MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmcss Structured version   Visualization version   GIF version

Theorem lsmcss 21733
Description: A subset of a pre-Hilbert space whose double orthocomplement has a projection decomposition is a closed subspace. This is the core of the proof that a topologically closed subspace is algebraically closed in a Hilbert space. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
lsmcss.c 𝐶 = (ClSubSp‘𝑊)
lsmcss.j 𝑉 = (Base‘𝑊)
lsmcss.o = (ocv‘𝑊)
lsmcss.p = (LSSum‘𝑊)
lsmcss.1 (𝜑𝑊 ∈ PreHil)
lsmcss.2 (𝜑𝑆𝑉)
lsmcss.3 (𝜑 → ( ‘( 𝑆)) ⊆ (𝑆 ( 𝑆)))
Assertion
Ref Expression
lsmcss (𝜑𝑆𝐶)

Proof of Theorem lsmcss
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsmcss.3 . . . . . . 7 (𝜑 → ( ‘( 𝑆)) ⊆ (𝑆 ( 𝑆)))
21sseld 4007 . . . . . 6 (𝜑 → (𝑥 ∈ ( ‘( 𝑆)) → 𝑥 ∈ (𝑆 ( 𝑆))))
3 lsmcss.1 . . . . . . . 8 (𝜑𝑊 ∈ PreHil)
4 phllmod 21671 . . . . . . . 8 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
53, 4syl 17 . . . . . . 7 (𝜑𝑊 ∈ LMod)
6 lsmcss.2 . . . . . . 7 (𝜑𝑆𝑉)
7 lsmcss.j . . . . . . . . 9 𝑉 = (Base‘𝑊)
8 lsmcss.o . . . . . . . . 9 = (ocv‘𝑊)
97, 8ocvss 21711 . . . . . . . 8 ( 𝑆) ⊆ 𝑉
109a1i 11 . . . . . . 7 (𝜑 → ( 𝑆) ⊆ 𝑉)
11 eqid 2740 . . . . . . . 8 (+g𝑊) = (+g𝑊)
12 lsmcss.p . . . . . . . 8 = (LSSum‘𝑊)
137, 11, 12lsmelvalx 19682 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑆𝑉 ∧ ( 𝑆) ⊆ 𝑉) → (𝑥 ∈ (𝑆 ( 𝑆)) ↔ ∃𝑦𝑆𝑧 ∈ ( 𝑆)𝑥 = (𝑦(+g𝑊)𝑧)))
145, 6, 10, 13syl3anc 1371 . . . . . 6 (𝜑 → (𝑥 ∈ (𝑆 ( 𝑆)) ↔ ∃𝑦𝑆𝑧 ∈ ( 𝑆)𝑥 = (𝑦(+g𝑊)𝑧)))
152, 14sylibd 239 . . . . 5 (𝜑 → (𝑥 ∈ ( ‘( 𝑆)) → ∃𝑦𝑆𝑧 ∈ ( 𝑆)𝑥 = (𝑦(+g𝑊)𝑧)))
163ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → 𝑊 ∈ PreHil)
176ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → 𝑆𝑉)
18 simplrl 776 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → 𝑦𝑆)
1917, 18sseldd 4009 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → 𝑦𝑉)
20 simplrr 777 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → 𝑧 ∈ ( 𝑆))
219, 20sselid 4006 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → 𝑧𝑉)
22 eqid 2740 . . . . . . . . . . . . . . . 16 (Scalar‘𝑊) = (Scalar‘𝑊)
23 eqid 2740 . . . . . . . . . . . . . . . 16 (·𝑖𝑊) = (·𝑖𝑊)
24 eqid 2740 . . . . . . . . . . . . . . . 16 (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊))
2522, 23, 7, 11, 24ipdir 21680 . . . . . . . . . . . . . . 15 ((𝑊 ∈ PreHil ∧ (𝑦𝑉𝑧𝑉𝑧𝑉)) → ((𝑦(+g𝑊)𝑧)(·𝑖𝑊)𝑧) = ((𝑦(·𝑖𝑊)𝑧)(+g‘(Scalar‘𝑊))(𝑧(·𝑖𝑊)𝑧)))
2616, 19, 21, 21, 25syl13anc 1372 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → ((𝑦(+g𝑊)𝑧)(·𝑖𝑊)𝑧) = ((𝑦(·𝑖𝑊)𝑧)(+g‘(Scalar‘𝑊))(𝑧(·𝑖𝑊)𝑧)))
27 eqid 2740 . . . . . . . . . . . . . . . . . 18 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
287, 23, 22, 27, 8ocvi 21710 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ( 𝑆) ∧ 𝑦𝑆) → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))
2920, 18, 28syl2anc 583 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))
3022, 23, 7, 27iporthcom 21676 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ PreHil ∧ 𝑧𝑉𝑦𝑉) → ((𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ↔ (𝑦(·𝑖𝑊)𝑧) = (0g‘(Scalar‘𝑊))))
3116, 21, 19, 30syl3anc 1371 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → ((𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ↔ (𝑦(·𝑖𝑊)𝑧) = (0g‘(Scalar‘𝑊))))
3229, 31mpbid 232 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → (𝑦(·𝑖𝑊)𝑧) = (0g‘(Scalar‘𝑊)))
3332oveq1d 7463 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → ((𝑦(·𝑖𝑊)𝑧)(+g‘(Scalar‘𝑊))(𝑧(·𝑖𝑊)𝑧)) = ((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(𝑧(·𝑖𝑊)𝑧)))
3416, 4syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → 𝑊 ∈ LMod)
3522lmodfgrp 20889 . . . . . . . . . . . . . . . 16 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Grp)
3634, 35syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → (Scalar‘𝑊) ∈ Grp)
37 eqid 2740 . . . . . . . . . . . . . . . . 17 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
3822, 23, 7, 37ipcl 21674 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ PreHil ∧ 𝑧𝑉𝑧𝑉) → (𝑧(·𝑖𝑊)𝑧) ∈ (Base‘(Scalar‘𝑊)))
3916, 21, 21, 38syl3anc 1371 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → (𝑧(·𝑖𝑊)𝑧) ∈ (Base‘(Scalar‘𝑊)))
4037, 24, 27grplid 19007 . . . . . . . . . . . . . . 15 (((Scalar‘𝑊) ∈ Grp ∧ (𝑧(·𝑖𝑊)𝑧) ∈ (Base‘(Scalar‘𝑊))) → ((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(𝑧(·𝑖𝑊)𝑧)) = (𝑧(·𝑖𝑊)𝑧))
4136, 39, 40syl2anc 583 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → ((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(𝑧(·𝑖𝑊)𝑧)) = (𝑧(·𝑖𝑊)𝑧))
4226, 33, 413eqtrd 2784 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → ((𝑦(+g𝑊)𝑧)(·𝑖𝑊)𝑧) = (𝑧(·𝑖𝑊)𝑧))
43 simpr 484 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆)))
447, 23, 22, 27, 8ocvi 21710 . . . . . . . . . . . . . 14 (((𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆)) ∧ 𝑧 ∈ ( 𝑆)) → ((𝑦(+g𝑊)𝑧)(·𝑖𝑊)𝑧) = (0g‘(Scalar‘𝑊)))
4543, 20, 44syl2anc 583 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → ((𝑦(+g𝑊)𝑧)(·𝑖𝑊)𝑧) = (0g‘(Scalar‘𝑊)))
4642, 45eqtr3d 2782 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → (𝑧(·𝑖𝑊)𝑧) = (0g‘(Scalar‘𝑊)))
47 eqid 2740 . . . . . . . . . . . . . 14 (0g𝑊) = (0g𝑊)
4822, 23, 7, 27, 47ipeq0 21679 . . . . . . . . . . . . 13 ((𝑊 ∈ PreHil ∧ 𝑧𝑉) → ((𝑧(·𝑖𝑊)𝑧) = (0g‘(Scalar‘𝑊)) ↔ 𝑧 = (0g𝑊)))
4916, 21, 48syl2anc 583 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → ((𝑧(·𝑖𝑊)𝑧) = (0g‘(Scalar‘𝑊)) ↔ 𝑧 = (0g𝑊)))
5046, 49mpbid 232 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → 𝑧 = (0g𝑊))
5150oveq2d 7464 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → (𝑦(+g𝑊)𝑧) = (𝑦(+g𝑊)(0g𝑊)))
52 lmodgrp 20887 . . . . . . . . . . . . 13 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
535, 52syl 17 . . . . . . . . . . . 12 (𝜑𝑊 ∈ Grp)
5453ad2antrr 725 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → 𝑊 ∈ Grp)
557, 11, 47grprid 19008 . . . . . . . . . . 11 ((𝑊 ∈ Grp ∧ 𝑦𝑉) → (𝑦(+g𝑊)(0g𝑊)) = 𝑦)
5654, 19, 55syl2anc 583 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → (𝑦(+g𝑊)(0g𝑊)) = 𝑦)
5751, 56eqtrd 2780 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → (𝑦(+g𝑊)𝑧) = 𝑦)
5857, 18eqeltrd 2844 . . . . . . . 8 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → (𝑦(+g𝑊)𝑧) ∈ 𝑆)
5958ex 412 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) → ((𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆)) → (𝑦(+g𝑊)𝑧) ∈ 𝑆))
60 eleq1 2832 . . . . . . . 8 (𝑥 = (𝑦(+g𝑊)𝑧) → (𝑥 ∈ ( ‘( 𝑆)) ↔ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))))
61 eleq1 2832 . . . . . . . 8 (𝑥 = (𝑦(+g𝑊)𝑧) → (𝑥𝑆 ↔ (𝑦(+g𝑊)𝑧) ∈ 𝑆))
6260, 61imbi12d 344 . . . . . . 7 (𝑥 = (𝑦(+g𝑊)𝑧) → ((𝑥 ∈ ( ‘( 𝑆)) → 𝑥𝑆) ↔ ((𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆)) → (𝑦(+g𝑊)𝑧) ∈ 𝑆)))
6359, 62syl5ibrcom 247 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) → (𝑥 = (𝑦(+g𝑊)𝑧) → (𝑥 ∈ ( ‘( 𝑆)) → 𝑥𝑆)))
6463rexlimdvva 3219 . . . . 5 (𝜑 → (∃𝑦𝑆𝑧 ∈ ( 𝑆)𝑥 = (𝑦(+g𝑊)𝑧) → (𝑥 ∈ ( ‘( 𝑆)) → 𝑥𝑆)))
6515, 64syld 47 . . . 4 (𝜑 → (𝑥 ∈ ( ‘( 𝑆)) → (𝑥 ∈ ( ‘( 𝑆)) → 𝑥𝑆)))
6665pm2.43d 53 . . 3 (𝜑 → (𝑥 ∈ ( ‘( 𝑆)) → 𝑥𝑆))
6766ssrdv 4014 . 2 (𝜑 → ( ‘( 𝑆)) ⊆ 𝑆)
68 lsmcss.c . . . 4 𝐶 = (ClSubSp‘𝑊)
697, 68, 8iscss2 21727 . . 3 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → (𝑆𝐶 ↔ ( ‘( 𝑆)) ⊆ 𝑆))
703, 6, 69syl2anc 583 . 2 (𝜑 → (𝑆𝐶 ↔ ( ‘( 𝑆)) ⊆ 𝑆))
7167, 70mpbird 257 1 (𝜑𝑆𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wrex 3076  wss 3976  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  Scalarcsca 17314  ·𝑖cip 17316  0gc0g 17499  Grpcgrp 18973  LSSumclsm 19676  LModclmod 20880  PreHilcphl 21665  ocvcocv 21701  ClSubSpccss 21702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-grp 18976  df-ghm 19253  df-lsm 19678  df-mgp 20162  df-ur 20209  df-ring 20262  df-oppr 20360  df-rhm 20498  df-staf 20862  df-srng 20863  df-lmod 20882  df-lmhm 21044  df-lvec 21125  df-sra 21195  df-rgmod 21196  df-phl 21667  df-ocv 21704  df-css 21705
This theorem is referenced by:  pjcss  21759
  Copyright terms: Public domain W3C validator