MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmcss Structured version   Visualization version   GIF version

Theorem lsmcss 21728
Description: A subset of a pre-Hilbert space whose double orthocomplement has a projection decomposition is a closed subspace. This is the core of the proof that a topologically closed subspace is algebraically closed in a Hilbert space. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
lsmcss.c 𝐶 = (ClSubSp‘𝑊)
lsmcss.j 𝑉 = (Base‘𝑊)
lsmcss.o = (ocv‘𝑊)
lsmcss.p = (LSSum‘𝑊)
lsmcss.1 (𝜑𝑊 ∈ PreHil)
lsmcss.2 (𝜑𝑆𝑉)
lsmcss.3 (𝜑 → ( ‘( 𝑆)) ⊆ (𝑆 ( 𝑆)))
Assertion
Ref Expression
lsmcss (𝜑𝑆𝐶)

Proof of Theorem lsmcss
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsmcss.3 . . . . . . 7 (𝜑 → ( ‘( 𝑆)) ⊆ (𝑆 ( 𝑆)))
21sseld 3994 . . . . . 6 (𝜑 → (𝑥 ∈ ( ‘( 𝑆)) → 𝑥 ∈ (𝑆 ( 𝑆))))
3 lsmcss.1 . . . . . . . 8 (𝜑𝑊 ∈ PreHil)
4 phllmod 21666 . . . . . . . 8 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
53, 4syl 17 . . . . . . 7 (𝜑𝑊 ∈ LMod)
6 lsmcss.2 . . . . . . 7 (𝜑𝑆𝑉)
7 lsmcss.j . . . . . . . . 9 𝑉 = (Base‘𝑊)
8 lsmcss.o . . . . . . . . 9 = (ocv‘𝑊)
97, 8ocvss 21706 . . . . . . . 8 ( 𝑆) ⊆ 𝑉
109a1i 11 . . . . . . 7 (𝜑 → ( 𝑆) ⊆ 𝑉)
11 eqid 2735 . . . . . . . 8 (+g𝑊) = (+g𝑊)
12 lsmcss.p . . . . . . . 8 = (LSSum‘𝑊)
137, 11, 12lsmelvalx 19673 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑆𝑉 ∧ ( 𝑆) ⊆ 𝑉) → (𝑥 ∈ (𝑆 ( 𝑆)) ↔ ∃𝑦𝑆𝑧 ∈ ( 𝑆)𝑥 = (𝑦(+g𝑊)𝑧)))
145, 6, 10, 13syl3anc 1370 . . . . . 6 (𝜑 → (𝑥 ∈ (𝑆 ( 𝑆)) ↔ ∃𝑦𝑆𝑧 ∈ ( 𝑆)𝑥 = (𝑦(+g𝑊)𝑧)))
152, 14sylibd 239 . . . . 5 (𝜑 → (𝑥 ∈ ( ‘( 𝑆)) → ∃𝑦𝑆𝑧 ∈ ( 𝑆)𝑥 = (𝑦(+g𝑊)𝑧)))
163ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → 𝑊 ∈ PreHil)
176ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → 𝑆𝑉)
18 simplrl 777 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → 𝑦𝑆)
1917, 18sseldd 3996 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → 𝑦𝑉)
20 simplrr 778 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → 𝑧 ∈ ( 𝑆))
219, 20sselid 3993 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → 𝑧𝑉)
22 eqid 2735 . . . . . . . . . . . . . . . 16 (Scalar‘𝑊) = (Scalar‘𝑊)
23 eqid 2735 . . . . . . . . . . . . . . . 16 (·𝑖𝑊) = (·𝑖𝑊)
24 eqid 2735 . . . . . . . . . . . . . . . 16 (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊))
2522, 23, 7, 11, 24ipdir 21675 . . . . . . . . . . . . . . 15 ((𝑊 ∈ PreHil ∧ (𝑦𝑉𝑧𝑉𝑧𝑉)) → ((𝑦(+g𝑊)𝑧)(·𝑖𝑊)𝑧) = ((𝑦(·𝑖𝑊)𝑧)(+g‘(Scalar‘𝑊))(𝑧(·𝑖𝑊)𝑧)))
2616, 19, 21, 21, 25syl13anc 1371 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → ((𝑦(+g𝑊)𝑧)(·𝑖𝑊)𝑧) = ((𝑦(·𝑖𝑊)𝑧)(+g‘(Scalar‘𝑊))(𝑧(·𝑖𝑊)𝑧)))
27 eqid 2735 . . . . . . . . . . . . . . . . . 18 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
287, 23, 22, 27, 8ocvi 21705 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ( 𝑆) ∧ 𝑦𝑆) → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))
2920, 18, 28syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → (𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))
3022, 23, 7, 27iporthcom 21671 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ PreHil ∧ 𝑧𝑉𝑦𝑉) → ((𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ↔ (𝑦(·𝑖𝑊)𝑧) = (0g‘(Scalar‘𝑊))))
3116, 21, 19, 30syl3anc 1370 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → ((𝑧(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)) ↔ (𝑦(·𝑖𝑊)𝑧) = (0g‘(Scalar‘𝑊))))
3229, 31mpbid 232 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → (𝑦(·𝑖𝑊)𝑧) = (0g‘(Scalar‘𝑊)))
3332oveq1d 7446 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → ((𝑦(·𝑖𝑊)𝑧)(+g‘(Scalar‘𝑊))(𝑧(·𝑖𝑊)𝑧)) = ((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(𝑧(·𝑖𝑊)𝑧)))
3416, 4syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → 𝑊 ∈ LMod)
3522lmodfgrp 20884 . . . . . . . . . . . . . . . 16 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Grp)
3634, 35syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → (Scalar‘𝑊) ∈ Grp)
37 eqid 2735 . . . . . . . . . . . . . . . . 17 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
3822, 23, 7, 37ipcl 21669 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ PreHil ∧ 𝑧𝑉𝑧𝑉) → (𝑧(·𝑖𝑊)𝑧) ∈ (Base‘(Scalar‘𝑊)))
3916, 21, 21, 38syl3anc 1370 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → (𝑧(·𝑖𝑊)𝑧) ∈ (Base‘(Scalar‘𝑊)))
4037, 24, 27grplid 18998 . . . . . . . . . . . . . . 15 (((Scalar‘𝑊) ∈ Grp ∧ (𝑧(·𝑖𝑊)𝑧) ∈ (Base‘(Scalar‘𝑊))) → ((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(𝑧(·𝑖𝑊)𝑧)) = (𝑧(·𝑖𝑊)𝑧))
4136, 39, 40syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → ((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(𝑧(·𝑖𝑊)𝑧)) = (𝑧(·𝑖𝑊)𝑧))
4226, 33, 413eqtrd 2779 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → ((𝑦(+g𝑊)𝑧)(·𝑖𝑊)𝑧) = (𝑧(·𝑖𝑊)𝑧))
43 simpr 484 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆)))
447, 23, 22, 27, 8ocvi 21705 . . . . . . . . . . . . . 14 (((𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆)) ∧ 𝑧 ∈ ( 𝑆)) → ((𝑦(+g𝑊)𝑧)(·𝑖𝑊)𝑧) = (0g‘(Scalar‘𝑊)))
4543, 20, 44syl2anc 584 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → ((𝑦(+g𝑊)𝑧)(·𝑖𝑊)𝑧) = (0g‘(Scalar‘𝑊)))
4642, 45eqtr3d 2777 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → (𝑧(·𝑖𝑊)𝑧) = (0g‘(Scalar‘𝑊)))
47 eqid 2735 . . . . . . . . . . . . . 14 (0g𝑊) = (0g𝑊)
4822, 23, 7, 27, 47ipeq0 21674 . . . . . . . . . . . . 13 ((𝑊 ∈ PreHil ∧ 𝑧𝑉) → ((𝑧(·𝑖𝑊)𝑧) = (0g‘(Scalar‘𝑊)) ↔ 𝑧 = (0g𝑊)))
4916, 21, 48syl2anc 584 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → ((𝑧(·𝑖𝑊)𝑧) = (0g‘(Scalar‘𝑊)) ↔ 𝑧 = (0g𝑊)))
5046, 49mpbid 232 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → 𝑧 = (0g𝑊))
5150oveq2d 7447 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → (𝑦(+g𝑊)𝑧) = (𝑦(+g𝑊)(0g𝑊)))
52 lmodgrp 20882 . . . . . . . . . . . . 13 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
535, 52syl 17 . . . . . . . . . . . 12 (𝜑𝑊 ∈ Grp)
5453ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → 𝑊 ∈ Grp)
557, 11, 47grprid 18999 . . . . . . . . . . 11 ((𝑊 ∈ Grp ∧ 𝑦𝑉) → (𝑦(+g𝑊)(0g𝑊)) = 𝑦)
5654, 19, 55syl2anc 584 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → (𝑦(+g𝑊)(0g𝑊)) = 𝑦)
5751, 56eqtrd 2775 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → (𝑦(+g𝑊)𝑧) = 𝑦)
5857, 18eqeltrd 2839 . . . . . . . 8 (((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) ∧ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))) → (𝑦(+g𝑊)𝑧) ∈ 𝑆)
5958ex 412 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) → ((𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆)) → (𝑦(+g𝑊)𝑧) ∈ 𝑆))
60 eleq1 2827 . . . . . . . 8 (𝑥 = (𝑦(+g𝑊)𝑧) → (𝑥 ∈ ( ‘( 𝑆)) ↔ (𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆))))
61 eleq1 2827 . . . . . . . 8 (𝑥 = (𝑦(+g𝑊)𝑧) → (𝑥𝑆 ↔ (𝑦(+g𝑊)𝑧) ∈ 𝑆))
6260, 61imbi12d 344 . . . . . . 7 (𝑥 = (𝑦(+g𝑊)𝑧) → ((𝑥 ∈ ( ‘( 𝑆)) → 𝑥𝑆) ↔ ((𝑦(+g𝑊)𝑧) ∈ ( ‘( 𝑆)) → (𝑦(+g𝑊)𝑧) ∈ 𝑆)))
6359, 62syl5ibrcom 247 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑧 ∈ ( 𝑆))) → (𝑥 = (𝑦(+g𝑊)𝑧) → (𝑥 ∈ ( ‘( 𝑆)) → 𝑥𝑆)))
6463rexlimdvva 3211 . . . . 5 (𝜑 → (∃𝑦𝑆𝑧 ∈ ( 𝑆)𝑥 = (𝑦(+g𝑊)𝑧) → (𝑥 ∈ ( ‘( 𝑆)) → 𝑥𝑆)))
6515, 64syld 47 . . . 4 (𝜑 → (𝑥 ∈ ( ‘( 𝑆)) → (𝑥 ∈ ( ‘( 𝑆)) → 𝑥𝑆)))
6665pm2.43d 53 . . 3 (𝜑 → (𝑥 ∈ ( ‘( 𝑆)) → 𝑥𝑆))
6766ssrdv 4001 . 2 (𝜑 → ( ‘( 𝑆)) ⊆ 𝑆)
68 lsmcss.c . . . 4 𝐶 = (ClSubSp‘𝑊)
697, 68, 8iscss2 21722 . . 3 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → (𝑆𝐶 ↔ ( ‘( 𝑆)) ⊆ 𝑆))
703, 6, 69syl2anc 584 . 2 (𝜑 → (𝑆𝐶 ↔ ( ‘( 𝑆)) ⊆ 𝑆))
7167, 70mpbird 257 1 (𝜑𝑆𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wrex 3068  wss 3963  cfv 6563  (class class class)co 7431  Basecbs 17245  +gcplusg 17298  Scalarcsca 17301  ·𝑖cip 17303  0gc0g 17486  Grpcgrp 18964  LSSumclsm 19667  LModclmod 20875  PreHilcphl 21660  ocvcocv 21696  ClSubSpccss 21697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-grp 18967  df-ghm 19244  df-lsm 19669  df-mgp 20153  df-ur 20200  df-ring 20253  df-oppr 20351  df-rhm 20489  df-staf 20857  df-srng 20858  df-lmod 20877  df-lmhm 21039  df-lvec 21120  df-sra 21190  df-rgmod 21191  df-phl 21662  df-ocv 21699  df-css 21700
This theorem is referenced by:  pjcss  21754
  Copyright terms: Public domain W3C validator