 }) = (𝑠 ∈ 𝒫 𝑉 ↦ {𝑦 ∈ 𝑉 ∣ ∀𝑥 ∈ 𝑠 (𝑦 , 𝑥) = 0 }) | 
| 20 | 18, 19 | dmmpti 6712 | . . . . . 6
⊢ dom
(𝑠 ∈ 𝒫 𝑉 ↦ {𝑦 ∈ 𝑉 ∣ ∀𝑥 ∈ 𝑠 (𝑦 , 𝑥) = 0 }) = 𝒫 𝑉 | 
| 21 | 16, 20 | eqtrdi 2793 | . . . . 5
⊢ (𝐴 ∈ ( ⊥ ‘𝑆) → dom ⊥ = 𝒫 𝑉) | 
| 22 | 1, 21 | eleqtrd 2843 | . . . 4
⊢ (𝐴 ∈ ( ⊥ ‘𝑆) → 𝑆 ∈ 𝒫 𝑉) | 
| 23 | 22 | elpwid 4609 | . . 3
⊢ (𝐴 ∈ ( ⊥ ‘𝑆) → 𝑆 ⊆ 𝑉) | 
| 24 | 10, 11, 12, 13, 3 | ocvval 21685 | . . . . 5
⊢ (𝑆 ⊆ 𝑉 → ( ⊥ ‘𝑆) = {𝑦 ∈ 𝑉 ∣ ∀𝑥 ∈ 𝑆 (𝑦 , 𝑥) = 0 }) | 
| 25 | 24 | eleq2d 2827 | . . . 4
⊢ (𝑆 ⊆ 𝑉 → (𝐴 ∈ ( ⊥ ‘𝑆) ↔ 𝐴 ∈ {𝑦 ∈ 𝑉 ∣ ∀𝑥 ∈ 𝑆 (𝑦 , 𝑥) = 0 })) | 
| 26 |  | oveq1 7438 | . . . . . . 7
⊢ (𝑦 = 𝐴 → (𝑦 , 𝑥) = (𝐴 , 𝑥)) | 
| 27 | 26 | eqeq1d 2739 | . . . . . 6
⊢ (𝑦 = 𝐴 → ((𝑦 , 𝑥) = 0 ↔ (𝐴 , 𝑥) = 0 )) | 
| 28 | 27 | ralbidv 3178 | . . . . 5
⊢ (𝑦 = 𝐴 → (∀𝑥 ∈ 𝑆 (𝑦 , 𝑥) = 0 ↔ ∀𝑥 ∈ 𝑆 (𝐴 , 𝑥) = 0 )) | 
| 29 | 28 | elrab 3692 | . . . 4
⊢ (𝐴 ∈ {𝑦 ∈ 𝑉 ∣ ∀𝑥 ∈ 𝑆 (𝑦 , 𝑥) = 0 } ↔ (𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝑆 (𝐴 , 𝑥) = 0 )) | 
| 30 | 25, 29 | bitrdi 287 | . . 3
⊢ (𝑆 ⊆ 𝑉 → (𝐴 ∈ ( ⊥ ‘𝑆) ↔ (𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝑆 (𝐴 , 𝑥) = 0 ))) | 
| 31 | 23, 30 | biadanii 822 | . 2
⊢ (𝐴 ∈ ( ⊥ ‘𝑆) ↔ (𝑆 ⊆ 𝑉 ∧ (𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝑆 (𝐴 , 𝑥) = 0 ))) | 
| 32 |  | 3anass 1095 | . 2
⊢ ((𝑆 ⊆ 𝑉 ∧ 𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝑆 (𝐴 , 𝑥) = 0 ) ↔ (𝑆 ⊆ 𝑉 ∧ (𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝑆 (𝐴 , 𝑥) = 0 ))) | 
| 33 | 31, 32 | bitr4i 278 | 1
⊢ (𝐴 ∈ ( ⊥ ‘𝑆) ↔ (𝑆 ⊆ 𝑉 ∧ 𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝑆 (𝐴 , 𝑥) = 0 )) |