MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmcss Structured version   Visualization version   GIF version

Theorem lsmcss 21607
Description: A subset of a pre-Hilbert space whose double orthocomplement has a projection decomposition is a closed subspace. This is the core of the proof that a topologically closed subspace is algebraically closed in a Hilbert space. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
lsmcss.c 𝐶 = (ClSubSp‘𝑊)
lsmcss.j 𝑉 = (Base‘𝑊)
lsmcss.o = (ocv‘𝑊)
lsmcss.p = (LSSum‘𝑊)
lsmcss.1 (𝜑𝑊 ∈ PreHil)
lsmcss.2 (𝜑𝑆𝑉)
lsmcss.3 (𝜑 → ( ‘( 𝑆)) ⊆ (𝑆 ( 𝑆)))
Assertion
Ref Expression
lsmcss (𝜑𝑆𝐶)

Proof of Theorem lsmcss
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsmcss.3 . . . . . . 7 (𝜑 → ( ‘( 𝑆)) ⊆ (𝑆 ( 𝑆)))
21sseld 3947 . . . . . 6 (𝜑 → (𝑥 ∈ ( ‘( 𝑆)) → 𝑥 ∈ (𝑆 ( 𝑆))))
3 lsmcss.1 . . . . . . . 8 (𝜑𝑊 ∈ PreHil)
4 phllmod 21545 . . . . . . . 8 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
53, 4syl 17 . . . . . . 7 (𝜑𝑊 ∈ LMod)
6 lsmcss.2 . . . . . . 7 (𝜑𝑆𝑉)
7 lsmcss.j . . . . . . . . 9 𝑉 = (Base‘𝑊)
8 lsmcss.o . . . . . . . . 9 = (ocv‘𝑊)
97, 8ocvss 21585 . . . . . . . 8 ( 𝑆) ⊆ 𝑉
109a1i 11 . . . . . . 7 (𝜑 → ( 𝑆) ⊆ 𝑉)
11 eqid 2730 . . . . . . . 8 (+g𝑊) = (+g𝑊)
12 lsmcss.p . . . . . . . 8 = (LSSum‘𝑊)
137, 11, 12lsmelvalx 19576 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑆𝑉 ∧ ( 𝑆) ⊆ 𝑉) → (𝑥 ∈ (𝑆 ( 𝑆)) ↔ ∃𝑦𝑆𝑧 ∈ ( 𝑆)𝑥 = (𝑦(+g𝑊)𝑧)))
145, 6, 10, 13syl3anc 1373 . . . . . 6 (𝜑 → (𝑥 ∈ (𝑆 ( 𝑆)) ↔ ∃𝑦𝑆𝑧 ∈ ( 𝑆)𝑥 = (𝑦(+g𝑊)𝑧)))
152, 14sylibd 239 . . . . 5 (𝜑 → (𝑥 ∈ ( ‘( 𝑆)) → ∃𝑦𝑆𝑧 ∈ ( 𝑆)𝑥 = (𝑦(+g𝑊)𝑧)))
163ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → 𝑊 ∈ PreHil)
176ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → 𝑆𝑉)
18 simplrl 776 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → 𝑦𝑆)
1917, 18sseldd 3949 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → 𝑦𝑉)
20 simplrr 777 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → 𝑧 ∈ ( 𝑆))
219, 20sselid 3946 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → 𝑧𝑉)
22 eqid 2730 . . . . . . . . . . . . . . . 16 (Scalar‘𝑊) = (Scalar‘𝑊)
23 eqid 2730 . . . . . . . . . . . . . . . 16 (·𝑖𝑊) = (·𝑖𝑊)
24 eqid 2730 . . . . . . . . . . . . . . . 16 (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊))
2522, 23, 7, 11, 24ipdir 21554 . . . . . . . . . . . . . . 15 ((𝑊 ∈ PreHil ∧ (𝑦𝑉𝑧𝑉𝑧𝑉)) → ((𝑦(+g𝑊)𝑧)(·𝑖𝑊)𝑧) = ((𝑦(·𝑖𝑊)𝑧)(+g‘(Scalar‘𝑊))(𝑧(·𝑖𝑊)𝑧)))
2616, 19, 21, 21, 25syl13anc 1374 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → ((𝑦(+g𝑊)𝑧)(·𝑖𝑊)𝑧) = ((𝑦(·𝑖𝑊)𝑧)(+g‘(Scalar‘𝑊))(𝑧(·𝑖𝑊)𝑧)))
27 eqid 2730 . . . . . . . . . . . . . . . . . 18 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
287, 23, 22, 27, 8ocvi 21584 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ( 𝑆) ∧ 𝑦𝑆) → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))
2920, 18, 28syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))
3022, 23, 7, 27iporthcom 21550 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ PreHil ∧ 𝑧𝑉𝑦𝑉) → ((𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ↔ (𝑦(·𝑖𝑊)𝑧) = (0g‘(Scalar‘𝑊))))
3116, 21, 19, 30syl3anc 1373 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → ((𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ↔ (𝑦(·𝑖𝑊)𝑧) = (0g‘(Scalar‘𝑊))))
3229, 31mpbid 232 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → (𝑦(·𝑖𝑊)𝑧) = (0g‘(Scalar‘𝑊)))
3332oveq1d 7404 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → ((𝑦(·𝑖𝑊)𝑧)(+g‘(Scalar‘𝑊))(𝑧(·𝑖𝑊)𝑧)) = ((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(𝑧(·𝑖𝑊)𝑧)))
3416, 4syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → 𝑊 ∈ LMod)
3522lmodfgrp 20781 . . . . . . . . . . . . . . . 16 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Grp)
3634, 35syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → (Scalar‘𝑊) ∈ Grp)
37 eqid 2730 . . . . . . . . . . . . . . . . 17 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
3822, 23, 7, 37ipcl 21548 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ PreHil ∧ 𝑧𝑉𝑧𝑉) → (𝑧(·𝑖𝑊)𝑧) ∈ (Base‘(Scalar‘𝑊)))
3916, 21, 21, 38syl3anc 1373 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → (𝑧(·𝑖𝑊)𝑧) ∈ (Base‘(Scalar‘𝑊)))
4037, 24, 27grplid 18905 . . . . . . . . . . . . . . 15 (((Scalar‘𝑊) ∈ Grp ∧ (𝑧(·𝑖𝑊)𝑧) ∈ (Base‘(Scalar‘𝑊))) → ((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(𝑧(·𝑖𝑊)𝑧)) = (𝑧(·𝑖𝑊)𝑧))
4136, 39, 40syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → ((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(𝑧(·𝑖𝑊)𝑧)) = (𝑧(·𝑖𝑊)𝑧))
4226, 33, 413eqtrd 2769 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → ((𝑦(+g𝑊)𝑧)(·𝑖𝑊)𝑧) = (𝑧(·𝑖𝑊)𝑧))
43 simpr 484 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆)))
447, 23, 22, 27, 8ocvi 21584 . . . . . . . . . . . . . 14 (((𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆)) ∧ 𝑧 ∈ ( 𝑆)) → ((𝑦(+g𝑊)𝑧)(·𝑖𝑊)𝑧) = (0g‘(Scalar‘𝑊)))
4543, 20, 44syl2anc 584 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → ((𝑦(+g𝑊)𝑧)(·𝑖𝑊)𝑧) = (0g‘(Scalar‘𝑊)))
4642, 45eqtr3d 2767 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → (𝑧(·𝑖𝑊)𝑧) = (0g‘(Scalar‘𝑊)))
47 eqid 2730 . . . . . . . . . . . . . 14 (0g𝑊) = (0g𝑊)
4822, 23, 7, 27, 47ipeq0 21553 . . . . . . . . . . . . 13 ((𝑊 ∈ PreHil ∧ 𝑧𝑉) → ((𝑧(·𝑖𝑊)𝑧) = (0g‘(Scalar‘𝑊)) ↔ 𝑧 = (0g𝑊)))
4916, 21, 48syl2anc 584 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → ((𝑧(·𝑖𝑊)𝑧) = (0g‘(Scalar‘𝑊)) ↔ 𝑧 = (0g𝑊)))
5046, 49mpbid 232 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → 𝑧 = (0g𝑊))
5150oveq2d 7405 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → (𝑦(+g𝑊)𝑧) = (𝑦(+g𝑊)(0g𝑊)))
52 lmodgrp 20779 . . . . . . . . . . . . 13 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
535, 52syl 17 . . . . . . . . . . . 12 (𝜑𝑊 ∈ Grp)
5453ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → 𝑊 ∈ Grp)
557, 11, 47grprid 18906 . . . . . . . . . . 11 ((𝑊 ∈ Grp ∧ 𝑦𝑉) → (𝑦(+g𝑊)(0g𝑊)) = 𝑦)
5654, 19, 55syl2anc 584 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → (𝑦(+g𝑊)(0g𝑊)) = 𝑦)
5751, 56eqtrd 2765 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → (𝑦(+g𝑊)𝑧) = 𝑦)
5857, 18eqeltrd 2829 . . . . . . . 8 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → (𝑦(+g𝑊)𝑧) ∈ 𝑆)
5958ex 412 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) → ((𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆)) → (𝑦(+g𝑊)𝑧) ∈ 𝑆))
60 eleq1 2817 . . . . . . . 8 (𝑥 = (𝑦(+g𝑊)𝑧) → (𝑥 ∈ ( ‘( 𝑆)) ↔ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))))
61 eleq1 2817 . . . . . . . 8 (𝑥 = (𝑦(+g𝑊)𝑧) → (𝑥𝑆 ↔ (𝑦(+g𝑊)𝑧) ∈ 𝑆))
6260, 61imbi12d 344 . . . . . . 7 (𝑥 = (𝑦(+g𝑊)𝑧) → ((𝑥 ∈ ( ‘( 𝑆)) → 𝑥𝑆) ↔ ((𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆)) → (𝑦(+g𝑊)𝑧) ∈ 𝑆)))
6359, 62syl5ibrcom 247 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) → (𝑥 = (𝑦(+g𝑊)𝑧) → (𝑥 ∈ ( ‘( 𝑆)) → 𝑥𝑆)))
6463rexlimdvva 3195 . . . . 5 (𝜑 → (∃𝑦𝑆𝑧 ∈ ( 𝑆)𝑥 = (𝑦(+g𝑊)𝑧) → (𝑥 ∈ ( ‘( 𝑆)) → 𝑥𝑆)))
6515, 64syld 47 . . . 4 (𝜑 → (𝑥 ∈ ( ‘( 𝑆)) → (𝑥 ∈ ( ‘( 𝑆)) → 𝑥𝑆)))
6665pm2.43d 53 . . 3 (𝜑 → (𝑥 ∈ ( ‘( 𝑆)) → 𝑥𝑆))
6766ssrdv 3954 . 2 (𝜑 → ( ‘( 𝑆)) ⊆ 𝑆)
68 lsmcss.c . . . 4 𝐶 = (ClSubSp‘𝑊)
697, 68, 8iscss2 21601 . . 3 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → (𝑆𝐶 ↔ ( ‘( 𝑆)) ⊆ 𝑆))
703, 6, 69syl2anc 584 . 2 (𝜑 → (𝑆𝐶 ↔ ( ‘( 𝑆)) ⊆ 𝑆))
7167, 70mpbird 257 1 (𝜑𝑆𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3054  wss 3916  cfv 6513  (class class class)co 7389  Basecbs 17185  +gcplusg 17226  Scalarcsca 17229  ·𝑖cip 17231  0gc0g 17408  Grpcgrp 18871  LSSumclsm 19570  LModclmod 20772  PreHilcphl 21539  ocvcocv 21575  ClSubSpccss 21576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-er 8673  df-map 8803  df-en 8921  df-dom 8922  df-sdom 8923  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-plusg 17239  df-mulr 17240  df-sca 17242  df-vsca 17243  df-ip 17244  df-0g 17410  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-mhm 18716  df-grp 18874  df-ghm 19151  df-lsm 19572  df-mgp 20056  df-ur 20097  df-ring 20150  df-oppr 20252  df-rhm 20387  df-staf 20754  df-srng 20755  df-lmod 20774  df-lmhm 20935  df-lvec 21016  df-sra 21086  df-rgmod 21087  df-phl 21541  df-ocv 21578  df-css 21579
This theorem is referenced by:  pjcss  21631
  Copyright terms: Public domain W3C validator