MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmcss Structured version   Visualization version   GIF version

Theorem lsmcss 21617
Description: A subset of a pre-Hilbert space whose double orthocomplement has a projection decomposition is a closed subspace. This is the core of the proof that a topologically closed subspace is algebraically closed in a Hilbert space. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
lsmcss.c 𝐶 = (ClSubSp‘𝑊)
lsmcss.j 𝑉 = (Base‘𝑊)
lsmcss.o = (ocv‘𝑊)
lsmcss.p = (LSSum‘𝑊)
lsmcss.1 (𝜑𝑊 ∈ PreHil)
lsmcss.2 (𝜑𝑆𝑉)
lsmcss.3 (𝜑 → ( ‘( 𝑆)) ⊆ (𝑆 ( 𝑆)))
Assertion
Ref Expression
lsmcss (𝜑𝑆𝐶)

Proof of Theorem lsmcss
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsmcss.3 . . . . . . 7 (𝜑 → ( ‘( 𝑆)) ⊆ (𝑆 ( 𝑆)))
21sseld 3977 . . . . . 6 (𝜑 → (𝑥 ∈ ( ‘( 𝑆)) → 𝑥 ∈ (𝑆 ( 𝑆))))
3 lsmcss.1 . . . . . . . 8 (𝜑𝑊 ∈ PreHil)
4 phllmod 21555 . . . . . . . 8 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
53, 4syl 17 . . . . . . 7 (𝜑𝑊 ∈ LMod)
6 lsmcss.2 . . . . . . 7 (𝜑𝑆𝑉)
7 lsmcss.j . . . . . . . . 9 𝑉 = (Base‘𝑊)
8 lsmcss.o . . . . . . . . 9 = (ocv‘𝑊)
97, 8ocvss 21595 . . . . . . . 8 ( 𝑆) ⊆ 𝑉
109a1i 11 . . . . . . 7 (𝜑 → ( 𝑆) ⊆ 𝑉)
11 eqid 2728 . . . . . . . 8 (+g𝑊) = (+g𝑊)
12 lsmcss.p . . . . . . . 8 = (LSSum‘𝑊)
137, 11, 12lsmelvalx 19588 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑆𝑉 ∧ ( 𝑆) ⊆ 𝑉) → (𝑥 ∈ (𝑆 ( 𝑆)) ↔ ∃𝑦𝑆𝑧 ∈ ( 𝑆)𝑥 = (𝑦(+g𝑊)𝑧)))
145, 6, 10, 13syl3anc 1369 . . . . . 6 (𝜑 → (𝑥 ∈ (𝑆 ( 𝑆)) ↔ ∃𝑦𝑆𝑧 ∈ ( 𝑆)𝑥 = (𝑦(+g𝑊)𝑧)))
152, 14sylibd 238 . . . . 5 (𝜑 → (𝑥 ∈ ( ‘( 𝑆)) → ∃𝑦𝑆𝑧 ∈ ( 𝑆)𝑥 = (𝑦(+g𝑊)𝑧)))
163ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → 𝑊 ∈ PreHil)
176ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → 𝑆𝑉)
18 simplrl 776 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → 𝑦𝑆)
1917, 18sseldd 3979 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → 𝑦𝑉)
20 simplrr 777 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → 𝑧 ∈ ( 𝑆))
219, 20sselid 3976 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → 𝑧𝑉)
22 eqid 2728 . . . . . . . . . . . . . . . 16 (Scalar‘𝑊) = (Scalar‘𝑊)
23 eqid 2728 . . . . . . . . . . . . . . . 16 (·𝑖𝑊) = (·𝑖𝑊)
24 eqid 2728 . . . . . . . . . . . . . . . 16 (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊))
2522, 23, 7, 11, 24ipdir 21564 . . . . . . . . . . . . . . 15 ((𝑊 ∈ PreHil ∧ (𝑦𝑉𝑧𝑉𝑧𝑉)) → ((𝑦(+g𝑊)𝑧)(·𝑖𝑊)𝑧) = ((𝑦(·𝑖𝑊)𝑧)(+g‘(Scalar‘𝑊))(𝑧(·𝑖𝑊)𝑧)))
2616, 19, 21, 21, 25syl13anc 1370 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → ((𝑦(+g𝑊)𝑧)(·𝑖𝑊)𝑧) = ((𝑦(·𝑖𝑊)𝑧)(+g‘(Scalar‘𝑊))(𝑧(·𝑖𝑊)𝑧)))
27 eqid 2728 . . . . . . . . . . . . . . . . . 18 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
287, 23, 22, 27, 8ocvi 21594 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ( 𝑆) ∧ 𝑦𝑆) → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))
2920, 18, 28syl2anc 583 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))
3022, 23, 7, 27iporthcom 21560 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ PreHil ∧ 𝑧𝑉𝑦𝑉) → ((𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ↔ (𝑦(·𝑖𝑊)𝑧) = (0g‘(Scalar‘𝑊))))
3116, 21, 19, 30syl3anc 1369 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → ((𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ↔ (𝑦(·𝑖𝑊)𝑧) = (0g‘(Scalar‘𝑊))))
3229, 31mpbid 231 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → (𝑦(·𝑖𝑊)𝑧) = (0g‘(Scalar‘𝑊)))
3332oveq1d 7429 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → ((𝑦(·𝑖𝑊)𝑧)(+g‘(Scalar‘𝑊))(𝑧(·𝑖𝑊)𝑧)) = ((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(𝑧(·𝑖𝑊)𝑧)))
3416, 4syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → 𝑊 ∈ LMod)
3522lmodfgrp 20745 . . . . . . . . . . . . . . . 16 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Grp)
3634, 35syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → (Scalar‘𝑊) ∈ Grp)
37 eqid 2728 . . . . . . . . . . . . . . . . 17 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
3822, 23, 7, 37ipcl 21558 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ PreHil ∧ 𝑧𝑉𝑧𝑉) → (𝑧(·𝑖𝑊)𝑧) ∈ (Base‘(Scalar‘𝑊)))
3916, 21, 21, 38syl3anc 1369 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → (𝑧(·𝑖𝑊)𝑧) ∈ (Base‘(Scalar‘𝑊)))
4037, 24, 27grplid 18917 . . . . . . . . . . . . . . 15 (((Scalar‘𝑊) ∈ Grp ∧ (𝑧(·𝑖𝑊)𝑧) ∈ (Base‘(Scalar‘𝑊))) → ((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(𝑧(·𝑖𝑊)𝑧)) = (𝑧(·𝑖𝑊)𝑧))
4136, 39, 40syl2anc 583 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → ((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(𝑧(·𝑖𝑊)𝑧)) = (𝑧(·𝑖𝑊)𝑧))
4226, 33, 413eqtrd 2772 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → ((𝑦(+g𝑊)𝑧)(·𝑖𝑊)𝑧) = (𝑧(·𝑖𝑊)𝑧))
43 simpr 484 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆)))
447, 23, 22, 27, 8ocvi 21594 . . . . . . . . . . . . . 14 (((𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆)) ∧ 𝑧 ∈ ( 𝑆)) → ((𝑦(+g𝑊)𝑧)(·𝑖𝑊)𝑧) = (0g‘(Scalar‘𝑊)))
4543, 20, 44syl2anc 583 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → ((𝑦(+g𝑊)𝑧)(·𝑖𝑊)𝑧) = (0g‘(Scalar‘𝑊)))
4642, 45eqtr3d 2770 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → (𝑧(·𝑖𝑊)𝑧) = (0g‘(Scalar‘𝑊)))
47 eqid 2728 . . . . . . . . . . . . . 14 (0g𝑊) = (0g𝑊)
4822, 23, 7, 27, 47ipeq0 21563 . . . . . . . . . . . . 13 ((𝑊 ∈ PreHil ∧ 𝑧𝑉) → ((𝑧(·𝑖𝑊)𝑧) = (0g‘(Scalar‘𝑊)) ↔ 𝑧 = (0g𝑊)))
4916, 21, 48syl2anc 583 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → ((𝑧(·𝑖𝑊)𝑧) = (0g‘(Scalar‘𝑊)) ↔ 𝑧 = (0g𝑊)))
5046, 49mpbid 231 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → 𝑧 = (0g𝑊))
5150oveq2d 7430 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → (𝑦(+g𝑊)𝑧) = (𝑦(+g𝑊)(0g𝑊)))
52 lmodgrp 20743 . . . . . . . . . . . . 13 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
535, 52syl 17 . . . . . . . . . . . 12 (𝜑𝑊 ∈ Grp)
5453ad2antrr 725 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → 𝑊 ∈ Grp)
557, 11, 47grprid 18918 . . . . . . . . . . 11 ((𝑊 ∈ Grp ∧ 𝑦𝑉) → (𝑦(+g𝑊)(0g𝑊)) = 𝑦)
5654, 19, 55syl2anc 583 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → (𝑦(+g𝑊)(0g𝑊)) = 𝑦)
5751, 56eqtrd 2768 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → (𝑦(+g𝑊)𝑧) = 𝑦)
5857, 18eqeltrd 2829 . . . . . . . 8 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → (𝑦(+g𝑊)𝑧) ∈ 𝑆)
5958ex 412 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) → ((𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆)) → (𝑦(+g𝑊)𝑧) ∈ 𝑆))
60 eleq1 2817 . . . . . . . 8 (𝑥 = (𝑦(+g𝑊)𝑧) → (𝑥 ∈ ( ‘( 𝑆)) ↔ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))))
61 eleq1 2817 . . . . . . . 8 (𝑥 = (𝑦(+g𝑊)𝑧) → (𝑥𝑆 ↔ (𝑦(+g𝑊)𝑧) ∈ 𝑆))
6260, 61imbi12d 344 . . . . . . 7 (𝑥 = (𝑦(+g𝑊)𝑧) → ((𝑥 ∈ ( ‘( 𝑆)) → 𝑥𝑆) ↔ ((𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆)) → (𝑦(+g𝑊)𝑧) ∈ 𝑆)))
6359, 62syl5ibrcom 246 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) → (𝑥 = (𝑦(+g𝑊)𝑧) → (𝑥 ∈ ( ‘( 𝑆)) → 𝑥𝑆)))
6463rexlimdvva 3207 . . . . 5 (𝜑 → (∃𝑦𝑆𝑧 ∈ ( 𝑆)𝑥 = (𝑦(+g𝑊)𝑧) → (𝑥 ∈ ( ‘( 𝑆)) → 𝑥𝑆)))
6515, 64syld 47 . . . 4 (𝜑 → (𝑥 ∈ ( ‘( 𝑆)) → (𝑥 ∈ ( ‘( 𝑆)) → 𝑥𝑆)))
6665pm2.43d 53 . . 3 (𝜑 → (𝑥 ∈ ( ‘( 𝑆)) → 𝑥𝑆))
6766ssrdv 3984 . 2 (𝜑 → ( ‘( 𝑆)) ⊆ 𝑆)
68 lsmcss.c . . . 4 𝐶 = (ClSubSp‘𝑊)
697, 68, 8iscss2 21611 . . 3 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → (𝑆𝐶 ↔ ( ‘( 𝑆)) ⊆ 𝑆))
703, 6, 69syl2anc 583 . 2 (𝜑 → (𝑆𝐶 ↔ ( ‘( 𝑆)) ⊆ 𝑆))
7167, 70mpbird 257 1 (𝜑𝑆𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  wrex 3066  wss 3945  cfv 6542  (class class class)co 7414  Basecbs 17173  +gcplusg 17226  Scalarcsca 17229  ·𝑖cip 17231  0gc0g 17414  Grpcgrp 18883  LSSumclsm 19582  LModclmod 20736  PreHilcphl 21549  ocvcocv 21585  ClSubSpccss 21586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8718  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-5 12302  df-6 12303  df-7 12304  df-8 12305  df-sets 17126  df-slot 17144  df-ndx 17156  df-base 17174  df-plusg 17239  df-mulr 17240  df-sca 17242  df-vsca 17243  df-ip 17244  df-0g 17416  df-mgm 18593  df-sgrp 18672  df-mnd 18688  df-mhm 18733  df-grp 18886  df-ghm 19161  df-lsm 19584  df-mgp 20068  df-ur 20115  df-ring 20168  df-oppr 20266  df-rhm 20404  df-staf 20718  df-srng 20719  df-lmod 20738  df-lmhm 20900  df-lvec 20981  df-sra 21051  df-rgmod 21052  df-phl 21551  df-ocv 21588  df-css 21589
This theorem is referenced by:  pjcss  21643
  Copyright terms: Public domain W3C validator