MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmcss Structured version   Visualization version   GIF version

Theorem lsmcss 21096
Description: A subset of a pre-Hilbert space whose double orthocomplement has a projection decomposition is a closed subspace. This is the core of the proof that a topologically closed subspace is algebraically closed in a Hilbert space. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
lsmcss.c 𝐶 = (ClSubSp‘𝑊)
lsmcss.j 𝑉 = (Base‘𝑊)
lsmcss.o = (ocv‘𝑊)
lsmcss.p = (LSSum‘𝑊)
lsmcss.1 (𝜑𝑊 ∈ PreHil)
lsmcss.2 (𝜑𝑆𝑉)
lsmcss.3 (𝜑 → ( ‘( 𝑆)) ⊆ (𝑆 ( 𝑆)))
Assertion
Ref Expression
lsmcss (𝜑𝑆𝐶)

Proof of Theorem lsmcss
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsmcss.3 . . . . . . 7 (𝜑 → ( ‘( 𝑆)) ⊆ (𝑆 ( 𝑆)))
21sseld 3943 . . . . . 6 (𝜑 → (𝑥 ∈ ( ‘( 𝑆)) → 𝑥 ∈ (𝑆 ( 𝑆))))
3 lsmcss.1 . . . . . . . 8 (𝜑𝑊 ∈ PreHil)
4 phllmod 21034 . . . . . . . 8 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
53, 4syl 17 . . . . . . 7 (𝜑𝑊 ∈ LMod)
6 lsmcss.2 . . . . . . 7 (𝜑𝑆𝑉)
7 lsmcss.j . . . . . . . . 9 𝑉 = (Base‘𝑊)
8 lsmcss.o . . . . . . . . 9 = (ocv‘𝑊)
97, 8ocvss 21074 . . . . . . . 8 ( 𝑆) ⊆ 𝑉
109a1i 11 . . . . . . 7 (𝜑 → ( 𝑆) ⊆ 𝑉)
11 eqid 2736 . . . . . . . 8 (+g𝑊) = (+g𝑊)
12 lsmcss.p . . . . . . . 8 = (LSSum‘𝑊)
137, 11, 12lsmelvalx 19422 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑆𝑉 ∧ ( 𝑆) ⊆ 𝑉) → (𝑥 ∈ (𝑆 ( 𝑆)) ↔ ∃𝑦𝑆𝑧 ∈ ( 𝑆)𝑥 = (𝑦(+g𝑊)𝑧)))
145, 6, 10, 13syl3anc 1371 . . . . . 6 (𝜑 → (𝑥 ∈ (𝑆 ( 𝑆)) ↔ ∃𝑦𝑆𝑧 ∈ ( 𝑆)𝑥 = (𝑦(+g𝑊)𝑧)))
152, 14sylibd 238 . . . . 5 (𝜑 → (𝑥 ∈ ( ‘( 𝑆)) → ∃𝑦𝑆𝑧 ∈ ( 𝑆)𝑥 = (𝑦(+g𝑊)𝑧)))
163ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → 𝑊 ∈ PreHil)
176ad2antrr 724 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → 𝑆𝑉)
18 simplrl 775 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → 𝑦𝑆)
1917, 18sseldd 3945 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → 𝑦𝑉)
20 simplrr 776 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → 𝑧 ∈ ( 𝑆))
219, 20sselid 3942 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → 𝑧𝑉)
22 eqid 2736 . . . . . . . . . . . . . . . 16 (Scalar‘𝑊) = (Scalar‘𝑊)
23 eqid 2736 . . . . . . . . . . . . . . . 16 (·𝑖𝑊) = (·𝑖𝑊)
24 eqid 2736 . . . . . . . . . . . . . . . 16 (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊))
2522, 23, 7, 11, 24ipdir 21043 . . . . . . . . . . . . . . 15 ((𝑊 ∈ PreHil ∧ (𝑦𝑉𝑧𝑉𝑧𝑉)) → ((𝑦(+g𝑊)𝑧)(·𝑖𝑊)𝑧) = ((𝑦(·𝑖𝑊)𝑧)(+g‘(Scalar‘𝑊))(𝑧(·𝑖𝑊)𝑧)))
2616, 19, 21, 21, 25syl13anc 1372 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → ((𝑦(+g𝑊)𝑧)(·𝑖𝑊)𝑧) = ((𝑦(·𝑖𝑊)𝑧)(+g‘(Scalar‘𝑊))(𝑧(·𝑖𝑊)𝑧)))
27 eqid 2736 . . . . . . . . . . . . . . . . . 18 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
287, 23, 22, 27, 8ocvi 21073 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ( 𝑆) ∧ 𝑦𝑆) → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))
2920, 18, 28syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))
3022, 23, 7, 27iporthcom 21039 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ PreHil ∧ 𝑧𝑉𝑦𝑉) → ((𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ↔ (𝑦(·𝑖𝑊)𝑧) = (0g‘(Scalar‘𝑊))))
3116, 21, 19, 30syl3anc 1371 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → ((𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ↔ (𝑦(·𝑖𝑊)𝑧) = (0g‘(Scalar‘𝑊))))
3229, 31mpbid 231 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → (𝑦(·𝑖𝑊)𝑧) = (0g‘(Scalar‘𝑊)))
3332oveq1d 7372 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → ((𝑦(·𝑖𝑊)𝑧)(+g‘(Scalar‘𝑊))(𝑧(·𝑖𝑊)𝑧)) = ((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(𝑧(·𝑖𝑊)𝑧)))
3416, 4syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → 𝑊 ∈ LMod)
3522lmodfgrp 20331 . . . . . . . . . . . . . . . 16 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Grp)
3634, 35syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → (Scalar‘𝑊) ∈ Grp)
37 eqid 2736 . . . . . . . . . . . . . . . . 17 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
3822, 23, 7, 37ipcl 21037 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ PreHil ∧ 𝑧𝑉𝑧𝑉) → (𝑧(·𝑖𝑊)𝑧) ∈ (Base‘(Scalar‘𝑊)))
3916, 21, 21, 38syl3anc 1371 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → (𝑧(·𝑖𝑊)𝑧) ∈ (Base‘(Scalar‘𝑊)))
4037, 24, 27grplid 18780 . . . . . . . . . . . . . . 15 (((Scalar‘𝑊) ∈ Grp ∧ (𝑧(·𝑖𝑊)𝑧) ∈ (Base‘(Scalar‘𝑊))) → ((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(𝑧(·𝑖𝑊)𝑧)) = (𝑧(·𝑖𝑊)𝑧))
4136, 39, 40syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → ((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(𝑧(·𝑖𝑊)𝑧)) = (𝑧(·𝑖𝑊)𝑧))
4226, 33, 413eqtrd 2780 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → ((𝑦(+g𝑊)𝑧)(·𝑖𝑊)𝑧) = (𝑧(·𝑖𝑊)𝑧))
43 simpr 485 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆)))
447, 23, 22, 27, 8ocvi 21073 . . . . . . . . . . . . . 14 (((𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆)) ∧ 𝑧 ∈ ( 𝑆)) → ((𝑦(+g𝑊)𝑧)(·𝑖𝑊)𝑧) = (0g‘(Scalar‘𝑊)))
4543, 20, 44syl2anc 584 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → ((𝑦(+g𝑊)𝑧)(·𝑖𝑊)𝑧) = (0g‘(Scalar‘𝑊)))
4642, 45eqtr3d 2778 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → (𝑧(·𝑖𝑊)𝑧) = (0g‘(Scalar‘𝑊)))
47 eqid 2736 . . . . . . . . . . . . . 14 (0g𝑊) = (0g𝑊)
4822, 23, 7, 27, 47ipeq0 21042 . . . . . . . . . . . . 13 ((𝑊 ∈ PreHil ∧ 𝑧𝑉) → ((𝑧(·𝑖𝑊)𝑧) = (0g‘(Scalar‘𝑊)) ↔ 𝑧 = (0g𝑊)))
4916, 21, 48syl2anc 584 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → ((𝑧(·𝑖𝑊)𝑧) = (0g‘(Scalar‘𝑊)) ↔ 𝑧 = (0g𝑊)))
5046, 49mpbid 231 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → 𝑧 = (0g𝑊))
5150oveq2d 7373 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → (𝑦(+g𝑊)𝑧) = (𝑦(+g𝑊)(0g𝑊)))
52 lmodgrp 20329 . . . . . . . . . . . . 13 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
535, 52syl 17 . . . . . . . . . . . 12 (𝜑𝑊 ∈ Grp)
5453ad2antrr 724 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → 𝑊 ∈ Grp)
557, 11, 47grprid 18781 . . . . . . . . . . 11 ((𝑊 ∈ Grp ∧ 𝑦𝑉) → (𝑦(+g𝑊)(0g𝑊)) = 𝑦)
5654, 19, 55syl2anc 584 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → (𝑦(+g𝑊)(0g𝑊)) = 𝑦)
5751, 56eqtrd 2776 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → (𝑦(+g𝑊)𝑧) = 𝑦)
5857, 18eqeltrd 2838 . . . . . . . 8 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → (𝑦(+g𝑊)𝑧) ∈ 𝑆)
5958ex 413 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) → ((𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆)) → (𝑦(+g𝑊)𝑧) ∈ 𝑆))
60 eleq1 2825 . . . . . . . 8 (𝑥 = (𝑦(+g𝑊)𝑧) → (𝑥 ∈ ( ‘( 𝑆)) ↔ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))))
61 eleq1 2825 . . . . . . . 8 (𝑥 = (𝑦(+g𝑊)𝑧) → (𝑥𝑆 ↔ (𝑦(+g𝑊)𝑧) ∈ 𝑆))
6260, 61imbi12d 344 . . . . . . 7 (𝑥 = (𝑦(+g𝑊)𝑧) → ((𝑥 ∈ ( ‘( 𝑆)) → 𝑥𝑆) ↔ ((𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆)) → (𝑦(+g𝑊)𝑧) ∈ 𝑆)))
6359, 62syl5ibrcom 246 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) → (𝑥 = (𝑦(+g𝑊)𝑧) → (𝑥 ∈ ( ‘( 𝑆)) → 𝑥𝑆)))
6463rexlimdvva 3205 . . . . 5 (𝜑 → (∃𝑦𝑆𝑧 ∈ ( 𝑆)𝑥 = (𝑦(+g𝑊)𝑧) → (𝑥 ∈ ( ‘( 𝑆)) → 𝑥𝑆)))
6515, 64syld 47 . . . 4 (𝜑 → (𝑥 ∈ ( ‘( 𝑆)) → (𝑥 ∈ ( ‘( 𝑆)) → 𝑥𝑆)))
6665pm2.43d 53 . . 3 (𝜑 → (𝑥 ∈ ( ‘( 𝑆)) → 𝑥𝑆))
6766ssrdv 3950 . 2 (𝜑 → ( ‘( 𝑆)) ⊆ 𝑆)
68 lsmcss.c . . . 4 𝐶 = (ClSubSp‘𝑊)
697, 68, 8iscss2 21090 . . 3 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → (𝑆𝐶 ↔ ( ‘( 𝑆)) ⊆ 𝑆))
703, 6, 69syl2anc 584 . 2 (𝜑 → (𝑆𝐶 ↔ ( ‘( 𝑆)) ⊆ 𝑆))
7167, 70mpbird 256 1 (𝜑𝑆𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wrex 3073  wss 3910  cfv 6496  (class class class)co 7357  Basecbs 17083  +gcplusg 17133  Scalarcsca 17136  ·𝑖cip 17138  0gc0g 17321  Grpcgrp 18748  LSSumclsm 19416  LModclmod 20322  PreHilcphl 21028  ocvcocv 21064  ClSubSpccss 21065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-ip 17151  df-0g 17323  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-grp 18751  df-ghm 19006  df-lsm 19418  df-mgp 19897  df-ur 19914  df-ring 19966  df-oppr 20049  df-rnghom 20146  df-staf 20304  df-srng 20305  df-lmod 20324  df-lmhm 20483  df-lvec 20564  df-sra 20633  df-rgmod 20634  df-phl 21030  df-ocv 21067  df-css 21068
This theorem is referenced by:  pjcss  21122
  Copyright terms: Public domain W3C validator