MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmcss Structured version   Visualization version   GIF version

Theorem lsmcss 21236
Description: A subset of a pre-Hilbert space whose double orthocomplement has a projection decomposition is a closed subspace. This is the core of the proof that a topologically closed subspace is algebraically closed in a Hilbert space. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
lsmcss.c 𝐢 = (ClSubSpβ€˜π‘Š)
lsmcss.j 𝑉 = (Baseβ€˜π‘Š)
lsmcss.o βŠ₯ = (ocvβ€˜π‘Š)
lsmcss.p βŠ• = (LSSumβ€˜π‘Š)
lsmcss.1 (πœ‘ β†’ π‘Š ∈ PreHil)
lsmcss.2 (πœ‘ β†’ 𝑆 βŠ† 𝑉)
lsmcss.3 (πœ‘ β†’ ( βŠ₯ β€˜( βŠ₯ β€˜π‘†)) βŠ† (𝑆 βŠ• ( βŠ₯ β€˜π‘†)))
Assertion
Ref Expression
lsmcss (πœ‘ β†’ 𝑆 ∈ 𝐢)

Proof of Theorem lsmcss
Dummy variables π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsmcss.3 . . . . . . 7 (πœ‘ β†’ ( βŠ₯ β€˜( βŠ₯ β€˜π‘†)) βŠ† (𝑆 βŠ• ( βŠ₯ β€˜π‘†)))
21sseld 3980 . . . . . 6 (πœ‘ β†’ (π‘₯ ∈ ( βŠ₯ β€˜( βŠ₯ β€˜π‘†)) β†’ π‘₯ ∈ (𝑆 βŠ• ( βŠ₯ β€˜π‘†))))
3 lsmcss.1 . . . . . . . 8 (πœ‘ β†’ π‘Š ∈ PreHil)
4 phllmod 21174 . . . . . . . 8 (π‘Š ∈ PreHil β†’ π‘Š ∈ LMod)
53, 4syl 17 . . . . . . 7 (πœ‘ β†’ π‘Š ∈ LMod)
6 lsmcss.2 . . . . . . 7 (πœ‘ β†’ 𝑆 βŠ† 𝑉)
7 lsmcss.j . . . . . . . . 9 𝑉 = (Baseβ€˜π‘Š)
8 lsmcss.o . . . . . . . . 9 βŠ₯ = (ocvβ€˜π‘Š)
97, 8ocvss 21214 . . . . . . . 8 ( βŠ₯ β€˜π‘†) βŠ† 𝑉
109a1i 11 . . . . . . 7 (πœ‘ β†’ ( βŠ₯ β€˜π‘†) βŠ† 𝑉)
11 eqid 2732 . . . . . . . 8 (+gβ€˜π‘Š) = (+gβ€˜π‘Š)
12 lsmcss.p . . . . . . . 8 βŠ• = (LSSumβ€˜π‘Š)
137, 11, 12lsmelvalx 19502 . . . . . . 7 ((π‘Š ∈ LMod ∧ 𝑆 βŠ† 𝑉 ∧ ( βŠ₯ β€˜π‘†) βŠ† 𝑉) β†’ (π‘₯ ∈ (𝑆 βŠ• ( βŠ₯ β€˜π‘†)) ↔ βˆƒπ‘¦ ∈ 𝑆 βˆƒπ‘§ ∈ ( βŠ₯ β€˜π‘†)π‘₯ = (𝑦(+gβ€˜π‘Š)𝑧)))
145, 6, 10, 13syl3anc 1371 . . . . . 6 (πœ‘ β†’ (π‘₯ ∈ (𝑆 βŠ• ( βŠ₯ β€˜π‘†)) ↔ βˆƒπ‘¦ ∈ 𝑆 βˆƒπ‘§ ∈ ( βŠ₯ β€˜π‘†)π‘₯ = (𝑦(+gβ€˜π‘Š)𝑧)))
152, 14sylibd 238 . . . . 5 (πœ‘ β†’ (π‘₯ ∈ ( βŠ₯ β€˜( βŠ₯ β€˜π‘†)) β†’ βˆƒπ‘¦ ∈ 𝑆 βˆƒπ‘§ ∈ ( βŠ₯ β€˜π‘†)π‘₯ = (𝑦(+gβ€˜π‘Š)𝑧)))
163ad2antrr 724 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ ( βŠ₯ β€˜π‘†))) ∧ (𝑦(+gβ€˜π‘Š)𝑧) ∈ ( βŠ₯ β€˜( βŠ₯ β€˜π‘†))) β†’ π‘Š ∈ PreHil)
176ad2antrr 724 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ ( βŠ₯ β€˜π‘†))) ∧ (𝑦(+gβ€˜π‘Š)𝑧) ∈ ( βŠ₯ β€˜( βŠ₯ β€˜π‘†))) β†’ 𝑆 βŠ† 𝑉)
18 simplrl 775 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ ( βŠ₯ β€˜π‘†))) ∧ (𝑦(+gβ€˜π‘Š)𝑧) ∈ ( βŠ₯ β€˜( βŠ₯ β€˜π‘†))) β†’ 𝑦 ∈ 𝑆)
1917, 18sseldd 3982 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ ( βŠ₯ β€˜π‘†))) ∧ (𝑦(+gβ€˜π‘Š)𝑧) ∈ ( βŠ₯ β€˜( βŠ₯ β€˜π‘†))) β†’ 𝑦 ∈ 𝑉)
20 simplrr 776 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ ( βŠ₯ β€˜π‘†))) ∧ (𝑦(+gβ€˜π‘Š)𝑧) ∈ ( βŠ₯ β€˜( βŠ₯ β€˜π‘†))) β†’ 𝑧 ∈ ( βŠ₯ β€˜π‘†))
219, 20sselid 3979 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ ( βŠ₯ β€˜π‘†))) ∧ (𝑦(+gβ€˜π‘Š)𝑧) ∈ ( βŠ₯ β€˜( βŠ₯ β€˜π‘†))) β†’ 𝑧 ∈ 𝑉)
22 eqid 2732 . . . . . . . . . . . . . . . 16 (Scalarβ€˜π‘Š) = (Scalarβ€˜π‘Š)
23 eqid 2732 . . . . . . . . . . . . . . . 16 (Β·π‘–β€˜π‘Š) = (Β·π‘–β€˜π‘Š)
24 eqid 2732 . . . . . . . . . . . . . . . 16 (+gβ€˜(Scalarβ€˜π‘Š)) = (+gβ€˜(Scalarβ€˜π‘Š))
2522, 23, 7, 11, 24ipdir 21183 . . . . . . . . . . . . . . 15 ((π‘Š ∈ PreHil ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) β†’ ((𝑦(+gβ€˜π‘Š)𝑧)(Β·π‘–β€˜π‘Š)𝑧) = ((𝑦(Β·π‘–β€˜π‘Š)𝑧)(+gβ€˜(Scalarβ€˜π‘Š))(𝑧(Β·π‘–β€˜π‘Š)𝑧)))
2616, 19, 21, 21, 25syl13anc 1372 . . . . . . . . . . . . . 14 (((πœ‘ ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ ( βŠ₯ β€˜π‘†))) ∧ (𝑦(+gβ€˜π‘Š)𝑧) ∈ ( βŠ₯ β€˜( βŠ₯ β€˜π‘†))) β†’ ((𝑦(+gβ€˜π‘Š)𝑧)(Β·π‘–β€˜π‘Š)𝑧) = ((𝑦(Β·π‘–β€˜π‘Š)𝑧)(+gβ€˜(Scalarβ€˜π‘Š))(𝑧(Β·π‘–β€˜π‘Š)𝑧)))
27 eqid 2732 . . . . . . . . . . . . . . . . . 18 (0gβ€˜(Scalarβ€˜π‘Š)) = (0gβ€˜(Scalarβ€˜π‘Š))
287, 23, 22, 27, 8ocvi 21213 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ( βŠ₯ β€˜π‘†) ∧ 𝑦 ∈ 𝑆) β†’ (𝑧(Β·π‘–β€˜π‘Š)𝑦) = (0gβ€˜(Scalarβ€˜π‘Š)))
2920, 18, 28syl2anc 584 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ ( βŠ₯ β€˜π‘†))) ∧ (𝑦(+gβ€˜π‘Š)𝑧) ∈ ( βŠ₯ β€˜( βŠ₯ β€˜π‘†))) β†’ (𝑧(Β·π‘–β€˜π‘Š)𝑦) = (0gβ€˜(Scalarβ€˜π‘Š)))
3022, 23, 7, 27iporthcom 21179 . . . . . . . . . . . . . . . . 17 ((π‘Š ∈ PreHil ∧ 𝑧 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) β†’ ((𝑧(Β·π‘–β€˜π‘Š)𝑦) = (0gβ€˜(Scalarβ€˜π‘Š)) ↔ (𝑦(Β·π‘–β€˜π‘Š)𝑧) = (0gβ€˜(Scalarβ€˜π‘Š))))
3116, 21, 19, 30syl3anc 1371 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ ( βŠ₯ β€˜π‘†))) ∧ (𝑦(+gβ€˜π‘Š)𝑧) ∈ ( βŠ₯ β€˜( βŠ₯ β€˜π‘†))) β†’ ((𝑧(Β·π‘–β€˜π‘Š)𝑦) = (0gβ€˜(Scalarβ€˜π‘Š)) ↔ (𝑦(Β·π‘–β€˜π‘Š)𝑧) = (0gβ€˜(Scalarβ€˜π‘Š))))
3229, 31mpbid 231 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ ( βŠ₯ β€˜π‘†))) ∧ (𝑦(+gβ€˜π‘Š)𝑧) ∈ ( βŠ₯ β€˜( βŠ₯ β€˜π‘†))) β†’ (𝑦(Β·π‘–β€˜π‘Š)𝑧) = (0gβ€˜(Scalarβ€˜π‘Š)))
3332oveq1d 7420 . . . . . . . . . . . . . 14 (((πœ‘ ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ ( βŠ₯ β€˜π‘†))) ∧ (𝑦(+gβ€˜π‘Š)𝑧) ∈ ( βŠ₯ β€˜( βŠ₯ β€˜π‘†))) β†’ ((𝑦(Β·π‘–β€˜π‘Š)𝑧)(+gβ€˜(Scalarβ€˜π‘Š))(𝑧(Β·π‘–β€˜π‘Š)𝑧)) = ((0gβ€˜(Scalarβ€˜π‘Š))(+gβ€˜(Scalarβ€˜π‘Š))(𝑧(Β·π‘–β€˜π‘Š)𝑧)))
3416, 4syl 17 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ ( βŠ₯ β€˜π‘†))) ∧ (𝑦(+gβ€˜π‘Š)𝑧) ∈ ( βŠ₯ β€˜( βŠ₯ β€˜π‘†))) β†’ π‘Š ∈ LMod)
3522lmodfgrp 20472 . . . . . . . . . . . . . . . 16 (π‘Š ∈ LMod β†’ (Scalarβ€˜π‘Š) ∈ Grp)
3634, 35syl 17 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ ( βŠ₯ β€˜π‘†))) ∧ (𝑦(+gβ€˜π‘Š)𝑧) ∈ ( βŠ₯ β€˜( βŠ₯ β€˜π‘†))) β†’ (Scalarβ€˜π‘Š) ∈ Grp)
37 eqid 2732 . . . . . . . . . . . . . . . . 17 (Baseβ€˜(Scalarβ€˜π‘Š)) = (Baseβ€˜(Scalarβ€˜π‘Š))
3822, 23, 7, 37ipcl 21177 . . . . . . . . . . . . . . . 16 ((π‘Š ∈ PreHil ∧ 𝑧 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) β†’ (𝑧(Β·π‘–β€˜π‘Š)𝑧) ∈ (Baseβ€˜(Scalarβ€˜π‘Š)))
3916, 21, 21, 38syl3anc 1371 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ ( βŠ₯ β€˜π‘†))) ∧ (𝑦(+gβ€˜π‘Š)𝑧) ∈ ( βŠ₯ β€˜( βŠ₯ β€˜π‘†))) β†’ (𝑧(Β·π‘–β€˜π‘Š)𝑧) ∈ (Baseβ€˜(Scalarβ€˜π‘Š)))
4037, 24, 27grplid 18848 . . . . . . . . . . . . . . 15 (((Scalarβ€˜π‘Š) ∈ Grp ∧ (𝑧(Β·π‘–β€˜π‘Š)𝑧) ∈ (Baseβ€˜(Scalarβ€˜π‘Š))) β†’ ((0gβ€˜(Scalarβ€˜π‘Š))(+gβ€˜(Scalarβ€˜π‘Š))(𝑧(Β·π‘–β€˜π‘Š)𝑧)) = (𝑧(Β·π‘–β€˜π‘Š)𝑧))
4136, 39, 40syl2anc 584 . . . . . . . . . . . . . 14 (((πœ‘ ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ ( βŠ₯ β€˜π‘†))) ∧ (𝑦(+gβ€˜π‘Š)𝑧) ∈ ( βŠ₯ β€˜( βŠ₯ β€˜π‘†))) β†’ ((0gβ€˜(Scalarβ€˜π‘Š))(+gβ€˜(Scalarβ€˜π‘Š))(𝑧(Β·π‘–β€˜π‘Š)𝑧)) = (𝑧(Β·π‘–β€˜π‘Š)𝑧))
4226, 33, 413eqtrd 2776 . . . . . . . . . . . . 13 (((πœ‘ ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ ( βŠ₯ β€˜π‘†))) ∧ (𝑦(+gβ€˜π‘Š)𝑧) ∈ ( βŠ₯ β€˜( βŠ₯ β€˜π‘†))) β†’ ((𝑦(+gβ€˜π‘Š)𝑧)(Β·π‘–β€˜π‘Š)𝑧) = (𝑧(Β·π‘–β€˜π‘Š)𝑧))
43 simpr 485 . . . . . . . . . . . . . 14 (((πœ‘ ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ ( βŠ₯ β€˜π‘†))) ∧ (𝑦(+gβ€˜π‘Š)𝑧) ∈ ( βŠ₯ β€˜( βŠ₯ β€˜π‘†))) β†’ (𝑦(+gβ€˜π‘Š)𝑧) ∈ ( βŠ₯ β€˜( βŠ₯ β€˜π‘†)))
447, 23, 22, 27, 8ocvi 21213 . . . . . . . . . . . . . 14 (((𝑦(+gβ€˜π‘Š)𝑧) ∈ ( βŠ₯ β€˜( βŠ₯ β€˜π‘†)) ∧ 𝑧 ∈ ( βŠ₯ β€˜π‘†)) β†’ ((𝑦(+gβ€˜π‘Š)𝑧)(Β·π‘–β€˜π‘Š)𝑧) = (0gβ€˜(Scalarβ€˜π‘Š)))
4543, 20, 44syl2anc 584 . . . . . . . . . . . . 13 (((πœ‘ ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ ( βŠ₯ β€˜π‘†))) ∧ (𝑦(+gβ€˜π‘Š)𝑧) ∈ ( βŠ₯ β€˜( βŠ₯ β€˜π‘†))) β†’ ((𝑦(+gβ€˜π‘Š)𝑧)(Β·π‘–β€˜π‘Š)𝑧) = (0gβ€˜(Scalarβ€˜π‘Š)))
4642, 45eqtr3d 2774 . . . . . . . . . . . 12 (((πœ‘ ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ ( βŠ₯ β€˜π‘†))) ∧ (𝑦(+gβ€˜π‘Š)𝑧) ∈ ( βŠ₯ β€˜( βŠ₯ β€˜π‘†))) β†’ (𝑧(Β·π‘–β€˜π‘Š)𝑧) = (0gβ€˜(Scalarβ€˜π‘Š)))
47 eqid 2732 . . . . . . . . . . . . . 14 (0gβ€˜π‘Š) = (0gβ€˜π‘Š)
4822, 23, 7, 27, 47ipeq0 21182 . . . . . . . . . . . . 13 ((π‘Š ∈ PreHil ∧ 𝑧 ∈ 𝑉) β†’ ((𝑧(Β·π‘–β€˜π‘Š)𝑧) = (0gβ€˜(Scalarβ€˜π‘Š)) ↔ 𝑧 = (0gβ€˜π‘Š)))
4916, 21, 48syl2anc 584 . . . . . . . . . . . 12 (((πœ‘ ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ ( βŠ₯ β€˜π‘†))) ∧ (𝑦(+gβ€˜π‘Š)𝑧) ∈ ( βŠ₯ β€˜( βŠ₯ β€˜π‘†))) β†’ ((𝑧(Β·π‘–β€˜π‘Š)𝑧) = (0gβ€˜(Scalarβ€˜π‘Š)) ↔ 𝑧 = (0gβ€˜π‘Š)))
5046, 49mpbid 231 . . . . . . . . . . 11 (((πœ‘ ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ ( βŠ₯ β€˜π‘†))) ∧ (𝑦(+gβ€˜π‘Š)𝑧) ∈ ( βŠ₯ β€˜( βŠ₯ β€˜π‘†))) β†’ 𝑧 = (0gβ€˜π‘Š))
5150oveq2d 7421 . . . . . . . . . 10 (((πœ‘ ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ ( βŠ₯ β€˜π‘†))) ∧ (𝑦(+gβ€˜π‘Š)𝑧) ∈ ( βŠ₯ β€˜( βŠ₯ β€˜π‘†))) β†’ (𝑦(+gβ€˜π‘Š)𝑧) = (𝑦(+gβ€˜π‘Š)(0gβ€˜π‘Š)))
52 lmodgrp 20470 . . . . . . . . . . . . 13 (π‘Š ∈ LMod β†’ π‘Š ∈ Grp)
535, 52syl 17 . . . . . . . . . . . 12 (πœ‘ β†’ π‘Š ∈ Grp)
5453ad2antrr 724 . . . . . . . . . . 11 (((πœ‘ ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ ( βŠ₯ β€˜π‘†))) ∧ (𝑦(+gβ€˜π‘Š)𝑧) ∈ ( βŠ₯ β€˜( βŠ₯ β€˜π‘†))) β†’ π‘Š ∈ Grp)
557, 11, 47grprid 18849 . . . . . . . . . . 11 ((π‘Š ∈ Grp ∧ 𝑦 ∈ 𝑉) β†’ (𝑦(+gβ€˜π‘Š)(0gβ€˜π‘Š)) = 𝑦)
5654, 19, 55syl2anc 584 . . . . . . . . . 10 (((πœ‘ ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ ( βŠ₯ β€˜π‘†))) ∧ (𝑦(+gβ€˜π‘Š)𝑧) ∈ ( βŠ₯ β€˜( βŠ₯ β€˜π‘†))) β†’ (𝑦(+gβ€˜π‘Š)(0gβ€˜π‘Š)) = 𝑦)
5751, 56eqtrd 2772 . . . . . . . . 9 (((πœ‘ ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ ( βŠ₯ β€˜π‘†))) ∧ (𝑦(+gβ€˜π‘Š)𝑧) ∈ ( βŠ₯ β€˜( βŠ₯ β€˜π‘†))) β†’ (𝑦(+gβ€˜π‘Š)𝑧) = 𝑦)
5857, 18eqeltrd 2833 . . . . . . . 8 (((πœ‘ ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ ( βŠ₯ β€˜π‘†))) ∧ (𝑦(+gβ€˜π‘Š)𝑧) ∈ ( βŠ₯ β€˜( βŠ₯ β€˜π‘†))) β†’ (𝑦(+gβ€˜π‘Š)𝑧) ∈ 𝑆)
5958ex 413 . . . . . . 7 ((πœ‘ ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ ( βŠ₯ β€˜π‘†))) β†’ ((𝑦(+gβ€˜π‘Š)𝑧) ∈ ( βŠ₯ β€˜( βŠ₯ β€˜π‘†)) β†’ (𝑦(+gβ€˜π‘Š)𝑧) ∈ 𝑆))
60 eleq1 2821 . . . . . . . 8 (π‘₯ = (𝑦(+gβ€˜π‘Š)𝑧) β†’ (π‘₯ ∈ ( βŠ₯ β€˜( βŠ₯ β€˜π‘†)) ↔ (𝑦(+gβ€˜π‘Š)𝑧) ∈ ( βŠ₯ β€˜( βŠ₯ β€˜π‘†))))
61 eleq1 2821 . . . . . . . 8 (π‘₯ = (𝑦(+gβ€˜π‘Š)𝑧) β†’ (π‘₯ ∈ 𝑆 ↔ (𝑦(+gβ€˜π‘Š)𝑧) ∈ 𝑆))
6260, 61imbi12d 344 . . . . . . 7 (π‘₯ = (𝑦(+gβ€˜π‘Š)𝑧) β†’ ((π‘₯ ∈ ( βŠ₯ β€˜( βŠ₯ β€˜π‘†)) β†’ π‘₯ ∈ 𝑆) ↔ ((𝑦(+gβ€˜π‘Š)𝑧) ∈ ( βŠ₯ β€˜( βŠ₯ β€˜π‘†)) β†’ (𝑦(+gβ€˜π‘Š)𝑧) ∈ 𝑆)))
6359, 62syl5ibrcom 246 . . . . . 6 ((πœ‘ ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ ( βŠ₯ β€˜π‘†))) β†’ (π‘₯ = (𝑦(+gβ€˜π‘Š)𝑧) β†’ (π‘₯ ∈ ( βŠ₯ β€˜( βŠ₯ β€˜π‘†)) β†’ π‘₯ ∈ 𝑆)))
6463rexlimdvva 3211 . . . . 5 (πœ‘ β†’ (βˆƒπ‘¦ ∈ 𝑆 βˆƒπ‘§ ∈ ( βŠ₯ β€˜π‘†)π‘₯ = (𝑦(+gβ€˜π‘Š)𝑧) β†’ (π‘₯ ∈ ( βŠ₯ β€˜( βŠ₯ β€˜π‘†)) β†’ π‘₯ ∈ 𝑆)))
6515, 64syld 47 . . . 4 (πœ‘ β†’ (π‘₯ ∈ ( βŠ₯ β€˜( βŠ₯ β€˜π‘†)) β†’ (π‘₯ ∈ ( βŠ₯ β€˜( βŠ₯ β€˜π‘†)) β†’ π‘₯ ∈ 𝑆)))
6665pm2.43d 53 . . 3 (πœ‘ β†’ (π‘₯ ∈ ( βŠ₯ β€˜( βŠ₯ β€˜π‘†)) β†’ π‘₯ ∈ 𝑆))
6766ssrdv 3987 . 2 (πœ‘ β†’ ( βŠ₯ β€˜( βŠ₯ β€˜π‘†)) βŠ† 𝑆)
68 lsmcss.c . . . 4 𝐢 = (ClSubSpβ€˜π‘Š)
697, 68, 8iscss2 21230 . . 3 ((π‘Š ∈ PreHil ∧ 𝑆 βŠ† 𝑉) β†’ (𝑆 ∈ 𝐢 ↔ ( βŠ₯ β€˜( βŠ₯ β€˜π‘†)) βŠ† 𝑆))
703, 6, 69syl2anc 584 . 2 (πœ‘ β†’ (𝑆 ∈ 𝐢 ↔ ( βŠ₯ β€˜( βŠ₯ β€˜π‘†)) βŠ† 𝑆))
7167, 70mpbird 256 1 (πœ‘ β†’ 𝑆 ∈ 𝐢)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆƒwrex 3070   βŠ† wss 3947  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140  +gcplusg 17193  Scalarcsca 17196  Β·π‘–cip 17198  0gc0g 17381  Grpcgrp 18815  LSSumclsm 19496  LModclmod 20463  PreHilcphl 21168  ocvcocv 21204  ClSubSpccss 21205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-plusg 17206  df-mulr 17207  df-sca 17209  df-vsca 17210  df-ip 17211  df-0g 17383  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-mhm 18667  df-grp 18818  df-ghm 19084  df-lsm 19498  df-mgp 19982  df-ur 19999  df-ring 20051  df-oppr 20142  df-rnghom 20243  df-staf 20445  df-srng 20446  df-lmod 20465  df-lmhm 20625  df-lvec 20706  df-sra 20777  df-rgmod 20778  df-phl 21170  df-ocv 21207  df-css 21208
This theorem is referenced by:  pjcss  21262
  Copyright terms: Public domain W3C validator